#[cfg(feature = "async")] use core::task::Waker; use crate::iface::Context; use crate::time::{Duration, Instant}; use crate::wire::dhcpv4::field as dhcpv4_field; use crate::wire::{ DhcpMessageType, DhcpPacket, DhcpRepr, IpAddress, IpProtocol, Ipv4Address, Ipv4Cidr, Ipv4Repr, UdpRepr, DHCP_CLIENT_PORT, DHCP_MAX_DNS_SERVER_COUNT, DHCP_SERVER_PORT, UDP_HEADER_LEN, }; use crate::wire::{DhcpOption, HardwareAddress}; use heapless::Vec; #[cfg(feature = "async")] use super::WakerRegistration; use super::PollAt; const DEFAULT_LEASE_DURATION: Duration = Duration::from_secs(120); const DEFAULT_PARAMETER_REQUEST_LIST: &[u8] = &[ dhcpv4_field::OPT_SUBNET_MASK, dhcpv4_field::OPT_ROUTER, dhcpv4_field::OPT_DOMAIN_NAME_SERVER, ]; /// IPv4 configuration data provided by the DHCP server. #[derive(Debug, Eq, PartialEq, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct Config<'a> { /// Information on how to reach the DHCP server that responded with DHCP /// configuration. pub server: ServerInfo, /// IP address pub address: Ipv4Cidr, /// Router address, also known as default gateway. Does not necessarily /// match the DHCP server's address. pub router: Option, /// DNS servers pub dns_servers: Vec, /// Received DHCP packet pub packet: Option>, } /// Information on how to reach a DHCP server. #[derive(Debug, Clone, Copy, Eq, PartialEq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct ServerInfo { /// IP address to use as destination in outgoing packets pub address: Ipv4Address, /// Server identifier to use in outgoing packets. Usually equal to server_address, /// but may differ in some situations (eg DHCP relays) pub identifier: Ipv4Address, } #[derive(Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] struct DiscoverState { /// When to send next request retry_at: Instant, } #[derive(Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] struct RequestState { /// When to send next request retry_at: Instant, /// How many retries have been done retry: u16, /// Server we're trying to request from server: ServerInfo, /// IP address that we're trying to request. requested_ip: Ipv4Address, } #[derive(Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] struct RenewState { /// Active network config config: Config<'static>, /// Renew timer. When reached, we will start attempting /// to renew this lease with the DHCP server. /// Must be less or equal than `expires_at`. renew_at: Instant, /// Expiration timer. When reached, this lease is no longer valid, so it must be /// thrown away and the ethernet interface deconfigured. expires_at: Instant, } #[derive(Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] enum ClientState { /// Discovering the DHCP server Discovering(DiscoverState), /// Requesting an address Requesting(RequestState), /// Having an address, refresh it periodically. Renewing(RenewState), } /// Timeout and retry configuration. #[derive(Debug, PartialEq, Eq, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct RetryConfig { pub discover_timeout: Duration, /// The REQUEST timeout doubles every 2 tries. pub initial_request_timeout: Duration, pub request_retries: u16, pub min_renew_timeout: Duration, } impl Default for RetryConfig { fn default() -> Self { Self { discover_timeout: Duration::from_secs(10), initial_request_timeout: Duration::from_secs(5), request_retries: 5, min_renew_timeout: Duration::from_secs(60), } } } /// Return value for the `Dhcpv4Socket::poll` function #[derive(Debug, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Event<'a> { /// Configuration has been lost (for example, the lease has expired) Deconfigured, /// Configuration has been newly acquired, or modified. Configured(Config<'a>), } #[derive(Debug)] pub struct Socket<'a> { /// State of the DHCP client. state: ClientState, /// Set to true on config/state change, cleared back to false by the `config` function. config_changed: bool, /// xid of the last sent message. transaction_id: u32, /// Max lease duration. If set, it sets a maximum cap to the server-provided lease duration. /// Useful to react faster to IP configuration changes and to test whether renews work correctly. max_lease_duration: Option, retry_config: RetryConfig, /// Ignore NAKs. ignore_naks: bool, /// Server port config pub(crate) server_port: u16, /// Client port config pub(crate) client_port: u16, /// A buffer contains options additional to be added to outgoing DHCP /// packets. outgoing_options: &'a [DhcpOption<'a>], /// A buffer containing all requested parameters. parameter_request_list: Option<&'a [u8]>, /// Incoming DHCP packets are copied into this buffer, overwriting the previous. receive_packet_buffer: Option<&'a mut [u8]>, /// Waker registration #[cfg(feature = "async")] waker: WakerRegistration, } /// DHCP client socket. /// /// The socket acquires an IP address configuration through DHCP autonomously. /// You must query the configuration with `.poll()` after every call to `Interface::poll()`, /// and apply the configuration to the `Interface`. impl<'a> Socket<'a> { /// Create a DHCPv4 socket #[allow(clippy::new_without_default)] pub fn new() -> Self { Socket { state: ClientState::Discovering(DiscoverState { retry_at: Instant::from_millis(0), }), config_changed: true, transaction_id: 1, max_lease_duration: None, retry_config: RetryConfig::default(), ignore_naks: false, outgoing_options: &[], parameter_request_list: None, receive_packet_buffer: None, #[cfg(feature = "async")] waker: WakerRegistration::new(), server_port: DHCP_SERVER_PORT, client_port: DHCP_CLIENT_PORT, } } /// Set the retry/timeouts configuration. pub fn set_retry_config(&mut self, config: RetryConfig) { self.retry_config = config; } /// Set the outgoing options. pub fn set_outgoing_options(&mut self, options: &'a [DhcpOption<'a>]) { self.outgoing_options = options; } /// Set the buffer into which incoming DHCP packets are copied into. pub fn set_receive_packet_buffer(&mut self, buffer: &'a mut [u8]) { self.receive_packet_buffer = Some(buffer); } /// Set the parameter request list. /// /// This should contain at least `OPT_SUBNET_MASK` (`1`), `OPT_ROUTER` /// (`3`), and `OPT_DOMAIN_NAME_SERVER` (`6`). pub fn set_parameter_request_list(&mut self, parameter_request_list: &'a [u8]) { self.parameter_request_list = Some(parameter_request_list); } /// Get the configured max lease duration. /// /// See also [`Self::set_max_lease_duration()`] pub fn max_lease_duration(&self) -> Option { self.max_lease_duration } /// Set the max lease duration. /// /// When set, the lease duration will be capped at the configured duration if the /// DHCP server gives us a longer lease. This is generally not recommended, but /// can be useful for debugging or reacting faster to network configuration changes. /// /// If None, no max is applied (the lease duration from the DHCP server is used.) pub fn set_max_lease_duration(&mut self, max_lease_duration: Option) { self.max_lease_duration = max_lease_duration; } /// Get whether to ignore NAKs. /// /// See also [`Self::set_ignore_naks()`] pub fn ignore_naks(&self) -> bool { self.ignore_naks } /// Set whether to ignore NAKs. /// /// This is not compliant with the DHCP RFCs, since theoretically /// we must stop using the assigned IP when receiving a NAK. This /// can increase reliability on broken networks with buggy routers /// or rogue DHCP servers, however. pub fn set_ignore_naks(&mut self, ignore_naks: bool) { self.ignore_naks = ignore_naks; } /// Set the server/client port /// /// Allows you to specify the ports used by DHCP. /// This is meant to support esoteric usecases allowed by the dhclient program. pub fn set_ports(&mut self, server_port: u16, client_port: u16) { self.server_port = server_port; self.client_port = client_port; } pub(crate) fn poll_at(&self, _cx: &mut Context) -> PollAt { let t = match &self.state { ClientState::Discovering(state) => state.retry_at, ClientState::Requesting(state) => state.retry_at, ClientState::Renewing(state) => state.renew_at.min(state.expires_at), }; PollAt::Time(t) } pub(crate) fn process( &mut self, cx: &mut Context, ip_repr: &Ipv4Repr, repr: &UdpRepr, payload: &[u8], ) { let src_ip = ip_repr.src_addr; // This is enforced in interface.rs. assert!(repr.src_port == self.server_port && repr.dst_port == self.client_port); let dhcp_packet = match DhcpPacket::new_checked(payload) { Ok(dhcp_packet) => dhcp_packet, Err(e) => { net_debug!("DHCP invalid pkt from {}: {:?}", src_ip, e); return; } }; let dhcp_repr = match DhcpRepr::parse(&dhcp_packet) { Ok(dhcp_repr) => dhcp_repr, Err(e) => { net_debug!("DHCP error parsing pkt from {}: {:?}", src_ip, e); return; } }; let Some(HardwareAddress::Ethernet(ethernet_addr)) = cx.hardware_addr() else { panic!("using DHCPv4 socket with a non-ethernet hardware address."); }; if dhcp_repr.client_hardware_address != ethernet_addr { return; } if dhcp_repr.transaction_id != self.transaction_id { return; } let server_identifier = match dhcp_repr.server_identifier { Some(server_identifier) => server_identifier, None => { net_debug!( "DHCP ignoring {:?} because missing server_identifier", dhcp_repr.message_type ); return; } }; net_debug!( "DHCP recv {:?} from {}: {:?}", dhcp_repr.message_type, src_ip, dhcp_repr ); // Copy over the payload into the receive packet buffer. if let Some(buffer) = self.receive_packet_buffer.as_mut() { if let Some(buffer) = buffer.get_mut(..payload.len()) { buffer.copy_from_slice(payload); } } match (&mut self.state, dhcp_repr.message_type) { (ClientState::Discovering(_state), DhcpMessageType::Offer) => { if !dhcp_repr.your_ip.is_unicast() { net_debug!("DHCP ignoring OFFER because your_ip is not unicast"); return; } self.state = ClientState::Requesting(RequestState { retry_at: cx.now(), retry: 0, server: ServerInfo { address: src_ip, identifier: server_identifier, }, requested_ip: dhcp_repr.your_ip, // use the offered ip }); } (ClientState::Requesting(state), DhcpMessageType::Ack) => { if let Some((config, renew_at, expires_at)) = Self::parse_ack(cx.now(), &dhcp_repr, self.max_lease_duration, state.server) { self.state = ClientState::Renewing(RenewState { config, renew_at, expires_at, }); self.config_changed(); } } (ClientState::Requesting(_), DhcpMessageType::Nak) => { if !self.ignore_naks { self.reset(); } } (ClientState::Renewing(state), DhcpMessageType::Ack) => { if let Some((config, renew_at, expires_at)) = Self::parse_ack( cx.now(), &dhcp_repr, self.max_lease_duration, state.config.server, ) { state.renew_at = renew_at; state.expires_at = expires_at; // The `receive_packet_buffer` field isn't populated until // the client asks for the state, but receiving any packet // will change it, so we indicate that the config has // changed every time if the receive packet buffer is set, // but we only write changes to the rest of the config now. let config_changed = state.config != config || self.receive_packet_buffer.is_some(); if state.config != config { state.config = config; } if config_changed { self.config_changed(); } } } (ClientState::Renewing(_), DhcpMessageType::Nak) => { if !self.ignore_naks { self.reset(); } } _ => { net_debug!( "DHCP ignoring {:?}: unexpected in current state", dhcp_repr.message_type ); } } } fn parse_ack( now: Instant, dhcp_repr: &DhcpRepr, max_lease_duration: Option, server: ServerInfo, ) -> Option<(Config<'static>, Instant, Instant)> { let subnet_mask = match dhcp_repr.subnet_mask { Some(subnet_mask) => subnet_mask, None => { net_debug!("DHCP ignoring ACK because missing subnet_mask"); return None; } }; let prefix_len = match IpAddress::Ipv4(subnet_mask).prefix_len() { Some(prefix_len) => prefix_len, None => { net_debug!("DHCP ignoring ACK because subnet_mask is not a valid mask"); return None; } }; if !dhcp_repr.your_ip.is_unicast() { net_debug!("DHCP ignoring ACK because your_ip is not unicast"); return None; } let mut lease_duration = dhcp_repr .lease_duration .map(|d| Duration::from_secs(d as _)) .unwrap_or(DEFAULT_LEASE_DURATION); if let Some(max_lease_duration) = max_lease_duration { lease_duration = lease_duration.min(max_lease_duration); } // Cleanup the DNS servers list, keeping only unicasts/ // TP-Link TD-W8970 sends 0.0.0.0 as second DNS server if there's only one configured :( let mut dns_servers = Vec::new(); dhcp_repr .dns_servers .iter() .flatten() .filter(|s| s.is_unicast()) .for_each(|a| { // This will never produce an error, as both the arrays and `dns_servers` // have length DHCP_MAX_DNS_SERVER_COUNT dns_servers.push(*a).ok(); }); let config = Config { server, address: Ipv4Cidr::new(dhcp_repr.your_ip, prefix_len), router: dhcp_repr.router, dns_servers, packet: None, }; // Set renew time as per RFC 2131: // The renew time (T1) can be specified by the server using option 58: let renew_duration = dhcp_repr .renew_duration .map(|d| Duration::from_secs(d as u64)) // Since we don't follow the REBINDING part of the spec, when no // explicit T1 time is given, we will also consider the rebinding // time if it is given and less than the default. .or_else(|| { dhcp_repr .rebind_duration .map(|d| Duration::from_secs(d as u64).min(lease_duration / 2)) }) // Otherwise, we use the default T1 time, which is half the lease // duration. .unwrap_or(lease_duration / 2); let renew_at = now + renew_duration; let expires_at = now + lease_duration; Some((config, renew_at, expires_at)) } #[cfg(not(test))] fn random_transaction_id(cx: &mut Context) -> u32 { cx.rand().rand_u32() } #[cfg(test)] fn random_transaction_id(_cx: &mut Context) -> u32 { 0x12345678 } pub(crate) fn dispatch(&mut self, cx: &mut Context, emit: F) -> Result<(), E> where F: FnOnce(&mut Context, (Ipv4Repr, UdpRepr, DhcpRepr)) -> Result<(), E>, { // note: Dhcpv4Socket is only usable in ethernet mediums, so the // unwrap can never fail. let Some(HardwareAddress::Ethernet(ethernet_addr)) = cx.hardware_addr() else { panic!("using DHCPv4 socket with a non-ethernet hardware address."); }; // Worst case biggest IPv4 header length. // 0x0f * 4 = 60 bytes. const MAX_IPV4_HEADER_LEN: usize = 60; // We don't directly modify self.transaction_id because sending the packet // may fail. We only want to update state after succesfully sending. let next_transaction_id = Self::random_transaction_id(cx); let mut dhcp_repr = DhcpRepr { message_type: DhcpMessageType::Discover, transaction_id: next_transaction_id, secs: 0, client_hardware_address: ethernet_addr, client_ip: Ipv4Address::UNSPECIFIED, your_ip: Ipv4Address::UNSPECIFIED, server_ip: Ipv4Address::UNSPECIFIED, router: None, subnet_mask: None, relay_agent_ip: Ipv4Address::UNSPECIFIED, broadcast: false, requested_ip: None, client_identifier: Some(ethernet_addr), server_identifier: None, parameter_request_list: Some( self.parameter_request_list .unwrap_or(DEFAULT_PARAMETER_REQUEST_LIST), ), max_size: Some((cx.ip_mtu() - MAX_IPV4_HEADER_LEN - UDP_HEADER_LEN) as u16), lease_duration: None, renew_duration: None, rebind_duration: None, dns_servers: None, additional_options: self.outgoing_options, }; let udp_repr = UdpRepr { src_port: self.client_port, dst_port: self.server_port, }; let mut ipv4_repr = Ipv4Repr { src_addr: Ipv4Address::UNSPECIFIED, dst_addr: Ipv4Address::BROADCAST, next_header: IpProtocol::Udp, payload_len: 0, // filled right before emit hop_limit: 64, }; match &mut self.state { ClientState::Discovering(state) => { if cx.now() < state.retry_at { return Ok(()); } // send packet net_debug!( "DHCP send DISCOVER to {}: {:?}", ipv4_repr.dst_addr, dhcp_repr ); ipv4_repr.payload_len = udp_repr.header_len() + dhcp_repr.buffer_len(); emit(cx, (ipv4_repr, udp_repr, dhcp_repr))?; // Update state AFTER the packet has been successfully sent. state.retry_at = cx.now() + self.retry_config.discover_timeout; self.transaction_id = next_transaction_id; Ok(()) } ClientState::Requesting(state) => { if cx.now() < state.retry_at { return Ok(()); } if state.retry >= self.retry_config.request_retries { net_debug!("DHCP request retries exceeded, restarting discovery"); self.reset(); return Ok(()); } dhcp_repr.message_type = DhcpMessageType::Request; dhcp_repr.requested_ip = Some(state.requested_ip); dhcp_repr.server_identifier = Some(state.server.identifier); net_debug!( "DHCP send request to {}: {:?}", ipv4_repr.dst_addr, dhcp_repr ); ipv4_repr.payload_len = udp_repr.header_len() + dhcp_repr.buffer_len(); emit(cx, (ipv4_repr, udp_repr, dhcp_repr))?; // Exponential backoff: Double every 2 retries. state.retry_at = cx.now() + (self.retry_config.initial_request_timeout << (state.retry as u32 / 2)); state.retry += 1; self.transaction_id = next_transaction_id; Ok(()) } ClientState::Renewing(state) => { if state.expires_at <= cx.now() { net_debug!("DHCP lease expired"); self.reset(); // return Ok so we get polled again return Ok(()); } if cx.now() < state.renew_at { return Ok(()); } ipv4_repr.src_addr = state.config.address.address(); ipv4_repr.dst_addr = state.config.server.address; dhcp_repr.message_type = DhcpMessageType::Request; dhcp_repr.client_ip = state.config.address.address(); net_debug!("DHCP send renew to {}: {:?}", ipv4_repr.dst_addr, dhcp_repr); ipv4_repr.payload_len = udp_repr.header_len() + dhcp_repr.buffer_len(); emit(cx, (ipv4_repr, udp_repr, dhcp_repr))?; // In both RENEWING and REBINDING states, if the client receives no // response to its DHCPREQUEST message, the client SHOULD wait one-half // of the remaining time until T2 (in RENEWING state) and one-half of // the remaining lease time (in REBINDING state), down to a minimum of // 60 seconds, before retransmitting the DHCPREQUEST message. state.renew_at = cx.now() + self .retry_config .min_renew_timeout .max((state.expires_at - cx.now()) / 2); self.transaction_id = next_transaction_id; Ok(()) } } } /// Reset state and restart discovery phase. /// /// Use this to speed up acquisition of an address in a new /// network if a link was down and it is now back up. pub fn reset(&mut self) { net_trace!("DHCP reset"); if let ClientState::Renewing(_) = &self.state { self.config_changed(); } self.state = ClientState::Discovering(DiscoverState { retry_at: Instant::from_millis(0), }); } /// Query the socket for configuration changes. /// /// The socket has an internal "configuration changed" flag. If /// set, this function returns the configuration and resets the flag. pub fn poll(&mut self) -> Option { if !self.config_changed { None } else if let ClientState::Renewing(state) = &self.state { self.config_changed = false; Some(Event::Configured(Config { server: state.config.server, address: state.config.address, router: state.config.router, dns_servers: state.config.dns_servers.clone(), packet: self .receive_packet_buffer .as_deref() .map(DhcpPacket::new_unchecked), })) } else { self.config_changed = false; Some(Event::Deconfigured) } } /// This function _must_ be called when the configuration provided to the /// interface, by this DHCP socket, changes. It will update the `config_changed` field /// so that a subsequent call to `poll` will yield an event, and wake a possible waker. pub(crate) fn config_changed(&mut self) { self.config_changed = true; #[cfg(feature = "async")] self.waker.wake(); } /// Register a waker. /// /// The waker is woken on state changes that might affect the return value /// of `poll` method calls, which indicates a new state in the DHCP configuration /// provided by this DHCP socket. /// /// Notes: /// /// - Only one waker can be registered at a time. If another waker was previously registered, /// it is overwritten and will no longer be woken. /// - The Waker is woken only once. Once woken, you must register it again to receive more wakes. #[cfg(feature = "async")] pub fn register_waker(&mut self, waker: &Waker) { self.waker.register(waker) } } #[cfg(test)] mod test { use std::ops::{Deref, DerefMut}; use super::*; use crate::wire::EthernetAddress; // =========================================================================================// // Helper functions struct TestSocket { socket: Socket<'static>, cx: Context, } impl Deref for TestSocket { type Target = Socket<'static>; fn deref(&self) -> &Self::Target { &self.socket } } impl DerefMut for TestSocket { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.socket } } fn send( s: &mut TestSocket, timestamp: Instant, (ip_repr, udp_repr, dhcp_repr): (Ipv4Repr, UdpRepr, DhcpRepr), ) { s.cx.set_now(timestamp); net_trace!("send: {:?}", ip_repr); net_trace!(" {:?}", udp_repr); net_trace!(" {:?}", dhcp_repr); let mut payload = vec![0; dhcp_repr.buffer_len()]; dhcp_repr .emit(&mut DhcpPacket::new_unchecked(&mut payload)) .unwrap(); s.socket.process(&mut s.cx, &ip_repr, &udp_repr, &payload) } fn recv(s: &mut TestSocket, timestamp: Instant, reprs: &[(Ipv4Repr, UdpRepr, DhcpRepr)]) { s.cx.set_now(timestamp); let mut i = 0; while s.socket.poll_at(&mut s.cx) <= PollAt::Time(timestamp) { let _ = s .socket .dispatch(&mut s.cx, |_, (mut ip_repr, udp_repr, dhcp_repr)| { assert_eq!(ip_repr.next_header, IpProtocol::Udp); assert_eq!( ip_repr.payload_len, udp_repr.header_len() + dhcp_repr.buffer_len() ); // We validated the payload len, change it to 0 to make equality testing easier ip_repr.payload_len = 0; net_trace!("recv: {:?}", ip_repr); net_trace!(" {:?}", udp_repr); net_trace!(" {:?}", dhcp_repr); let got_repr = (ip_repr, udp_repr, dhcp_repr); match reprs.get(i) { Some(want_repr) => assert_eq!(want_repr, &got_repr), None => panic!("Too many reprs emitted"), } i += 1; Ok::<_, ()>(()) }); } assert_eq!(i, reprs.len()); } macro_rules! send { ($socket:ident, $repr:expr) => (send!($socket, time 0, $repr)); ($socket:ident, time $time:expr, $repr:expr) => (send(&mut $socket, Instant::from_millis($time), $repr)); } macro_rules! recv { ($socket:ident, $reprs:expr) => ({ recv!($socket, time 0, $reprs); }); ($socket:ident, time $time:expr, $reprs:expr) => ({ recv(&mut $socket, Instant::from_millis($time), &$reprs); }); } // =========================================================================================// // Constants const TXID: u32 = 0x12345678; const MY_IP: Ipv4Address = Ipv4Address([192, 168, 1, 42]); const SERVER_IP: Ipv4Address = Ipv4Address([192, 168, 1, 1]); const DNS_IP_1: Ipv4Address = Ipv4Address([1, 1, 1, 1]); const DNS_IP_2: Ipv4Address = Ipv4Address([1, 1, 1, 2]); const DNS_IP_3: Ipv4Address = Ipv4Address([1, 1, 1, 3]); const DNS_IPS: &[Ipv4Address] = &[DNS_IP_1, DNS_IP_2, DNS_IP_3]; const MASK_24: Ipv4Address = Ipv4Address([255, 255, 255, 0]); const MY_MAC: EthernetAddress = EthernetAddress([0x02, 0x02, 0x02, 0x02, 0x02, 0x02]); const IP_BROADCAST: Ipv4Repr = Ipv4Repr { src_addr: Ipv4Address::UNSPECIFIED, dst_addr: Ipv4Address::BROADCAST, next_header: IpProtocol::Udp, payload_len: 0, hop_limit: 64, }; const IP_SERVER_BROADCAST: Ipv4Repr = Ipv4Repr { src_addr: SERVER_IP, dst_addr: Ipv4Address::BROADCAST, next_header: IpProtocol::Udp, payload_len: 0, hop_limit: 64, }; const IP_RECV: Ipv4Repr = Ipv4Repr { src_addr: SERVER_IP, dst_addr: MY_IP, next_header: IpProtocol::Udp, payload_len: 0, hop_limit: 64, }; const IP_SEND: Ipv4Repr = Ipv4Repr { src_addr: MY_IP, dst_addr: SERVER_IP, next_header: IpProtocol::Udp, payload_len: 0, hop_limit: 64, }; const UDP_SEND: UdpRepr = UdpRepr { src_port: DHCP_CLIENT_PORT, dst_port: DHCP_SERVER_PORT, }; const UDP_RECV: UdpRepr = UdpRepr { src_port: DHCP_SERVER_PORT, dst_port: DHCP_CLIENT_PORT, }; const DIFFERENT_CLIENT_PORT: u16 = 6800; const DIFFERENT_SERVER_PORT: u16 = 6700; const UDP_SEND_DIFFERENT_PORT: UdpRepr = UdpRepr { src_port: DIFFERENT_CLIENT_PORT, dst_port: DIFFERENT_SERVER_PORT, }; const UDP_RECV_DIFFERENT_PORT: UdpRepr = UdpRepr { src_port: DIFFERENT_SERVER_PORT, dst_port: DIFFERENT_CLIENT_PORT, }; const DHCP_DEFAULT: DhcpRepr = DhcpRepr { message_type: DhcpMessageType::Unknown(99), transaction_id: TXID, secs: 0, client_hardware_address: MY_MAC, client_ip: Ipv4Address::UNSPECIFIED, your_ip: Ipv4Address::UNSPECIFIED, server_ip: Ipv4Address::UNSPECIFIED, router: None, subnet_mask: None, relay_agent_ip: Ipv4Address::UNSPECIFIED, broadcast: false, requested_ip: None, client_identifier: None, server_identifier: None, parameter_request_list: None, dns_servers: None, max_size: None, renew_duration: None, rebind_duration: None, lease_duration: None, additional_options: &[], }; const DHCP_DISCOVER: DhcpRepr = DhcpRepr { message_type: DhcpMessageType::Discover, client_identifier: Some(MY_MAC), parameter_request_list: Some(&[1, 3, 6]), max_size: Some(1432), ..DHCP_DEFAULT }; fn dhcp_offer() -> DhcpRepr<'static> { DhcpRepr { message_type: DhcpMessageType::Offer, server_ip: SERVER_IP, server_identifier: Some(SERVER_IP), your_ip: MY_IP, router: Some(SERVER_IP), subnet_mask: Some(MASK_24), dns_servers: Some(Vec::from_slice(DNS_IPS).unwrap()), lease_duration: Some(1000), ..DHCP_DEFAULT } } const DHCP_REQUEST: DhcpRepr = DhcpRepr { message_type: DhcpMessageType::Request, client_identifier: Some(MY_MAC), server_identifier: Some(SERVER_IP), max_size: Some(1432), requested_ip: Some(MY_IP), parameter_request_list: Some(&[1, 3, 6]), ..DHCP_DEFAULT }; fn dhcp_ack() -> DhcpRepr<'static> { DhcpRepr { message_type: DhcpMessageType::Ack, server_ip: SERVER_IP, server_identifier: Some(SERVER_IP), your_ip: MY_IP, router: Some(SERVER_IP), subnet_mask: Some(MASK_24), dns_servers: Some(Vec::from_slice(DNS_IPS).unwrap()), lease_duration: Some(1000), ..DHCP_DEFAULT } } const DHCP_NAK: DhcpRepr = DhcpRepr { message_type: DhcpMessageType::Nak, server_ip: SERVER_IP, server_identifier: Some(SERVER_IP), ..DHCP_DEFAULT }; const DHCP_RENEW: DhcpRepr = DhcpRepr { message_type: DhcpMessageType::Request, client_identifier: Some(MY_MAC), // NO server_identifier in renew requests, only in first one! client_ip: MY_IP, max_size: Some(1432), requested_ip: None, parameter_request_list: Some(&[1, 3, 6]), ..DHCP_DEFAULT }; // =========================================================================================// // Tests fn socket() -> TestSocket { let mut s = Socket::new(); assert_eq!(s.poll(), Some(Event::Deconfigured)); TestSocket { socket: s, cx: Context::mock(), } } fn socket_different_port() -> TestSocket { let mut s = Socket::new(); s.set_ports(DIFFERENT_SERVER_PORT, DIFFERENT_CLIENT_PORT); assert_eq!(s.poll(), Some(Event::Deconfigured)); TestSocket { socket: s, cx: Context::mock(), } } fn socket_bound() -> TestSocket { let mut s = socket(); s.state = ClientState::Renewing(RenewState { config: Config { server: ServerInfo { address: SERVER_IP, identifier: SERVER_IP, }, address: Ipv4Cidr::new(MY_IP, 24), dns_servers: Vec::from_slice(DNS_IPS).unwrap(), router: Some(SERVER_IP), packet: None, }, renew_at: Instant::from_secs(500), expires_at: Instant::from_secs(1000), }); s } #[test] fn test_bind() { let mut s = socket(); recv!(s, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); assert_eq!(s.poll(), None); send!(s, (IP_RECV, UDP_RECV, dhcp_offer())); assert_eq!(s.poll(), None); recv!(s, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); assert_eq!(s.poll(), None); send!(s, (IP_RECV, UDP_RECV, dhcp_ack())); assert_eq!( s.poll(), Some(Event::Configured(Config { server: ServerInfo { address: SERVER_IP, identifier: SERVER_IP, }, address: Ipv4Cidr::new(MY_IP, 24), dns_servers: Vec::from_slice(DNS_IPS).unwrap(), router: Some(SERVER_IP), packet: None, })) ); match &s.state { ClientState::Renewing(r) => { assert_eq!(r.renew_at, Instant::from_secs(500)); assert_eq!(r.expires_at, Instant::from_secs(1000)); } _ => panic!("Invalid state"), } } #[test] fn test_bind_different_ports() { let mut s = socket_different_port(); recv!(s, [(IP_BROADCAST, UDP_SEND_DIFFERENT_PORT, DHCP_DISCOVER)]); assert_eq!(s.poll(), None); send!(s, (IP_RECV, UDP_RECV_DIFFERENT_PORT, dhcp_offer())); assert_eq!(s.poll(), None); recv!(s, [(IP_BROADCAST, UDP_SEND_DIFFERENT_PORT, DHCP_REQUEST)]); assert_eq!(s.poll(), None); send!(s, (IP_RECV, UDP_RECV_DIFFERENT_PORT, dhcp_ack())); assert_eq!( s.poll(), Some(Event::Configured(Config { server: ServerInfo { address: SERVER_IP, identifier: SERVER_IP, }, address: Ipv4Cidr::new(MY_IP, 24), dns_servers: Vec::from_slice(DNS_IPS).unwrap(), router: Some(SERVER_IP), packet: None, })) ); match &s.state { ClientState::Renewing(r) => { assert_eq!(r.renew_at, Instant::from_secs(500)); assert_eq!(r.expires_at, Instant::from_secs(1000)); } _ => panic!("Invalid state"), } } #[test] fn test_discover_retransmit() { let mut s = socket(); recv!(s, time 0, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); recv!(s, time 1_000, []); recv!(s, time 10_000, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); recv!(s, time 11_000, []); recv!(s, time 20_000, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); // check after retransmits it still works send!(s, time 20_000, (IP_RECV, UDP_RECV, dhcp_offer())); recv!(s, time 20_000, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); } #[test] fn test_request_retransmit() { let mut s = socket(); recv!(s, time 0, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); send!(s, time 0, (IP_RECV, UDP_RECV, dhcp_offer())); recv!(s, time 0, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); recv!(s, time 1_000, []); recv!(s, time 5_000, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); recv!(s, time 6_000, []); recv!(s, time 10_000, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); recv!(s, time 15_000, []); recv!(s, time 20_000, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); // check after retransmits it still works send!(s, time 20_000, (IP_RECV, UDP_RECV, dhcp_ack())); match &s.state { ClientState::Renewing(r) => { assert_eq!(r.renew_at, Instant::from_secs(20 + 500)); assert_eq!(r.expires_at, Instant::from_secs(20 + 1000)); } _ => panic!("Invalid state"), } } #[test] fn test_request_timeout() { let mut s = socket(); recv!(s, time 0, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); send!(s, time 0, (IP_RECV, UDP_RECV, dhcp_offer())); recv!(s, time 0, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); recv!(s, time 5_000, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); recv!(s, time 10_000, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); recv!(s, time 20_000, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); recv!(s, time 30_000, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); // After 5 tries and 70 seconds, it gives up. // 5 + 5 + 10 + 10 + 20 = 70 recv!(s, time 70_000, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); // check it still works send!(s, time 60_000, (IP_RECV, UDP_RECV, dhcp_offer())); recv!(s, time 60_000, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); } #[test] fn test_request_nak() { let mut s = socket(); recv!(s, time 0, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); send!(s, time 0, (IP_RECV, UDP_RECV, dhcp_offer())); recv!(s, time 0, [(IP_BROADCAST, UDP_SEND, DHCP_REQUEST)]); send!(s, time 0, (IP_SERVER_BROADCAST, UDP_RECV, DHCP_NAK)); recv!(s, time 0, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); } #[test] fn test_renew() { let mut s = socket_bound(); recv!(s, []); assert_eq!(s.poll(), None); recv!(s, time 500_000, [(IP_SEND, UDP_SEND, DHCP_RENEW)]); assert_eq!(s.poll(), None); match &s.state { ClientState::Renewing(r) => { // the expiration still hasn't been bumped, because // we haven't received the ACK yet assert_eq!(r.expires_at, Instant::from_secs(1000)); } _ => panic!("Invalid state"), } send!(s, time 500_000, (IP_RECV, UDP_RECV, dhcp_ack())); assert_eq!(s.poll(), None); match &s.state { ClientState::Renewing(r) => { // NOW the expiration gets bumped assert_eq!(r.renew_at, Instant::from_secs(500 + 500)); assert_eq!(r.expires_at, Instant::from_secs(500 + 1000)); } _ => panic!("Invalid state"), } } #[test] fn test_renew_retransmit() { let mut s = socket_bound(); recv!(s, []); recv!(s, time 500_000, [(IP_SEND, UDP_SEND, DHCP_RENEW)]); recv!(s, time 749_000, []); recv!(s, time 750_000, [(IP_SEND, UDP_SEND, DHCP_RENEW)]); recv!(s, time 874_000, []); recv!(s, time 875_000, [(IP_SEND, UDP_SEND, DHCP_RENEW)]); // check it still works send!(s, time 875_000, (IP_RECV, UDP_RECV, dhcp_ack())); match &s.state { ClientState::Renewing(r) => { // NOW the expiration gets bumped assert_eq!(r.renew_at, Instant::from_secs(875 + 500)); assert_eq!(r.expires_at, Instant::from_secs(875 + 1000)); } _ => panic!("Invalid state"), } } #[test] fn test_renew_timeout() { let mut s = socket_bound(); recv!(s, []); recv!(s, time 500_000, [(IP_SEND, UDP_SEND, DHCP_RENEW)]); recv!(s, time 999_000, [(IP_SEND, UDP_SEND, DHCP_RENEW)]); recv!(s, time 1_000_000, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); match &s.state { ClientState::Discovering(_) => {} _ => panic!("Invalid state"), } } #[test] fn test_renew_nak() { let mut s = socket_bound(); recv!(s, time 500_000, [(IP_SEND, UDP_SEND, DHCP_RENEW)]); send!(s, time 500_000, (IP_SERVER_BROADCAST, UDP_RECV, DHCP_NAK)); recv!(s, time 500_000, [(IP_BROADCAST, UDP_SEND, DHCP_DISCOVER)]); } }