// SPDX-License-Identifier: GPL-2.0 /* * * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. * */ #include #include #include #include #include "debug.h" #include "ntfs.h" #include "ntfs_fs.h" /* * LOG FILE structs */ // clang-format off #define MaxLogFileSize 0x100000000ull #define DefaultLogPageSize 4096 #define MinLogRecordPages 0x30 struct RESTART_HDR { struct NTFS_RECORD_HEADER rhdr; // 'RSTR' __le32 sys_page_size; // 0x10: Page size of the system which initialized the log. __le32 page_size; // 0x14: Log page size used for this log file. __le16 ra_off; // 0x18: __le16 minor_ver; // 0x1A: __le16 major_ver; // 0x1C: __le16 fixups[]; }; #define LFS_NO_CLIENT 0xffff #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) struct CLIENT_REC { __le64 oldest_lsn; __le64 restart_lsn; // 0x08: __le16 prev_client; // 0x10: __le16 next_client; // 0x12: __le16 seq_num; // 0x14: u8 align[6]; // 0x16: __le32 name_bytes; // 0x1C: In bytes. __le16 name[32]; // 0x20: Name of client. }; static_assert(sizeof(struct CLIENT_REC) == 0x60); /* Two copies of these will exist at the beginning of the log file */ struct RESTART_AREA { __le64 current_lsn; // 0x00: Current logical end of log file. __le16 log_clients; // 0x08: Maximum number of clients. __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays. __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO. __le32 seq_num_bits; // 0x10: The number of bits in sequence number. __le16 ra_len; // 0x14: __le16 client_off; // 0x16: __le64 l_size; // 0x18: Usable log file size. __le32 last_lsn_data_len; // 0x20: __le16 rec_hdr_len; // 0x24: Log page data offset. __le16 data_off; // 0x26: Log page data length. __le32 open_log_count; // 0x28: __le32 align[5]; // 0x2C: struct CLIENT_REC clients[]; // 0x40: }; struct LOG_REC_HDR { __le16 redo_op; // 0x00: NTFS_LOG_OPERATION __le16 undo_op; // 0x02: NTFS_LOG_OPERATION __le16 redo_off; // 0x04: Offset to Redo record. __le16 redo_len; // 0x06: Redo length. __le16 undo_off; // 0x08: Offset to Undo record. __le16 undo_len; // 0x0A: Undo length. __le16 target_attr; // 0x0C: __le16 lcns_follow; // 0x0E: __le16 record_off; // 0x10: __le16 attr_off; // 0x12: __le16 cluster_off; // 0x14: __le16 reserved; // 0x16: __le64 target_vcn; // 0x18: __le64 page_lcns[]; // 0x20: }; static_assert(sizeof(struct LOG_REC_HDR) == 0x20); #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) struct RESTART_TABLE { __le16 size; // 0x00: In bytes __le16 used; // 0x02: Entries __le16 total; // 0x04: Entries __le16 res[3]; // 0x06: __le32 free_goal; // 0x0C: __le32 first_free; // 0x10: __le32 last_free; // 0x14: }; static_assert(sizeof(struct RESTART_TABLE) == 0x18); struct ATTR_NAME_ENTRY { __le16 off; // Offset in the Open attribute Table. __le16 name_bytes; __le16 name[]; }; struct OPEN_ATTR_ENRTY { __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated __le32 bytes_per_index; // 0x04: enum ATTR_TYPE type; // 0x08: u8 is_dirty_pages; // 0x0C: u8 is_attr_name; // 0x0B: Faked field to manage 'ptr' u8 name_len; // 0x0C: Faked field to manage 'ptr' u8 res; struct MFT_REF ref; // 0x10: File Reference of file containing attribute __le64 open_record_lsn; // 0x18: void *ptr; // 0x20: }; /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ struct OPEN_ATTR_ENRTY_32 { __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated __le32 ptr; // 0x04: struct MFT_REF ref; // 0x08: __le64 open_record_lsn; // 0x10: u8 is_dirty_pages; // 0x18: u8 is_attr_name; // 0x19: u8 res1[2]; enum ATTR_TYPE type; // 0x1C: u8 name_len; // 0x20: In wchar u8 res2[3]; __le32 AttributeName; // 0x24: __le32 bytes_per_index; // 0x28: }; #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); /* * One entry exists in the Dirty Pages Table for each page which is dirty at * the time the Restart Area is written. */ struct DIR_PAGE_ENTRY { __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated __le32 target_attr; // 0x04: Index into the Open attribute Table __le32 transfer_len; // 0x08: __le32 lcns_follow; // 0x0C: __le64 vcn; // 0x10: Vcn of dirty page __le64 oldest_lsn; // 0x18: __le64 page_lcns[]; // 0x20: }; static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ struct DIR_PAGE_ENTRY_32 { __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated __le32 target_attr; // 0x04: Index into the Open attribute Table __le32 transfer_len; // 0x08: __le32 lcns_follow; // 0x0C: __le32 reserved; // 0x10: __le32 vcn_low; // 0x14: Vcn of dirty page __le32 vcn_hi; // 0x18: Vcn of dirty page __le32 oldest_lsn_low; // 0x1C: __le32 oldest_lsn_hi; // 0x1C: __le32 page_lcns_low; // 0x24: __le32 page_lcns_hi; // 0x24: }; static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); enum transact_state { TransactionUninitialized = 0, TransactionActive, TransactionPrepared, TransactionCommitted }; struct TRANSACTION_ENTRY { __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated u8 transact_state; // 0x04: u8 reserved[3]; // 0x05: __le64 first_lsn; // 0x08: __le64 prev_lsn; // 0x10: __le64 undo_next_lsn; // 0x18: __le32 undo_records; // 0x20: Number of undo log records pending abort __le32 undo_len; // 0x24: Total undo size }; static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); struct NTFS_RESTART { __le32 major_ver; // 0x00: __le32 minor_ver; // 0x04: __le64 check_point_start; // 0x08: __le64 open_attr_table_lsn; // 0x10: __le64 attr_names_lsn; // 0x18: __le64 dirty_pages_table_lsn; // 0x20: __le64 transact_table_lsn; // 0x28: __le32 open_attr_len; // 0x30: In bytes __le32 attr_names_len; // 0x34: In bytes __le32 dirty_pages_len; // 0x38: In bytes __le32 transact_table_len; // 0x3C: In bytes }; static_assert(sizeof(struct NTFS_RESTART) == 0x40); struct NEW_ATTRIBUTE_SIZES { __le64 alloc_size; __le64 valid_size; __le64 data_size; __le64 total_size; }; struct BITMAP_RANGE { __le32 bitmap_off; __le32 bits; }; struct LCN_RANGE { __le64 lcn; __le64 len; }; /* The following type defines the different log record types. */ #define LfsClientRecord cpu_to_le32(1) #define LfsClientRestart cpu_to_le32(2) /* This is used to uniquely identify a client for a particular log file. */ struct CLIENT_ID { __le16 seq_num; __le16 client_idx; }; /* This is the header that begins every Log Record in the log file. */ struct LFS_RECORD_HDR { __le64 this_lsn; // 0x00: __le64 client_prev_lsn; // 0x08: __le64 client_undo_next_lsn; // 0x10: __le32 client_data_len; // 0x18: struct CLIENT_ID client; // 0x1C: Owner of this log record. __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart. __le32 transact_id; // 0x24: __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE u8 align[6]; // 0x2A: }; #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); struct LFS_RECORD { __le16 next_record_off; // 0x00: Offset of the free space in the page, u8 align[6]; // 0x02: __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page, }; static_assert(sizeof(struct LFS_RECORD) == 0x10); struct RECORD_PAGE_HDR { struct NTFS_RECORD_HEADER rhdr; // 'RCRD' __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END __le16 page_count; // 0x14: __le16 page_pos; // 0x16: struct LFS_RECORD record_hdr; // 0x18: __le16 fixups[10]; // 0x28: __le32 file_off; // 0x3c: Used when major version >= 2 }; // clang-format on // Page contains the end of a log record. #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) { return hdr->rflags & LOG_PAGE_LOG_RECORD_END; } static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); /* * END of NTFS LOG structures */ /* Define some tuning parameters to keep the restart tables a reasonable size. */ #define INITIAL_NUMBER_TRANSACTIONS 5 enum NTFS_LOG_OPERATION { Noop = 0x00, CompensationLogRecord = 0x01, InitializeFileRecordSegment = 0x02, DeallocateFileRecordSegment = 0x03, WriteEndOfFileRecordSegment = 0x04, CreateAttribute = 0x05, DeleteAttribute = 0x06, UpdateResidentValue = 0x07, UpdateNonresidentValue = 0x08, UpdateMappingPairs = 0x09, DeleteDirtyClusters = 0x0A, SetNewAttributeSizes = 0x0B, AddIndexEntryRoot = 0x0C, DeleteIndexEntryRoot = 0x0D, AddIndexEntryAllocation = 0x0E, DeleteIndexEntryAllocation = 0x0F, WriteEndOfIndexBuffer = 0x10, SetIndexEntryVcnRoot = 0x11, SetIndexEntryVcnAllocation = 0x12, UpdateFileNameRoot = 0x13, UpdateFileNameAllocation = 0x14, SetBitsInNonresidentBitMap = 0x15, ClearBitsInNonresidentBitMap = 0x16, HotFix = 0x17, EndTopLevelAction = 0x18, PrepareTransaction = 0x19, CommitTransaction = 0x1A, ForgetTransaction = 0x1B, OpenNonresidentAttribute = 0x1C, OpenAttributeTableDump = 0x1D, AttributeNamesDump = 0x1E, DirtyPageTableDump = 0x1F, TransactionTableDump = 0x20, UpdateRecordDataRoot = 0x21, UpdateRecordDataAllocation = 0x22, UpdateRelativeDataInIndex = 0x23, // NtOfsRestartUpdateRelativeDataInIndex UpdateRelativeDataInIndex2 = 0x24, ZeroEndOfFileRecord = 0x25, }; /* * Array for log records which require a target attribute. * A true indicates that the corresponding restart operation * requires a target attribute. */ static const u8 AttributeRequired[] = { 0xFC, 0xFB, 0xFF, 0x10, 0x06, }; static inline bool is_target_required(u16 op) { bool ret = op <= UpdateRecordDataAllocation && (AttributeRequired[op >> 3] >> (op & 7) & 1); return ret; } static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) { switch (op) { case Noop: case DeleteDirtyClusters: case HotFix: case EndTopLevelAction: case PrepareTransaction: case CommitTransaction: case ForgetTransaction: case CompensationLogRecord: case OpenNonresidentAttribute: case OpenAttributeTableDump: case AttributeNamesDump: case DirtyPageTableDump: case TransactionTableDump: return true; default: return false; } } enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; /* Bytes per restart table. */ static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) { return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + sizeof(struct RESTART_TABLE); } /* Log record length. */ static inline u32 lrh_length(const struct LOG_REC_HDR *lr) { u16 t16 = le16_to_cpu(lr->lcns_follow); return struct_size(lr, page_lcns, max_t(u16, 1, t16)); } struct lcb { struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. struct LOG_REC_HDR *log_rec; u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next struct CLIENT_ID client; bool alloc; // If true the we should deallocate 'log_rec'. }; static void lcb_put(struct lcb *lcb) { if (lcb->alloc) kfree(lcb->log_rec); kfree(lcb->lrh); kfree(lcb); } /* Find the oldest lsn from active clients. */ static inline void oldest_client_lsn(const struct CLIENT_REC *ca, __le16 next_client, u64 *oldest_lsn) { while (next_client != LFS_NO_CLIENT_LE) { const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); u64 lsn = le64_to_cpu(cr->oldest_lsn); /* Ignore this block if it's oldest lsn is 0. */ if (lsn && lsn < *oldest_lsn) *oldest_lsn = lsn; next_client = cr->next_client; } } static inline bool is_rst_page_hdr_valid(u32 file_off, const struct RESTART_HDR *rhdr) { u32 sys_page = le32_to_cpu(rhdr->sys_page_size); u32 page_size = le32_to_cpu(rhdr->page_size); u32 end_usa; u16 ro; if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || sys_page & (sys_page - 1) || page_size & (page_size - 1)) { return false; } /* Check that if the file offset isn't 0, it is the system page size. */ if (file_off && file_off != sys_page) return false; /* Check support version 1.1+. */ if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) return false; if (le16_to_cpu(rhdr->major_ver) > 2) return false; ro = le16_to_cpu(rhdr->ra_off); if (!IS_ALIGNED(ro, 8) || ro > sys_page) return false; end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); end_usa += le16_to_cpu(rhdr->rhdr.fix_off); if (ro < end_usa) return false; return true; } static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) { const struct RESTART_AREA *ra; u16 cl, fl, ul; u32 off, l_size, file_dat_bits, file_size_round; u16 ro = le16_to_cpu(rhdr->ra_off); u32 sys_page = le32_to_cpu(rhdr->sys_page_size); if (ro + offsetof(struct RESTART_AREA, l_size) > SECTOR_SIZE - sizeof(short)) return false; ra = Add2Ptr(rhdr, ro); cl = le16_to_cpu(ra->log_clients); if (cl > 1) return false; off = le16_to_cpu(ra->client_off); if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) return false; off += cl * sizeof(struct CLIENT_REC); if (off > sys_page) return false; /* * Check the restart length field and whether the entire * restart area is contained that length. */ if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || off > le16_to_cpu(ra->ra_len)) { return false; } /* * As a final check make sure that the use list and the free list * are either empty or point to a valid client. */ fl = le16_to_cpu(ra->client_idx[0]); ul = le16_to_cpu(ra->client_idx[1]); if ((fl != LFS_NO_CLIENT && fl >= cl) || (ul != LFS_NO_CLIENT && ul >= cl)) return false; /* Make sure the sequence number bits match the log file size. */ l_size = le64_to_cpu(ra->l_size); file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits); file_size_round = 1u << (file_dat_bits + 3); if (file_size_round != l_size && (file_size_round < l_size || (file_size_round / 2) > l_size)) { return false; } /* The log page data offset and record header length must be quad-aligned. */ if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) return false; return true; } static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, bool usa_error) { u16 ro = le16_to_cpu(rhdr->ra_off); const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); u16 ra_len = le16_to_cpu(ra->ra_len); const struct CLIENT_REC *ca; u32 i; if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) return false; /* Find the start of the client array. */ ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); /* * Start with the free list. * Check that all the clients are valid and that there isn't a cycle. * Do the in-use list on the second pass. */ for (i = 0; i < 2; i++) { u16 client_idx = le16_to_cpu(ra->client_idx[i]); bool first_client = true; u16 clients = le16_to_cpu(ra->log_clients); while (client_idx != LFS_NO_CLIENT) { const struct CLIENT_REC *cr; if (!clients || client_idx >= le16_to_cpu(ra->log_clients)) return false; clients -= 1; cr = ca + client_idx; client_idx = le16_to_cpu(cr->next_client); if (first_client) { first_client = false; if (cr->prev_client != LFS_NO_CLIENT_LE) return false; } } } return true; } /* * remove_client * * Remove a client record from a client record list an restart area. */ static inline void remove_client(struct CLIENT_REC *ca, const struct CLIENT_REC *cr, __le16 *head) { if (cr->prev_client == LFS_NO_CLIENT_LE) *head = cr->next_client; else ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; if (cr->next_client != LFS_NO_CLIENT_LE) ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; } /* * add_client - Add a client record to the start of a list. */ static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) { struct CLIENT_REC *cr = ca + index; cr->prev_client = LFS_NO_CLIENT_LE; cr->next_client = *head; if (*head != LFS_NO_CLIENT_LE) ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); *head = cpu_to_le16(index); } static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) { __le32 *e; u32 bprt; u16 rsize = t ? le16_to_cpu(t->size) : 0; if (!c) { if (!t || !t->total) return NULL; e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); } else { e = Add2Ptr(c, rsize); } /* Loop until we hit the first one allocated, or the end of the list. */ for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; e = Add2Ptr(e, rsize)) { if (*e == RESTART_ENTRY_ALLOCATED_LE) return e; } return NULL; } /* * find_dp - Search for a @vcn in Dirty Page Table. */ static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, u32 target_attr, u64 vcn) { __le32 ta = cpu_to_le32(target_attr); struct DIR_PAGE_ENTRY *dp = NULL; while ((dp = enum_rstbl(dptbl, dp))) { u64 dp_vcn = le64_to_cpu(dp->vcn); if (dp->target_attr == ta && vcn >= dp_vcn && vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { return dp; } } return NULL; } static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) { if (use_default) page_size = DefaultLogPageSize; /* Round the file size down to a system page boundary. */ *l_size &= ~(page_size - 1); /* File should contain at least 2 restart pages and MinLogRecordPages pages. */ if (*l_size < (MinLogRecordPages + 2) * page_size) return 0; return page_size; } static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, u32 bytes_per_attr_entry) { u16 t16; if (bytes < sizeof(struct LOG_REC_HDR)) return false; if (!tr) return false; if ((tr - sizeof(struct RESTART_TABLE)) % sizeof(struct TRANSACTION_ENTRY)) return false; if (le16_to_cpu(lr->redo_off) & 7) return false; if (le16_to_cpu(lr->undo_off) & 7) return false; if (lr->target_attr) goto check_lcns; if (is_target_required(le16_to_cpu(lr->redo_op))) return false; if (is_target_required(le16_to_cpu(lr->undo_op))) return false; check_lcns: if (!lr->lcns_follow) goto check_length; t16 = le16_to_cpu(lr->target_attr); if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) return false; check_length: if (bytes < lrh_length(lr)) return false; return true; } static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) { u32 ts; u32 i, off; u16 rsize = le16_to_cpu(rt->size); u16 ne = le16_to_cpu(rt->used); u32 ff = le32_to_cpu(rt->first_free); u32 lf = le32_to_cpu(rt->last_free); ts = rsize * ne + sizeof(struct RESTART_TABLE); if (!rsize || rsize > bytes || rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || le16_to_cpu(rt->total) > ne || ff > ts || lf > ts || (ff && ff < sizeof(struct RESTART_TABLE)) || (lf && lf < sizeof(struct RESTART_TABLE))) { return false; } /* * Verify each entry is either allocated or points * to a valid offset the table. */ for (i = 0; i < ne; i++) { off = le32_to_cpu(*(__le32 *)Add2Ptr( rt, i * rsize + sizeof(struct RESTART_TABLE))); if (off != RESTART_ENTRY_ALLOCATED && off && (off < sizeof(struct RESTART_TABLE) || ((off - sizeof(struct RESTART_TABLE)) % rsize))) { return false; } } /* * Walk through the list headed by the first entry to make * sure none of the entries are currently being used. */ for (off = ff; off;) { if (off == RESTART_ENTRY_ALLOCATED) return false; off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); } return true; } /* * free_rsttbl_idx - Free a previously allocated index a Restart Table. */ static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) { __le32 *e; u32 lf = le32_to_cpu(rt->last_free); __le32 off_le = cpu_to_le32(off); e = Add2Ptr(rt, off); if (off < le32_to_cpu(rt->free_goal)) { *e = rt->first_free; rt->first_free = off_le; if (!lf) rt->last_free = off_le; } else { if (lf) *(__le32 *)Add2Ptr(rt, lf) = off_le; else rt->first_free = off_le; rt->last_free = off_le; *e = 0; } le16_sub_cpu(&rt->total, 1); } static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) { __le32 *e, *last_free; u32 off; u32 bytes = esize * used + sizeof(struct RESTART_TABLE); u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); if (!t) return NULL; t->size = cpu_to_le16(esize); t->used = cpu_to_le16(used); t->free_goal = cpu_to_le32(~0u); t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); t->last_free = cpu_to_le32(lf); e = (__le32 *)(t + 1); last_free = Add2Ptr(t, lf); for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; e = Add2Ptr(e, esize), off += esize) { *e = cpu_to_le32(off); } return t; } static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, u32 add, u32 free_goal) { u16 esize = le16_to_cpu(tbl->size); __le32 osize = cpu_to_le32(bytes_per_rt(tbl)); u32 used = le16_to_cpu(tbl->used); struct RESTART_TABLE *rt; rt = init_rsttbl(esize, used + add); if (!rt) return NULL; memcpy(rt + 1, tbl + 1, esize * used); rt->free_goal = free_goal == ~0u ? cpu_to_le32(~0u) : cpu_to_le32(sizeof(struct RESTART_TABLE) + free_goal * esize); if (tbl->first_free) { rt->first_free = tbl->first_free; *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; } else { rt->first_free = osize; } rt->total = tbl->total; kfree(tbl); return rt; } /* * alloc_rsttbl_idx * * Allocate an index from within a previously initialized Restart Table. */ static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) { u32 off; __le32 *e; struct RESTART_TABLE *t = *tbl; if (!t->first_free) { *tbl = t = extend_rsttbl(t, 16, ~0u); if (!t) return NULL; } off = le32_to_cpu(t->first_free); /* Dequeue this entry and zero it. */ e = Add2Ptr(t, off); t->first_free = *e; memset(e, 0, le16_to_cpu(t->size)); *e = RESTART_ENTRY_ALLOCATED_LE; /* If list is going empty, then we fix the last_free as well. */ if (!t->first_free) t->last_free = 0; le16_add_cpu(&t->total, 1); return Add2Ptr(t, off); } /* * alloc_rsttbl_from_idx * * Allocate a specific index from within a previously initialized Restart Table. */ static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) { u32 off; __le32 *e; struct RESTART_TABLE *rt = *tbl; u32 bytes = bytes_per_rt(rt); u16 esize = le16_to_cpu(rt->size); /* If the entry is not the table, we will have to extend the table. */ if (vbo >= bytes) { /* * Extend the size by computing the number of entries between * the existing size and the desired index and adding 1 to that. */ u32 bytes2idx = vbo - bytes; /* * There should always be an integral number of entries * being added. Now extend the table. */ *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); if (!rt) return NULL; } /* See if the entry is already allocated, and just return if it is. */ e = Add2Ptr(rt, vbo); if (*e == RESTART_ENTRY_ALLOCATED_LE) return e; /* * Walk through the table, looking for the entry we're * interested and the previous entry. */ off = le32_to_cpu(rt->first_free); e = Add2Ptr(rt, off); if (off == vbo) { /* this is a match */ rt->first_free = *e; goto skip_looking; } /* * Need to walk through the list looking for the predecessor * of our entry. */ for (;;) { /* Remember the entry just found */ u32 last_off = off; __le32 *last_e = e; /* Should never run of entries. */ /* Lookup up the next entry the list. */ off = le32_to_cpu(*last_e); e = Add2Ptr(rt, off); /* If this is our match we are done. */ if (off == vbo) { *last_e = *e; /* * If this was the last entry, we update that * table as well. */ if (le32_to_cpu(rt->last_free) == off) rt->last_free = cpu_to_le32(last_off); break; } } skip_looking: /* If the list is now empty, we fix the last_free as well. */ if (!rt->first_free) rt->last_free = 0; /* Zero this entry. */ memset(e, 0, esize); *e = RESTART_ENTRY_ALLOCATED_LE; le16_add_cpu(&rt->total, 1); return e; } #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) #define NTFSLOG_WRAPPED 0x00000001 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 #define NTFSLOG_NO_LAST_LSN 0x00000004 #define NTFSLOG_REUSE_TAIL 0x00000010 #define NTFSLOG_NO_OLDEST_LSN 0x00000020 /* Helper struct to work with NTFS $LogFile. */ struct ntfs_log { struct ntfs_inode *ni; u32 l_size; u32 sys_page_size; u32 sys_page_mask; u32 page_size; u32 page_mask; // page_size - 1 u8 page_bits; struct RECORD_PAGE_HDR *one_page_buf; struct RESTART_TABLE *open_attr_tbl; u32 transaction_id; u32 clst_per_page; u32 first_page; u32 next_page; u32 ra_off; u32 data_off; u32 restart_size; u32 data_size; u16 record_header_len; u64 seq_num; u32 seq_num_bits; u32 file_data_bits; u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ u32 ra_size; /* The usable size of the restart area. */ /* * If true, then the in-memory restart area is to be written * to the first position on the disk. */ bool init_ra; bool set_dirty; /* True if we need to set dirty flag. */ u64 oldest_lsn; u32 oldest_lsn_off; u64 last_lsn; u32 total_avail; u32 total_avail_pages; u32 total_undo_commit; u32 max_current_avail; u32 current_avail; u32 reserved; short major_ver; short minor_ver; u32 l_flags; /* See NTFSLOG_XXX */ u32 current_openlog_count; /* On-disk value for open_log_count. */ struct CLIENT_ID client_id; u32 client_undo_commit; }; static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) { u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); return vbo; } /* Compute the offset in the log file of the next log page. */ static inline u32 next_page_off(struct ntfs_log *log, u32 off) { off = (off & ~log->sys_page_mask) + log->page_size; return off >= log->l_size ? log->first_page : off; } static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) { return (((u32)lsn) << 3) & log->page_mask; } static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) { return (off >> 3) + (Seq << log->file_data_bits); } static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) { return lsn >= log->oldest_lsn && lsn <= le64_to_cpu(log->ra->current_lsn); } static inline u32 hdr_file_off(struct ntfs_log *log, struct RECORD_PAGE_HDR *hdr) { if (log->major_ver < 2) return le64_to_cpu(hdr->rhdr.lsn); return le32_to_cpu(hdr->file_off); } static inline u64 base_lsn(struct ntfs_log *log, const struct RECORD_PAGE_HDR *hdr, u64 lsn) { u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); u64 ret = (((h_lsn >> log->file_data_bits) + (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) << log->file_data_bits) + ((((is_log_record_end(hdr) && h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ? le16_to_cpu(hdr->record_hdr.next_record_off) : log->page_size) + lsn) >> 3); return ret; } static inline bool verify_client_lsn(struct ntfs_log *log, const struct CLIENT_REC *client, u64 lsn) { return lsn >= le64_to_cpu(client->oldest_lsn) && lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; } struct restart_info { u64 last_lsn; struct RESTART_HDR *r_page; u32 vbo; bool chkdsk_was_run; bool valid_page; bool initialized; bool restart; }; static int read_log_page(struct ntfs_log *log, u32 vbo, struct RECORD_PAGE_HDR **buffer, bool *usa_error) { int err = 0; u32 page_idx = vbo >> log->page_bits; u32 page_off = vbo & log->page_mask; u32 bytes = log->page_size - page_off; void *to_free = NULL; u32 page_vbo = page_idx << log->page_bits; struct RECORD_PAGE_HDR *page_buf; struct ntfs_inode *ni = log->ni; bool bBAAD; if (vbo >= log->l_size) return -EINVAL; if (!*buffer) { to_free = kmalloc(log->page_size, GFP_NOFS); if (!to_free) return -ENOMEM; *buffer = to_free; } page_buf = page_off ? log->one_page_buf : *buffer; err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, log->page_size, NULL); if (err) goto out; if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); if (page_buf != *buffer) memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; if (usa_error) *usa_error = bBAAD; /* Check that the update sequence array for this page is valid */ /* If we don't allow errors, raise an error status */ else if (bBAAD) err = -EINVAL; out: if (err && to_free) { kfree(to_free); *buffer = NULL; } return err; } /* * log_read_rst * * It walks through 512 blocks of the file looking for a valid * restart page header. It will stop the first time we find a * valid page header. */ static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first, struct restart_info *info) { u32 skip, vbo; struct RESTART_HDR *r_page = NULL; /* Determine which restart area we are looking for. */ if (first) { vbo = 0; skip = 512; } else { vbo = 512; skip = 0; } /* Loop continuously until we succeed. */ for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) { bool usa_error; bool brst, bchk; struct RESTART_AREA *ra; /* Read a page header at the current offset. */ if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, &usa_error)) { /* Ignore any errors. */ continue; } /* Exit if the signature is a log record page. */ if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { info->initialized = true; break; } brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; if (!bchk && !brst) { if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { /* * Remember if the signature does not * indicate uninitialized file. */ info->initialized = true; } continue; } ra = NULL; info->valid_page = false; info->initialized = true; info->vbo = vbo; /* Let's check the restart area if this is a valid page. */ if (!is_rst_page_hdr_valid(vbo, r_page)) goto check_result; ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); if (!is_rst_area_valid(r_page)) goto check_result; /* * We have a valid restart page header and restart area. * If chkdsk was run or we have no clients then we have * no more checking to do. */ if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { info->valid_page = true; goto check_result; } if (is_client_area_valid(r_page, usa_error)) { info->valid_page = true; ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); } check_result: /* * If chkdsk was run then update the caller's * values and return. */ if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { info->chkdsk_was_run = true; info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); info->restart = true; info->r_page = r_page; return 0; } /* * If we have a valid page then copy the values * we need from it. */ if (info->valid_page) { info->last_lsn = le64_to_cpu(ra->current_lsn); info->restart = true; info->r_page = r_page; return 0; } } kfree(r_page); return 0; } /* * Ilog_init_pg_hdr - Init @log from restart page header. */ static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size, u32 page_size, u16 major_ver, u16 minor_ver) { log->sys_page_size = sys_page_size; log->sys_page_mask = sys_page_size - 1; log->page_size = page_size; log->page_mask = page_size - 1; log->page_bits = blksize_bits(page_size); log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; if (!log->clst_per_page) log->clst_per_page = 1; log->first_page = major_ver >= 2 ? 0x22 * page_size : ((sys_page_size << 1) + (page_size << 1)); log->major_ver = major_ver; log->minor_ver = minor_ver; } /* * log_create - Init @log in cases when we don't have a restart area to use. */ static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn, u32 open_log_count, bool wrapped, bool use_multi_page) { log->l_size = l_size; /* All file offsets must be quadword aligned. */ log->file_data_bits = blksize_bits(l_size) - 3; log->seq_num_mask = (8 << log->file_data_bits) - 1; log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; log->seq_num = (last_lsn >> log->file_data_bits) + 2; log->next_page = log->first_page; log->oldest_lsn = log->seq_num << log->file_data_bits; log->oldest_lsn_off = 0; log->last_lsn = log->oldest_lsn; log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; /* Set the correct flags for the I/O and indicate if we have wrapped. */ if (wrapped) log->l_flags |= NTFSLOG_WRAPPED; if (use_multi_page) log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; /* Compute the log page values. */ log->data_off = ALIGN( offsetof(struct RECORD_PAGE_HDR, fixups) + sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), 8); log->data_size = log->page_size - log->data_off; log->record_header_len = sizeof(struct LFS_RECORD_HDR); /* Remember the different page sizes for reservation. */ log->reserved = log->data_size - log->record_header_len; /* Compute the restart page values. */ log->ra_off = ALIGN( offsetof(struct RESTART_HDR, fixups) + sizeof(short) * ((log->sys_page_size >> SECTOR_SHIFT) + 1), 8); log->restart_size = log->sys_page_size - log->ra_off; log->ra_size = struct_size(log->ra, clients, 1); log->current_openlog_count = open_log_count; /* * The total available log file space is the number of * log file pages times the space available on each page. */ log->total_avail_pages = log->l_size - log->first_page; log->total_avail = log->total_avail_pages >> log->page_bits; /* * We assume that we can't use the end of the page less than * the file record size. * Then we won't need to reserve more than the caller asks for. */ log->max_current_avail = log->total_avail * log->reserved; log->total_avail = log->total_avail * log->data_size; log->current_avail = log->max_current_avail; } /* * log_create_ra - Fill a restart area from the values stored in @log. */ static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) { struct CLIENT_REC *cr; struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); if (!ra) return NULL; ra->current_lsn = cpu_to_le64(log->last_lsn); ra->log_clients = cpu_to_le16(1); ra->client_idx[1] = LFS_NO_CLIENT_LE; if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) ra->flags = RESTART_SINGLE_PAGE_IO; ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); ra->ra_len = cpu_to_le16(log->ra_size); ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); ra->l_size = cpu_to_le64(log->l_size); ra->rec_hdr_len = cpu_to_le16(log->record_header_len); ra->data_off = cpu_to_le16(log->data_off); ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); cr = ra->clients; cr->prev_client = LFS_NO_CLIENT_LE; cr->next_client = LFS_NO_CLIENT_LE; return ra; } static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) { u32 base_vbo = lsn << 3; u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; u32 page_off = base_vbo & log->page_mask; u32 tail = log->page_size - page_off; page_off -= 1; /* Add the length of the header. */ data_len += log->record_header_len; /* * If this lsn is contained this log page we are done. * Otherwise we need to walk through several log pages. */ if (data_len > tail) { data_len -= tail; tail = log->data_size; page_off = log->data_off - 1; for (;;) { final_log_off = next_page_off(log, final_log_off); /* * We are done if the remaining bytes * fit on this page. */ if (data_len <= tail) break; data_len -= tail; } } /* * We add the remaining bytes to our starting position on this page * and then add that value to the file offset of this log page. */ return final_log_off + data_len + page_off; } static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, u64 *lsn) { int err; u64 this_lsn = le64_to_cpu(rh->this_lsn); u32 vbo = lsn_to_vbo(log, this_lsn); u32 end = final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); u32 hdr_off = end & ~log->sys_page_mask; u64 seq = this_lsn >> log->file_data_bits; struct RECORD_PAGE_HDR *page = NULL; /* Remember if we wrapped. */ if (end <= vbo) seq += 1; /* Log page header for this page. */ err = read_log_page(log, hdr_off, &page, NULL); if (err) return err; /* * If the lsn we were given was not the last lsn on this page, * then the starting offset for the next lsn is on a quad word * boundary following the last file offset for the current lsn. * Otherwise the file offset is the start of the data on the next page. */ if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { /* If we wrapped, we need to increment the sequence number. */ hdr_off = next_page_off(log, hdr_off); if (hdr_off == log->first_page) seq += 1; vbo = hdr_off + log->data_off; } else { vbo = ALIGN(end, 8); } /* Compute the lsn based on the file offset and the sequence count. */ *lsn = vbo_to_lsn(log, vbo, seq); /* * If this lsn is within the legal range for the file, we return true. * Otherwise false indicates that there are no more lsn's. */ if (!is_lsn_in_file(log, *lsn)) *lsn = 0; kfree(page); return 0; } /* * current_log_avail - Calculate the number of bytes available for log records. */ static u32 current_log_avail(struct ntfs_log *log) { u32 oldest_off, next_free_off, free_bytes; if (log->l_flags & NTFSLOG_NO_LAST_LSN) { /* The entire file is available. */ return log->max_current_avail; } /* * If there is a last lsn the restart area then we know that we will * have to compute the free range. * If there is no oldest lsn then start at the first page of the file. */ oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ? log->first_page : (log->oldest_lsn_off & ~log->sys_page_mask); /* * We will use the next log page offset to compute the next free page. * If we are going to reuse this page go to the next page. * If we are at the first page then use the end of the file. */ next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ? log->next_page + log->page_size : log->next_page == log->first_page ? log->l_size : log->next_page; /* If the two offsets are the same then there is no available space. */ if (oldest_off == next_free_off) return 0; /* * If the free offset follows the oldest offset then subtract * this range from the total available pages. */ free_bytes = oldest_off < next_free_off ? log->total_avail_pages - (next_free_off - oldest_off) : oldest_off - next_free_off; free_bytes >>= log->page_bits; return free_bytes * log->reserved; } static bool check_subseq_log_page(struct ntfs_log *log, const struct RECORD_PAGE_HDR *rp, u32 vbo, u64 seq) { u64 lsn_seq; const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; u64 lsn = le64_to_cpu(rhdr->lsn); if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) return false; /* * If the last lsn on the page occurs was written after the page * that caused the original error then we have a fatal error. */ lsn_seq = lsn >> log->file_data_bits; /* * If the sequence number for the lsn the page is equal or greater * than lsn we expect, then this is a subsequent write. */ return lsn_seq >= seq || (lsn_seq == seq - 1 && log->first_page == vbo && vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); } /* * last_log_lsn * * Walks through the log pages for a file, searching for the * last log page written to the file. */ static int last_log_lsn(struct ntfs_log *log) { int err; bool usa_error = false; bool replace_page = false; bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; bool wrapped_file, wrapped; u32 page_cnt = 1, page_pos = 1; u32 page_off = 0, page_off1 = 0, saved_off = 0; u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; u32 first_file_off = 0, second_file_off = 0; u32 part_io_count = 0; u32 tails = 0; u32 this_off, curpage_off, nextpage_off, remain_pages; u64 expected_seq, seq_base = 0, lsn_base = 0; u64 best_lsn, best_lsn1, best_lsn2; u64 lsn_cur, lsn1, lsn2; u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; u16 cur_pos, best_page_pos; struct RECORD_PAGE_HDR *page = NULL; struct RECORD_PAGE_HDR *tst_page = NULL; struct RECORD_PAGE_HDR *first_tail = NULL; struct RECORD_PAGE_HDR *second_tail = NULL; struct RECORD_PAGE_HDR *tail_page = NULL; struct RECORD_PAGE_HDR *second_tail_prev = NULL; struct RECORD_PAGE_HDR *first_tail_prev = NULL; struct RECORD_PAGE_HDR *page_bufs = NULL; struct RECORD_PAGE_HDR *best_page; if (log->major_ver >= 2) { final_off = 0x02 * log->page_size; second_off = 0x12 * log->page_size; // 0x10 == 0x12 - 0x2 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); if (!page_bufs) return -ENOMEM; } else { second_off = log->first_page - log->page_size; final_off = second_off - log->page_size; } next_tail: /* Read second tail page (at pos 3/0x12000). */ if (read_log_page(log, second_off, &second_tail, &usa_error) || usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { kfree(second_tail); second_tail = NULL; second_file_off = 0; lsn2 = 0; } else { second_file_off = hdr_file_off(log, second_tail); lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); } /* Read first tail page (at pos 2/0x2000). */ if (read_log_page(log, final_off, &first_tail, &usa_error) || usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { kfree(first_tail); first_tail = NULL; first_file_off = 0; lsn1 = 0; } else { first_file_off = hdr_file_off(log, first_tail); lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); } if (log->major_ver < 2) { int best_page; first_tail_prev = first_tail; final_off_prev = first_file_off; second_tail_prev = second_tail; second_off_prev = second_file_off; tails = 1; if (!first_tail && !second_tail) goto tail_read; if (first_tail && second_tail) best_page = lsn1 < lsn2 ? 1 : 0; else if (first_tail) best_page = 0; else best_page = 1; page_off = best_page ? second_file_off : first_file_off; seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; goto tail_read; } best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) : 0; if (first_tail && second_tail) { if (best_lsn1 > best_lsn2) { best_lsn = best_lsn1; best_page = first_tail; this_off = first_file_off; } else { best_lsn = best_lsn2; best_page = second_tail; this_off = second_file_off; } } else if (first_tail) { best_lsn = best_lsn1; best_page = first_tail; this_off = first_file_off; } else if (second_tail) { best_lsn = best_lsn2; best_page = second_tail; this_off = second_file_off; } else { goto tail_read; } best_page_pos = le16_to_cpu(best_page->page_pos); if (!tails) { if (best_page_pos == page_pos) { seq_base = best_lsn >> log->file_data_bits; saved_off = page_off = le32_to_cpu(best_page->file_off); lsn_base = best_lsn; memmove(page_bufs, best_page, log->page_size); page_cnt = le16_to_cpu(best_page->page_count); if (page_cnt > 1) page_pos += 1; tails = 1; } } else if (seq_base == (best_lsn >> log->file_data_bits) && saved_off + log->page_size == this_off && lsn_base < best_lsn && (page_pos != page_cnt || best_page_pos == page_pos || best_page_pos == 1) && (page_pos >= page_cnt || best_page_pos == page_pos)) { u16 bppc = le16_to_cpu(best_page->page_count); saved_off += log->page_size; lsn_base = best_lsn; memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, log->page_size); tails += 1; if (best_page_pos != bppc) { page_cnt = bppc; page_pos = best_page_pos; if (page_cnt > 1) page_pos += 1; } else { page_pos = page_cnt = 1; } } else { kfree(first_tail); kfree(second_tail); goto tail_read; } kfree(first_tail_prev); first_tail_prev = first_tail; final_off_prev = first_file_off; first_tail = NULL; kfree(second_tail_prev); second_tail_prev = second_tail; second_off_prev = second_file_off; second_tail = NULL; final_off += log->page_size; second_off += log->page_size; if (tails < 0x10) goto next_tail; tail_read: first_tail = first_tail_prev; final_off = final_off_prev; second_tail = second_tail_prev; second_off = second_off_prev; page_cnt = page_pos = 1; curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) : log->next_page; wrapped_file = curpage_off == log->first_page && !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; nextpage_off = curpage_off; next_page: tail_page = NULL; /* Read the next log page. */ err = read_log_page(log, curpage_off, &page, &usa_error); /* Compute the next log page offset the file. */ nextpage_off = next_page_off(log, curpage_off); wrapped = nextpage_off == log->first_page; if (tails > 1) { struct RECORD_PAGE_HDR *cur_page = Add2Ptr(page_bufs, curpage_off - page_off); if (curpage_off == saved_off) { tail_page = cur_page; goto use_tail_page; } if (page_off > curpage_off || curpage_off >= saved_off) goto use_tail_page; if (page_off1) goto use_cur_page; if (!err && !usa_error && page->rhdr.sign == NTFS_RCRD_SIGNATURE && cur_page->rhdr.lsn == page->rhdr.lsn && cur_page->record_hdr.next_record_off == page->record_hdr.next_record_off && ((page_pos == page_cnt && le16_to_cpu(page->page_pos) == 1) || (page_pos != page_cnt && le16_to_cpu(page->page_pos) == page_pos + 1 && le16_to_cpu(page->page_count) == page_cnt))) { cur_page = NULL; goto use_tail_page; } page_off1 = page_off; use_cur_page: lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); if (last_ok_lsn != le64_to_cpu(cur_page->record_hdr.last_end_lsn) && ((lsn_cur >> log->file_data_bits) + ((curpage_off < (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ? 1 : 0)) != expected_seq) { goto check_tail; } if (!is_log_record_end(cur_page)) { tail_page = NULL; last_ok_lsn = lsn_cur; goto next_page_1; } log->seq_num = expected_seq; log->l_flags &= ~NTFSLOG_NO_LAST_LSN; log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; if (log->record_header_len <= log->page_size - le16_to_cpu(cur_page->record_hdr.next_record_off)) { log->l_flags |= NTFSLOG_REUSE_TAIL; log->next_page = curpage_off; } else { log->l_flags &= ~NTFSLOG_REUSE_TAIL; log->next_page = nextpage_off; } if (wrapped_file) log->l_flags |= NTFSLOG_WRAPPED; last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); goto next_page_1; } /* * If we are at the expected first page of a transfer check to see * if either tail copy is at this offset. * If this page is the last page of a transfer, check if we wrote * a subsequent tail copy. */ if (page_cnt == page_pos || page_cnt == page_pos + 1) { /* * Check if the offset matches either the first or second * tail copy. It is possible it will match both. */ if (curpage_off == final_off) tail_page = first_tail; /* * If we already matched on the first page then * check the ending lsn's. */ if (curpage_off == second_off) { if (!tail_page || (second_tail && le64_to_cpu(second_tail->record_hdr.last_end_lsn) > le64_to_cpu(first_tail->record_hdr .last_end_lsn))) { tail_page = second_tail; } } } use_tail_page: if (tail_page) { /* We have a candidate for a tail copy. */ lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); if (last_ok_lsn < lsn_cur) { /* * If the sequence number is not expected, * then don't use the tail copy. */ if (expected_seq != (lsn_cur >> log->file_data_bits)) tail_page = NULL; } else if (last_ok_lsn > lsn_cur) { /* * If the last lsn is greater than the one on * this page then forget this tail. */ tail_page = NULL; } } /* *If we have an error on the current page, * we will break of this loop. */ if (err || usa_error) goto check_tail; /* * Done if the last lsn on this page doesn't match the previous known * last lsn or the sequence number is not expected. */ lsn_cur = le64_to_cpu(page->rhdr.lsn); if (last_ok_lsn != lsn_cur && expected_seq != (lsn_cur >> log->file_data_bits)) { goto check_tail; } /* * Check that the page position and page count values are correct. * If this is the first page of a transfer the position must be 1 * and the count will be unknown. */ if (page_cnt == page_pos) { if (page->page_pos != cpu_to_le16(1) && (!reuse_page || page->page_pos != page->page_count)) { /* * If the current page is the first page we are * looking at and we are reusing this page then * it can be either the first or last page of a * transfer. Otherwise it can only be the first. */ goto check_tail; } } else if (le16_to_cpu(page->page_count) != page_cnt || le16_to_cpu(page->page_pos) != page_pos + 1) { /* * The page position better be 1 more than the last page * position and the page count better match. */ goto check_tail; } /* * We have a valid page the file and may have a valid page * the tail copy area. * If the tail page was written after the page the file then * break of the loop. */ if (tail_page && le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { /* Remember if we will replace the page. */ replace_page = true; goto check_tail; } tail_page = NULL; if (is_log_record_end(page)) { /* * Since we have read this page we know the sequence number * is the same as our expected value. */ log->seq_num = expected_seq; log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); log->ra->current_lsn = page->record_hdr.last_end_lsn; log->l_flags &= ~NTFSLOG_NO_LAST_LSN; /* * If there is room on this page for another header then * remember we want to reuse the page. */ if (log->record_header_len <= log->page_size - le16_to_cpu(page->record_hdr.next_record_off)) { log->l_flags |= NTFSLOG_REUSE_TAIL; log->next_page = curpage_off; } else { log->l_flags &= ~NTFSLOG_REUSE_TAIL; log->next_page = nextpage_off; } /* Remember if we wrapped the log file. */ if (wrapped_file) log->l_flags |= NTFSLOG_WRAPPED; } /* * Remember the last page count and position. * Also remember the last known lsn. */ page_cnt = le16_to_cpu(page->page_count); page_pos = le16_to_cpu(page->page_pos); last_ok_lsn = le64_to_cpu(page->rhdr.lsn); next_page_1: if (wrapped) { expected_seq += 1; wrapped_file = 1; } curpage_off = nextpage_off; kfree(page); page = NULL; reuse_page = 0; goto next_page; check_tail: if (tail_page) { log->seq_num = expected_seq; log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; log->l_flags &= ~NTFSLOG_NO_LAST_LSN; if (log->page_size - le16_to_cpu( tail_page->record_hdr.next_record_off) >= log->record_header_len) { log->l_flags |= NTFSLOG_REUSE_TAIL; log->next_page = curpage_off; } else { log->l_flags &= ~NTFSLOG_REUSE_TAIL; log->next_page = nextpage_off; } if (wrapped) log->l_flags |= NTFSLOG_WRAPPED; } /* Remember that the partial IO will start at the next page. */ second_off = nextpage_off; /* * If the next page is the first page of the file then update * the sequence number for log records which begon the next page. */ if (wrapped) expected_seq += 1; /* * If we have a tail copy or are performing single page I/O we can * immediately look at the next page. */ if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { page_cnt = 2; page_pos = 1; goto check_valid; } if (page_pos != page_cnt) goto check_valid; /* * If the next page causes us to wrap to the beginning of the log * file then we know which page to check next. */ if (wrapped) { page_cnt = 2; page_pos = 1; goto check_valid; } cur_pos = 2; next_test_page: kfree(tst_page); tst_page = NULL; /* Walk through the file, reading log pages. */ err = read_log_page(log, nextpage_off, &tst_page, &usa_error); /* * If we get a USA error then assume that we correctly found * the end of the original transfer. */ if (usa_error) goto file_is_valid; /* * If we were able to read the page, we examine it to see if it * is the same or different Io block. */ if (err) goto next_test_page_1; if (le16_to_cpu(tst_page->page_pos) == cur_pos && check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { page_cnt = le16_to_cpu(tst_page->page_count) + 1; page_pos = le16_to_cpu(tst_page->page_pos); goto check_valid; } else { goto file_is_valid; } next_test_page_1: nextpage_off = next_page_off(log, curpage_off); wrapped = nextpage_off == log->first_page; if (wrapped) { expected_seq += 1; page_cnt = 2; page_pos = 1; } cur_pos += 1; part_io_count += 1; if (!wrapped) goto next_test_page; check_valid: /* Skip over the remaining pages this transfer. */ remain_pages = page_cnt - page_pos - 1; part_io_count += remain_pages; while (remain_pages--) { nextpage_off = next_page_off(log, curpage_off); wrapped = nextpage_off == log->first_page; if (wrapped) expected_seq += 1; } /* Call our routine to check this log page. */ kfree(tst_page); tst_page = NULL; err = read_log_page(log, nextpage_off, &tst_page, &usa_error); if (!err && !usa_error && check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { err = -EINVAL; goto out; } file_is_valid: /* We have a valid file. */ if (page_off1 || tail_page) { struct RECORD_PAGE_HDR *tmp_page; if (sb_rdonly(log->ni->mi.sbi->sb)) { err = -EROFS; goto out; } if (page_off1) { tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); tails -= (page_off1 - page_off) / log->page_size; if (!tail_page) tails -= 1; } else { tmp_page = tail_page; tails = 1; } while (tails--) { u64 off = hdr_file_off(log, tmp_page); if (!page) { page = kmalloc(log->page_size, GFP_NOFS); if (!page) return -ENOMEM; } /* * Correct page and copy the data from this page * into it and flush it to disk. */ memcpy(page, tmp_page, log->page_size); /* Fill last flushed lsn value flush the page. */ if (log->major_ver < 2) page->rhdr.lsn = page->record_hdr.last_end_lsn; else page->file_off = 0; page->page_pos = page->page_count = cpu_to_le16(1); ntfs_fix_pre_write(&page->rhdr, log->page_size); err = ntfs_sb_write_run(log->ni->mi.sbi, &log->ni->file.run, off, page, log->page_size, 0); if (err) goto out; if (part_io_count && second_off == off) { second_off += log->page_size; part_io_count -= 1; } tmp_page = Add2Ptr(tmp_page, log->page_size); } } if (part_io_count) { if (sb_rdonly(log->ni->mi.sbi->sb)) { err = -EROFS; goto out; } } out: kfree(second_tail); kfree(first_tail); kfree(page); kfree(tst_page); kfree(page_bufs); return err; } /* * read_log_rec_buf - Copy a log record from the file to a buffer. * * The log record may span several log pages and may even wrap the file. */ static int read_log_rec_buf(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, void *buffer) { int err; struct RECORD_PAGE_HDR *ph = NULL; u64 lsn = le64_to_cpu(rh->this_lsn); u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; u32 data_len = le32_to_cpu(rh->client_data_len); /* * While there are more bytes to transfer, * we continue to attempt to perform the read. */ for (;;) { bool usa_error; u32 tail = log->page_size - off; if (tail >= data_len) tail = data_len; data_len -= tail; err = read_log_page(log, vbo, &ph, &usa_error); if (err) goto out; /* * The last lsn on this page better be greater or equal * to the lsn we are copying. */ if (lsn > le64_to_cpu(ph->rhdr.lsn)) { err = -EINVAL; goto out; } memcpy(buffer, Add2Ptr(ph, off), tail); /* If there are no more bytes to transfer, we exit the loop. */ if (!data_len) { if (!is_log_record_end(ph) || lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { err = -EINVAL; goto out; } break; } if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || lsn > le64_to_cpu(ph->rhdr.lsn)) { err = -EINVAL; goto out; } vbo = next_page_off(log, vbo); off = log->data_off; /* * Adjust our pointer the user's buffer to transfer * the next block to. */ buffer = Add2Ptr(buffer, tail); } out: kfree(ph); return err; } static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, u64 *lsn) { int err; struct LFS_RECORD_HDR *rh = NULL; const struct CLIENT_REC *cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); u32 len; struct NTFS_RESTART *rst; *lsn = 0; *rst_ = NULL; /* If the client doesn't have a restart area, go ahead and exit now. */ if (!lsnc) return 0; err = read_log_page(log, lsn_to_vbo(log, lsnc), (struct RECORD_PAGE_HDR **)&rh, NULL); if (err) return err; rst = NULL; lsnr = le64_to_cpu(rh->this_lsn); if (lsnc != lsnr) { /* If the lsn values don't match, then the disk is corrupt. */ err = -EINVAL; goto out; } *lsn = lsnr; len = le32_to_cpu(rh->client_data_len); if (!len) { err = 0; goto out; } if (len < sizeof(struct NTFS_RESTART)) { err = -EINVAL; goto out; } rst = kmalloc(len, GFP_NOFS); if (!rst) { err = -ENOMEM; goto out; } /* Copy the data into the 'rst' buffer. */ err = read_log_rec_buf(log, rh, rst); if (err) goto out; *rst_ = rst; rst = NULL; out: kfree(rh); kfree(rst); return err; } static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) { int err; struct LFS_RECORD_HDR *rh = lcb->lrh; u32 rec_len, len; /* Read the record header for this lsn. */ if (!rh) { err = read_log_page(log, lsn_to_vbo(log, lsn), (struct RECORD_PAGE_HDR **)&rh, NULL); lcb->lrh = rh; if (err) return err; } /* * If the lsn the log record doesn't match the desired * lsn then the disk is corrupt. */ if (lsn != le64_to_cpu(rh->this_lsn)) return -EINVAL; len = le32_to_cpu(rh->client_data_len); /* * Check that the length field isn't greater than the total * available space the log file. */ rec_len = len + log->record_header_len; if (rec_len >= log->total_avail) return -EINVAL; /* * If the entire log record is on this log page, * put a pointer to the log record the context block. */ if (rh->flags & LOG_RECORD_MULTI_PAGE) { void *lr = kmalloc(len, GFP_NOFS); if (!lr) return -ENOMEM; lcb->log_rec = lr; lcb->alloc = true; /* Copy the data into the buffer returned. */ err = read_log_rec_buf(log, rh, lr); if (err) return err; } else { /* If beyond the end of the current page -> an error. */ u32 page_off = lsn_to_page_off(log, lsn); if (page_off + len + log->record_header_len > log->page_size) return -EINVAL; lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); lcb->alloc = false; } return 0; } /* * read_log_rec_lcb - Init the query operation. */ static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, struct lcb **lcb_) { int err; const struct CLIENT_REC *cr; struct lcb *lcb; switch (ctx_mode) { case lcb_ctx_undo_next: case lcb_ctx_prev: case lcb_ctx_next: break; default: return -EINVAL; } /* Check that the given lsn is the legal range for this client. */ cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); if (!verify_client_lsn(log, cr, lsn)) return -EINVAL; lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); if (!lcb) return -ENOMEM; lcb->client = log->client_id; lcb->ctx_mode = ctx_mode; /* Find the log record indicated by the given lsn. */ err = find_log_rec(log, lsn, lcb); if (err) goto out; *lcb_ = lcb; return 0; out: lcb_put(lcb); *lcb_ = NULL; return err; } /* * find_client_next_lsn * * Attempt to find the next lsn to return to a client based on the context mode. */ static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) { int err; u64 next_lsn; struct LFS_RECORD_HDR *hdr; hdr = lcb->lrh; *lsn = 0; if (lcb_ctx_next != lcb->ctx_mode) goto check_undo_next; /* Loop as long as another lsn can be found. */ for (;;) { u64 current_lsn; err = next_log_lsn(log, hdr, ¤t_lsn); if (err) goto out; if (!current_lsn) break; if (hdr != lcb->lrh) kfree(hdr); hdr = NULL; err = read_log_page(log, lsn_to_vbo(log, current_lsn), (struct RECORD_PAGE_HDR **)&hdr, NULL); if (err) goto out; if (memcmp(&hdr->client, &lcb->client, sizeof(struct CLIENT_ID))) { /*err = -EINVAL; */ } else if (LfsClientRecord == hdr->record_type) { kfree(lcb->lrh); lcb->lrh = hdr; *lsn = current_lsn; return 0; } } out: if (hdr != lcb->lrh) kfree(hdr); return err; check_undo_next: if (lcb_ctx_undo_next == lcb->ctx_mode) next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); else if (lcb_ctx_prev == lcb->ctx_mode) next_lsn = le64_to_cpu(hdr->client_prev_lsn); else return 0; if (!next_lsn) return 0; if (!verify_client_lsn( log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), next_lsn)) return 0; hdr = NULL; err = read_log_page(log, lsn_to_vbo(log, next_lsn), (struct RECORD_PAGE_HDR **)&hdr, NULL); if (err) return err; kfree(lcb->lrh); lcb->lrh = hdr; *lsn = next_lsn; return 0; } static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) { int err; err = find_client_next_lsn(log, lcb, lsn); if (err) return err; if (!*lsn) return 0; if (lcb->alloc) kfree(lcb->log_rec); lcb->log_rec = NULL; lcb->alloc = false; kfree(lcb->lrh); lcb->lrh = NULL; return find_log_rec(log, *lsn, lcb); } static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) { __le16 mask; u32 min_de, de_off, used, total; const struct NTFS_DE *e; if (hdr_has_subnode(hdr)) { min_de = sizeof(struct NTFS_DE) + sizeof(u64); mask = NTFS_IE_HAS_SUBNODES; } else { min_de = sizeof(struct NTFS_DE); mask = 0; } de_off = le32_to_cpu(hdr->de_off); used = le32_to_cpu(hdr->used); total = le32_to_cpu(hdr->total); if (de_off > bytes - min_de || used > bytes || total > bytes || de_off + min_de > used || used > total) { return false; } e = Add2Ptr(hdr, de_off); for (;;) { u16 esize = le16_to_cpu(e->size); struct NTFS_DE *next = Add2Ptr(e, esize); if (esize < min_de || PtrOffset(hdr, next) > used || (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { return false; } if (de_is_last(e)) break; e = next; } return true; } static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) { u16 fo; const struct NTFS_RECORD_HEADER *r = &ib->rhdr; if (r->sign != NTFS_INDX_SIGNATURE) return false; fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); if (le16_to_cpu(r->fix_off) > fo) return false; if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) return false; return check_index_header(&ib->ihdr, bytes - offsetof(struct INDEX_BUFFER, ihdr)); } static inline bool check_index_root(const struct ATTRIB *attr, struct ntfs_sb_info *sbi) { bool ret; const struct INDEX_ROOT *root = resident_data(attr); u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size ? sbi->cluster_bits : SECTOR_SHIFT; u8 block_clst = root->index_block_clst; if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || (root->type != ATTR_NAME && root->type != ATTR_ZERO) || (root->type == ATTR_NAME && root->rule != NTFS_COLLATION_TYPE_FILENAME) || (le32_to_cpu(root->index_block_size) != (block_clst << index_bits)) || (block_clst != 1 && block_clst != 2 && block_clst != 4 && block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && block_clst != 0x40 && block_clst != 0x80)) { return false; } ret = check_index_header(&root->ihdr, le32_to_cpu(attr->res.data_size) - offsetof(struct INDEX_ROOT, ihdr)); return ret; } static inline bool check_attr(const struct MFT_REC *rec, const struct ATTRIB *attr, struct ntfs_sb_info *sbi) { u32 asize = le32_to_cpu(attr->size); u32 rsize = 0; u64 dsize, svcn, evcn; u16 run_off; /* Check the fixed part of the attribute record header. */ if (asize >= sbi->record_size || asize + PtrOffset(rec, attr) >= sbi->record_size || (attr->name_len && le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > asize)) { return false; } /* Check the attribute fields. */ switch (attr->non_res) { case 0: rsize = le32_to_cpu(attr->res.data_size); if (rsize >= asize || le16_to_cpu(attr->res.data_off) + rsize > asize) { return false; } break; case 1: dsize = le64_to_cpu(attr->nres.data_size); svcn = le64_to_cpu(attr->nres.svcn); evcn = le64_to_cpu(attr->nres.evcn); run_off = le16_to_cpu(attr->nres.run_off); if (svcn > evcn + 1 || run_off >= asize || le64_to_cpu(attr->nres.valid_size) > dsize || dsize > le64_to_cpu(attr->nres.alloc_size)) { return false; } if (run_off > asize) return false; if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, Add2Ptr(attr, run_off), asize - run_off) < 0) { return false; } return true; default: return false; } switch (attr->type) { case ATTR_NAME: if (fname_full_size(Add2Ptr( attr, le16_to_cpu(attr->res.data_off))) > asize) { return false; } break; case ATTR_ROOT: return check_index_root(attr, sbi); case ATTR_STD: if (rsize < sizeof(struct ATTR_STD_INFO5) && rsize != sizeof(struct ATTR_STD_INFO)) { return false; } break; case ATTR_LIST: case ATTR_ID: case ATTR_SECURE: case ATTR_LABEL: case ATTR_VOL_INFO: case ATTR_DATA: case ATTR_ALLOC: case ATTR_BITMAP: case ATTR_REPARSE: case ATTR_EA_INFO: case ATTR_EA: case ATTR_PROPERTYSET: case ATTR_LOGGED_UTILITY_STREAM: break; default: return false; } return true; } static inline bool check_file_record(const struct MFT_REC *rec, const struct MFT_REC *rec2, struct ntfs_sb_info *sbi) { const struct ATTRIB *attr; u16 fo = le16_to_cpu(rec->rhdr.fix_off); u16 fn = le16_to_cpu(rec->rhdr.fix_num); u16 ao = le16_to_cpu(rec->attr_off); u32 rs = sbi->record_size; /* Check the file record header for consistency. */ if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || le32_to_cpu(rec->total) != rs) { return false; } /* Loop to check all of the attributes. */ for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { if (check_attr(rec, attr, sbi)) continue; return false; } return true; } static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, const u64 *rlsn) { u64 lsn; if (!rlsn) return true; lsn = le64_to_cpu(hdr->lsn); if (hdr->sign == NTFS_HOLE_SIGNATURE) return false; if (*rlsn > lsn) return true; return false; } static inline bool check_if_attr(const struct MFT_REC *rec, const struct LOG_REC_HDR *lrh) { u16 ro = le16_to_cpu(lrh->record_off); u16 o = le16_to_cpu(rec->attr_off); const struct ATTRIB *attr = Add2Ptr(rec, o); while (o < ro) { u32 asize; if (attr->type == ATTR_END) break; asize = le32_to_cpu(attr->size); if (!asize) break; o += asize; attr = Add2Ptr(attr, asize); } return o == ro; } static inline bool check_if_index_root(const struct MFT_REC *rec, const struct LOG_REC_HDR *lrh) { u16 ro = le16_to_cpu(lrh->record_off); u16 o = le16_to_cpu(rec->attr_off); const struct ATTRIB *attr = Add2Ptr(rec, o); while (o < ro) { u32 asize; if (attr->type == ATTR_END) break; asize = le32_to_cpu(attr->size); if (!asize) break; o += asize; attr = Add2Ptr(attr, asize); } return o == ro && attr->type == ATTR_ROOT; } static inline bool check_if_root_index(const struct ATTRIB *attr, const struct INDEX_HDR *hdr, const struct LOG_REC_HDR *lrh) { u16 ao = le16_to_cpu(lrh->attr_off); u32 de_off = le32_to_cpu(hdr->de_off); u32 o = PtrOffset(attr, hdr) + de_off; const struct NTFS_DE *e = Add2Ptr(hdr, de_off); u32 asize = le32_to_cpu(attr->size); while (o < ao) { u16 esize; if (o >= asize) break; esize = le16_to_cpu(e->size); if (!esize) break; o += esize; e = Add2Ptr(e, esize); } return o == ao; } static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, u32 attr_off) { u32 de_off = le32_to_cpu(hdr->de_off); u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; const struct NTFS_DE *e = Add2Ptr(hdr, de_off); u32 used = le32_to_cpu(hdr->used); while (o < attr_off) { u16 esize; if (de_off >= used) break; esize = le16_to_cpu(e->size); if (!esize) break; o += esize; de_off += esize; e = Add2Ptr(e, esize); } return o == attr_off; } static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, u32 nsize) { u32 asize = le32_to_cpu(attr->size); int dsize = nsize - asize; u8 *next = Add2Ptr(attr, asize); u32 used = le32_to_cpu(rec->used); memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); rec->used = cpu_to_le32(used + dsize); attr->size = cpu_to_le32(nsize); } struct OpenAttr { struct ATTRIB *attr; struct runs_tree *run1; struct runs_tree run0; struct ntfs_inode *ni; // CLST rno; }; /* * cmp_type_and_name * * Return: 0 if 'attr' has the same type and name. */ static inline int cmp_type_and_name(const struct ATTRIB *a1, const struct ATTRIB *a2) { return a1->type != a2->type || a1->name_len != a2->name_len || (a1->name_len && memcmp(attr_name(a1), attr_name(a2), a1->name_len * sizeof(short))); } static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, const struct ATTRIB *attr, CLST rno) { struct OPEN_ATTR_ENRTY *oe = NULL; while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { struct OpenAttr *op_attr; if (ino_get(&oe->ref) != rno) continue; op_attr = (struct OpenAttr *)oe->ptr; if (!cmp_type_and_name(op_attr->attr, attr)) return op_attr; } return NULL; } static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, enum ATTR_TYPE type, u64 size, const u16 *name, size_t name_len, __le16 flags) { struct ATTRIB *attr; u32 name_size = ALIGN(name_len * sizeof(short), 8); bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); u32 asize = name_size + (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); attr = kzalloc(asize, GFP_NOFS); if (!attr) return NULL; attr->type = type; attr->size = cpu_to_le32(asize); attr->flags = flags; attr->non_res = 1; attr->name_len = name_len; attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); attr->nres.data_size = cpu_to_le64(size); attr->nres.valid_size = attr->nres.data_size; if (is_ext) { attr->name_off = SIZEOF_NONRESIDENT_EX_LE; if (is_attr_compressed(attr)) attr->nres.c_unit = COMPRESSION_UNIT; attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, name_len * sizeof(short)); } else { attr->name_off = SIZEOF_NONRESIDENT_LE; attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT + name_size); memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, name_len * sizeof(short)); } return attr; } /* * do_action - Common routine for the Redo and Undo Passes. * @rlsn: If it is NULL then undo. */ static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, const struct LOG_REC_HDR *lrh, u32 op, void *data, u32 dlen, u32 rec_len, const u64 *rlsn) { int err = 0; struct ntfs_sb_info *sbi = log->ni->mi.sbi; struct inode *inode = NULL, *inode_parent; struct mft_inode *mi = NULL, *mi2_child = NULL; CLST rno = 0, rno_base = 0; struct INDEX_BUFFER *ib = NULL; struct MFT_REC *rec = NULL; struct ATTRIB *attr = NULL, *attr2; struct INDEX_HDR *hdr; struct INDEX_ROOT *root; struct NTFS_DE *e, *e1, *e2; struct NEW_ATTRIBUTE_SIZES *new_sz; struct ATTR_FILE_NAME *fname; struct OpenAttr *oa, *oa2; u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits; u16 id, id2; u32 record_size = sbi->record_size; u64 t64; u16 roff = le16_to_cpu(lrh->record_off); u16 aoff = le16_to_cpu(lrh->attr_off); u64 lco = 0; u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; u64 vbo = cbo + tvo; void *buffer_le = NULL; u32 bytes = 0; bool a_dirty = false; u16 data_off; oa = oe->ptr; /* Big switch to prepare. */ switch (op) { /* ============================================================ * Process MFT records, as described by the current log record. * ============================================================ */ case InitializeFileRecordSegment: case DeallocateFileRecordSegment: case WriteEndOfFileRecordSegment: case CreateAttribute: case DeleteAttribute: case UpdateResidentValue: case UpdateMappingPairs: case SetNewAttributeSizes: case AddIndexEntryRoot: case DeleteIndexEntryRoot: case SetIndexEntryVcnRoot: case UpdateFileNameRoot: case UpdateRecordDataRoot: case ZeroEndOfFileRecord: rno = vbo >> sbi->record_bits; inode = ilookup(sbi->sb, rno); if (inode) { mi = &ntfs_i(inode)->mi; } else if (op == InitializeFileRecordSegment) { mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS); if (!mi) return -ENOMEM; err = mi_format_new(mi, sbi, rno, 0, false); if (err) goto out; } else { /* Read from disk. */ err = mi_get(sbi, rno, &mi); if (err) return err; } rec = mi->mrec; if (op == DeallocateFileRecordSegment) goto skip_load_parent; if (InitializeFileRecordSegment != op) { if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) goto dirty_vol; if (!check_lsn(&rec->rhdr, rlsn)) goto out; if (!check_file_record(rec, NULL, sbi)) goto dirty_vol; attr = Add2Ptr(rec, roff); } if (is_rec_base(rec) || InitializeFileRecordSegment == op) { rno_base = rno; goto skip_load_parent; } rno_base = ino_get(&rec->parent_ref); inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); if (IS_ERR(inode_parent)) goto skip_load_parent; if (is_bad_inode(inode_parent)) { iput(inode_parent); goto skip_load_parent; } if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { iput(inode_parent); } else { if (mi2_child->mrec != mi->mrec) memcpy(mi2_child->mrec, mi->mrec, sbi->record_size); if (inode) iput(inode); else if (mi) mi_put(mi); inode = inode_parent; mi = mi2_child; rec = mi2_child->mrec; attr = Add2Ptr(rec, roff); } skip_load_parent: inode_parent = NULL; break; /* * Process attributes, as described by the current log record. */ case UpdateNonresidentValue: case AddIndexEntryAllocation: case DeleteIndexEntryAllocation: case WriteEndOfIndexBuffer: case SetIndexEntryVcnAllocation: case UpdateFileNameAllocation: case SetBitsInNonresidentBitMap: case ClearBitsInNonresidentBitMap: case UpdateRecordDataAllocation: attr = oa->attr; bytes = UpdateNonresidentValue == op ? dlen : 0; lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; if (attr->type == ATTR_ALLOC) { t32 = le32_to_cpu(oe->bytes_per_index); if (bytes < t32) bytes = t32; } if (!bytes) bytes = lco - cbo; bytes += roff; if (attr->type == ATTR_ALLOC) bytes = (bytes + 511) & ~511; // align buffer_le = kmalloc(bytes, GFP_NOFS); if (!buffer_le) return -ENOMEM; err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, NULL); if (err) goto out; if (attr->type == ATTR_ALLOC && *(int *)buffer_le) ntfs_fix_post_read(buffer_le, bytes, false); break; default: WARN_ON(1); } /* Big switch to do operation. */ switch (op) { case InitializeFileRecordSegment: if (roff + dlen > record_size) goto dirty_vol; memcpy(Add2Ptr(rec, roff), data, dlen); mi->dirty = true; break; case DeallocateFileRecordSegment: clear_rec_inuse(rec); le16_add_cpu(&rec->seq, 1); mi->dirty = true; break; case WriteEndOfFileRecordSegment: attr2 = (struct ATTRIB *)data; if (!check_if_attr(rec, lrh) || roff + dlen > record_size) goto dirty_vol; memmove(attr, attr2, dlen); rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); mi->dirty = true; break; case CreateAttribute: attr2 = (struct ATTRIB *)data; asize = le32_to_cpu(attr2->size); used = le32_to_cpu(rec->used); if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || !IS_ALIGNED(asize, 8) || Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || dlen > record_size - used) { goto dirty_vol; } memmove(Add2Ptr(attr, asize), attr, used - roff); memcpy(attr, attr2, asize); rec->used = cpu_to_le32(used + asize); id = le16_to_cpu(rec->next_attr_id); id2 = le16_to_cpu(attr2->id); if (id <= id2) rec->next_attr_id = cpu_to_le16(id2 + 1); if (is_attr_indexed(attr)) le16_add_cpu(&rec->hard_links, 1); oa2 = find_loaded_attr(log, attr, rno_base); if (oa2) { void *p2 = kmemdup(attr, le32_to_cpu(attr->size), GFP_NOFS); if (p2) { // run_close(oa2->run1); kfree(oa2->attr); oa2->attr = p2; } } mi->dirty = true; break; case DeleteAttribute: asize = le32_to_cpu(attr->size); used = le32_to_cpu(rec->used); if (!check_if_attr(rec, lrh)) goto dirty_vol; rec->used = cpu_to_le32(used - asize); if (is_attr_indexed(attr)) le16_add_cpu(&rec->hard_links, -1); memmove(attr, Add2Ptr(attr, asize), used - asize - roff); mi->dirty = true; break; case UpdateResidentValue: nsize = aoff + dlen; if (!check_if_attr(rec, lrh)) goto dirty_vol; asize = le32_to_cpu(attr->size); used = le32_to_cpu(rec->used); if (lrh->redo_len == lrh->undo_len) { if (nsize > asize) goto dirty_vol; goto move_data; } if (nsize > asize && nsize - asize > record_size - used) goto dirty_vol; nsize = ALIGN(nsize, 8); data_off = le16_to_cpu(attr->res.data_off); if (nsize < asize) { memmove(Add2Ptr(attr, aoff), data, dlen); data = NULL; // To skip below memmove(). } memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), used - le16_to_cpu(lrh->record_off) - asize); rec->used = cpu_to_le32(used + nsize - asize); attr->size = cpu_to_le32(nsize); attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); move_data: if (data) memmove(Add2Ptr(attr, aoff), data, dlen); oa2 = find_loaded_attr(log, attr, rno_base); if (oa2) { void *p2 = kmemdup(attr, le32_to_cpu(attr->size), GFP_NOFS); if (p2) { // run_close(&oa2->run0); oa2->run1 = &oa2->run0; kfree(oa2->attr); oa2->attr = p2; } } mi->dirty = true; break; case UpdateMappingPairs: nsize = aoff + dlen; asize = le32_to_cpu(attr->size); used = le32_to_cpu(rec->used); if (!check_if_attr(rec, lrh) || !attr->non_res || aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || (nsize > asize && nsize - asize > record_size - used)) { goto dirty_vol; } nsize = ALIGN(nsize, 8); memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), used - le16_to_cpu(lrh->record_off) - asize); rec->used = cpu_to_le32(used + nsize - asize); attr->size = cpu_to_le32(nsize); memmove(Add2Ptr(attr, aoff), data, dlen); if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), attr_run(attr), &t64)) { goto dirty_vol; } attr->nres.evcn = cpu_to_le64(t64); oa2 = find_loaded_attr(log, attr, rno_base); if (oa2 && oa2->attr->non_res) oa2->attr->nres.evcn = attr->nres.evcn; mi->dirty = true; break; case SetNewAttributeSizes: new_sz = data; if (!check_if_attr(rec, lrh) || !attr->non_res) goto dirty_vol; attr->nres.alloc_size = new_sz->alloc_size; attr->nres.data_size = new_sz->data_size; attr->nres.valid_size = new_sz->valid_size; if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) attr->nres.total_size = new_sz->total_size; oa2 = find_loaded_attr(log, attr, rno_base); if (oa2) { void *p2 = kmemdup(attr, le32_to_cpu(attr->size), GFP_NOFS); if (p2) { kfree(oa2->attr); oa2->attr = p2; } } mi->dirty = true; break; case AddIndexEntryRoot: e = (struct NTFS_DE *)data; esize = le16_to_cpu(e->size); root = resident_data(attr); hdr = &root->ihdr; used = le32_to_cpu(hdr->used); if (!check_if_index_root(rec, lrh) || !check_if_root_index(attr, hdr, lrh) || Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { goto dirty_vol; } e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); memmove(Add2Ptr(e1, esize), e1, PtrOffset(e1, Add2Ptr(hdr, used))); memmove(e1, e, esize); le32_add_cpu(&attr->res.data_size, esize); hdr->used = cpu_to_le32(used + esize); le32_add_cpu(&hdr->total, esize); mi->dirty = true; break; case DeleteIndexEntryRoot: root = resident_data(attr); hdr = &root->ihdr; used = le32_to_cpu(hdr->used); if (!check_if_index_root(rec, lrh) || !check_if_root_index(attr, hdr, lrh)) { goto dirty_vol; } e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); esize = le16_to_cpu(e1->size); e2 = Add2Ptr(e1, esize); memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); le32_sub_cpu(&attr->res.data_size, esize); hdr->used = cpu_to_le32(used - esize); le32_sub_cpu(&hdr->total, esize); change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); mi->dirty = true; break; case SetIndexEntryVcnRoot: root = resident_data(attr); hdr = &root->ihdr; if (!check_if_index_root(rec, lrh) || !check_if_root_index(attr, hdr, lrh)) { goto dirty_vol; } e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); de_set_vbn_le(e, *(__le64 *)data); mi->dirty = true; break; case UpdateFileNameRoot: root = resident_data(attr); hdr = &root->ihdr; if (!check_if_index_root(rec, lrh) || !check_if_root_index(attr, hdr, lrh)) { goto dirty_vol; } e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); fname = (struct ATTR_FILE_NAME *)(e + 1); memmove(&fname->dup, data, sizeof(fname->dup)); // mi->dirty = true; break; case UpdateRecordDataRoot: root = resident_data(attr); hdr = &root->ihdr; if (!check_if_index_root(rec, lrh) || !check_if_root_index(attr, hdr, lrh)) { goto dirty_vol; } e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); mi->dirty = true; break; case ZeroEndOfFileRecord: if (roff + dlen > record_size) goto dirty_vol; memset(attr, 0, dlen); mi->dirty = true; break; case UpdateNonresidentValue: if (lco < cbo + roff + dlen) goto dirty_vol; memcpy(Add2Ptr(buffer_le, roff), data, dlen); a_dirty = true; if (attr->type == ATTR_ALLOC) ntfs_fix_pre_write(buffer_le, bytes); break; case AddIndexEntryAllocation: ib = Add2Ptr(buffer_le, roff); hdr = &ib->ihdr; e = data; esize = le16_to_cpu(e->size); e1 = Add2Ptr(ib, aoff); if (is_baad(&ib->rhdr)) goto dirty_vol; if (!check_lsn(&ib->rhdr, rlsn)) goto out; used = le32_to_cpu(hdr->used); if (!check_index_buffer(ib, bytes) || !check_if_alloc_index(hdr, aoff) || Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || used + esize > le32_to_cpu(hdr->total)) { goto dirty_vol; } memmove(Add2Ptr(e1, esize), e1, PtrOffset(e1, Add2Ptr(hdr, used))); memcpy(e1, e, esize); hdr->used = cpu_to_le32(used + esize); a_dirty = true; ntfs_fix_pre_write(&ib->rhdr, bytes); break; case DeleteIndexEntryAllocation: ib = Add2Ptr(buffer_le, roff); hdr = &ib->ihdr; e = Add2Ptr(ib, aoff); esize = le16_to_cpu(e->size); if (is_baad(&ib->rhdr)) goto dirty_vol; if (!check_lsn(&ib->rhdr, rlsn)) goto out; if (!check_index_buffer(ib, bytes) || !check_if_alloc_index(hdr, aoff)) { goto dirty_vol; } e1 = Add2Ptr(e, esize); nsize = esize; used = le32_to_cpu(hdr->used); memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); hdr->used = cpu_to_le32(used - nsize); a_dirty = true; ntfs_fix_pre_write(&ib->rhdr, bytes); break; case WriteEndOfIndexBuffer: ib = Add2Ptr(buffer_le, roff); hdr = &ib->ihdr; e = Add2Ptr(ib, aoff); if (is_baad(&ib->rhdr)) goto dirty_vol; if (!check_lsn(&ib->rhdr, rlsn)) goto out; if (!check_index_buffer(ib, bytes) || !check_if_alloc_index(hdr, aoff) || aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(hdr->total)) { goto dirty_vol; } hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); memmove(e, data, dlen); a_dirty = true; ntfs_fix_pre_write(&ib->rhdr, bytes); break; case SetIndexEntryVcnAllocation: ib = Add2Ptr(buffer_le, roff); hdr = &ib->ihdr; e = Add2Ptr(ib, aoff); if (is_baad(&ib->rhdr)) goto dirty_vol; if (!check_lsn(&ib->rhdr, rlsn)) goto out; if (!check_index_buffer(ib, bytes) || !check_if_alloc_index(hdr, aoff)) { goto dirty_vol; } de_set_vbn_le(e, *(__le64 *)data); a_dirty = true; ntfs_fix_pre_write(&ib->rhdr, bytes); break; case UpdateFileNameAllocation: ib = Add2Ptr(buffer_le, roff); hdr = &ib->ihdr; e = Add2Ptr(ib, aoff); if (is_baad(&ib->rhdr)) goto dirty_vol; if (!check_lsn(&ib->rhdr, rlsn)) goto out; if (!check_index_buffer(ib, bytes) || !check_if_alloc_index(hdr, aoff)) { goto dirty_vol; } fname = (struct ATTR_FILE_NAME *)(e + 1); memmove(&fname->dup, data, sizeof(fname->dup)); a_dirty = true; ntfs_fix_pre_write(&ib->rhdr, bytes); break; case SetBitsInNonresidentBitMap: bmp_off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); if (cbo + (bmp_off + 7) / 8 > lco || cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) { goto dirty_vol; } __bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits); a_dirty = true; break; case ClearBitsInNonresidentBitMap: bmp_off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); if (cbo + (bmp_off + 7) / 8 > lco || cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) { goto dirty_vol; } __bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits); a_dirty = true; break; case UpdateRecordDataAllocation: ib = Add2Ptr(buffer_le, roff); hdr = &ib->ihdr; e = Add2Ptr(ib, aoff); if (is_baad(&ib->rhdr)) goto dirty_vol; if (!check_lsn(&ib->rhdr, rlsn)) goto out; if (!check_index_buffer(ib, bytes) || !check_if_alloc_index(hdr, aoff)) { goto dirty_vol; } memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); a_dirty = true; ntfs_fix_pre_write(&ib->rhdr, bytes); break; default: WARN_ON(1); } if (rlsn) { __le64 t64 = cpu_to_le64(*rlsn); if (rec) rec->rhdr.lsn = t64; if (ib) ib->rhdr.lsn = t64; } if (mi && mi->dirty) { err = mi_write(mi, 0); if (err) goto out; } if (a_dirty) { attr = oa->attr; err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0); if (err) goto out; } out: if (inode) iput(inode); else if (mi != mi2_child) mi_put(mi); kfree(buffer_le); return err; dirty_vol: log->set_dirty = true; goto out; } /* * log_replay - Replays log and empties it. * * This function is called during mount operation. * It replays log and empties it. * Initialized is set false if logfile contains '-1'. */ int log_replay(struct ntfs_inode *ni, bool *initialized) { int err; struct ntfs_sb_info *sbi = ni->mi.sbi; struct ntfs_log *log; struct restart_info rst_info, rst_info2; u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0; struct ATTR_NAME_ENTRY *attr_names = NULL; struct ATTR_NAME_ENTRY *ane; struct RESTART_TABLE *dptbl = NULL; struct RESTART_TABLE *trtbl = NULL; const struct RESTART_TABLE *rt; struct RESTART_TABLE *oatbl = NULL; struct inode *inode; struct OpenAttr *oa; struct ntfs_inode *ni_oe; struct ATTRIB *attr = NULL; u64 size, vcn, undo_next_lsn; CLST rno, lcn, lcn0, len0, clen; void *data; struct NTFS_RESTART *rst = NULL; struct lcb *lcb = NULL; struct OPEN_ATTR_ENRTY *oe; struct TRANSACTION_ENTRY *tr; struct DIR_PAGE_ENTRY *dp; u32 i, bytes_per_attr_entry; u32 l_size = ni->vfs_inode.i_size; u32 orig_file_size = l_size; u32 page_size, vbo, tail, off, dlen; u32 saved_len, rec_len, transact_id; bool use_second_page; struct RESTART_AREA *ra2, *ra = NULL; struct CLIENT_REC *ca, *cr; __le16 client; struct RESTART_HDR *rh; const struct LFS_RECORD_HDR *frh; const struct LOG_REC_HDR *lrh; bool is_mapped; bool is_ro = sb_rdonly(sbi->sb); u64 t64; u16 t16; u32 t32; /* Get the size of page. NOTE: To replay we can use default page. */ #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 page_size = norm_file_page(PAGE_SIZE, &l_size, true); #else page_size = norm_file_page(PAGE_SIZE, &l_size, false); #endif if (!page_size) return -EINVAL; log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); if (!log) return -ENOMEM; memset(&rst_info, 0, sizeof(struct restart_info)); log->ni = ni; log->l_size = l_size; log->one_page_buf = kmalloc(page_size, GFP_NOFS); if (!log->one_page_buf) { err = -ENOMEM; goto out; } log->page_size = page_size; log->page_mask = page_size - 1; log->page_bits = blksize_bits(page_size); /* Look for a restart area on the disk. */ err = log_read_rst(log, l_size, true, &rst_info); if (err) goto out; /* remember 'initialized' */ *initialized = rst_info.initialized; if (!rst_info.restart) { if (rst_info.initialized) { /* No restart area but the file is not initialized. */ err = -EINVAL; goto out; } log_init_pg_hdr(log, page_size, page_size, 1, 1); log_create(log, l_size, 0, get_random_u32(), false, false); log->ra = ra; ra = log_create_ra(log); if (!ra) { err = -ENOMEM; goto out; } log->ra = ra; log->init_ra = true; goto process_log; } /* * If the restart offset above wasn't zero then we won't * look for a second restart. */ if (rst_info.vbo) goto check_restart_area; memset(&rst_info2, 0, sizeof(struct restart_info)); err = log_read_rst(log, l_size, false, &rst_info2); if (err) goto out; /* Determine which restart area to use. */ if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn) goto use_first_page; use_second_page = true; if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) { struct RECORD_PAGE_HDR *sp = NULL; bool usa_error; if (!read_log_page(log, page_size, &sp, &usa_error) && sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { use_second_page = false; } kfree(sp); } if (use_second_page) { kfree(rst_info.r_page); memcpy(&rst_info, &rst_info2, sizeof(struct restart_info)); rst_info2.r_page = NULL; } use_first_page: kfree(rst_info2.r_page); check_restart_area: /* * If the restart area is at offset 0, we want * to write the second restart area first. */ log->init_ra = !!rst_info.vbo; /* If we have a valid page then grab a pointer to the restart area. */ ra2 = rst_info.valid_page ? Add2Ptr(rst_info.r_page, le16_to_cpu(rst_info.r_page->ra_off)) : NULL; if (rst_info.chkdsk_was_run || (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { bool wrapped = false; bool use_multi_page = false; u32 open_log_count; /* Do some checks based on whether we have a valid log page. */ if (!rst_info.valid_page) { open_log_count = get_random_u32(); goto init_log_instance; } open_log_count = le32_to_cpu(ra2->open_log_count); /* * If the restart page size isn't changing then we want to * check how much work we need to do. */ if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size)) goto init_log_instance; init_log_instance: log_init_pg_hdr(log, page_size, page_size, 1, 1); log_create(log, l_size, rst_info.last_lsn, open_log_count, wrapped, use_multi_page); ra = log_create_ra(log); if (!ra) { err = -ENOMEM; goto out; } log->ra = ra; /* Put the restart areas and initialize * the log file as required. */ goto process_log; } if (!ra2) { err = -EINVAL; goto out; } /* * If the log page or the system page sizes have changed, we can't * use the log file. We must use the system page size instead of the * default size if there is not a clean shutdown. */ t32 = le32_to_cpu(rst_info.r_page->sys_page_size); if (page_size != t32) { l_size = orig_file_size; page_size = norm_file_page(t32, &l_size, t32 == DefaultLogPageSize); } if (page_size != t32 || page_size != le32_to_cpu(rst_info.r_page->page_size)) { err = -EINVAL; goto out; } /* If the file size has shrunk then we won't mount it. */ if (l_size < le64_to_cpu(ra2->l_size)) { err = -EINVAL; goto out; } log_init_pg_hdr(log, page_size, page_size, le16_to_cpu(rst_info.r_page->major_ver), le16_to_cpu(rst_info.r_page->minor_ver)); log->l_size = le64_to_cpu(ra2->l_size); log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; log->seq_num_mask = (8 << log->file_data_bits) - 1; log->last_lsn = le64_to_cpu(ra2->current_lsn); log->seq_num = log->last_lsn >> log->file_data_bits; log->ra_off = le16_to_cpu(rst_info.r_page->ra_off); log->restart_size = log->sys_page_size - log->ra_off; log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); log->ra_size = le16_to_cpu(ra2->ra_len); log->data_off = le16_to_cpu(ra2->data_off); log->data_size = log->page_size - log->data_off; log->reserved = log->data_size - log->record_header_len; vbo = lsn_to_vbo(log, log->last_lsn); if (vbo < log->first_page) { /* This is a pseudo lsn. */ log->l_flags |= NTFSLOG_NO_LAST_LSN; log->next_page = log->first_page; goto find_oldest; } /* Find the end of this log record. */ off = final_log_off(log, log->last_lsn, le32_to_cpu(ra2->last_lsn_data_len)); /* If we wrapped the file then increment the sequence number. */ if (off <= vbo) { log->seq_num += 1; log->l_flags |= NTFSLOG_WRAPPED; } /* Now compute the next log page to use. */ vbo &= ~log->sys_page_mask; tail = log->page_size - (off & log->page_mask) - 1; /* *If we can fit another log record on the page, * move back a page the log file. */ if (tail >= log->record_header_len) { log->l_flags |= NTFSLOG_REUSE_TAIL; log->next_page = vbo; } else { log->next_page = next_page_off(log, vbo); } find_oldest: /* * Find the oldest client lsn. Use the last * flushed lsn as a starting point. */ log->oldest_lsn = log->last_lsn; oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), ra2->client_idx[1], &log->oldest_lsn); log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); if (log->oldest_lsn_off < log->first_page) log->l_flags |= NTFSLOG_NO_OLDEST_LSN; if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; log->current_openlog_count = le32_to_cpu(ra2->open_log_count); log->total_avail_pages = log->l_size - log->first_page; log->total_avail = log->total_avail_pages >> log->page_bits; log->max_current_avail = log->total_avail * log->reserved; log->total_avail = log->total_avail * log->data_size; log->current_avail = current_log_avail(log); ra = kzalloc(log->restart_size, GFP_NOFS); if (!ra) { err = -ENOMEM; goto out; } log->ra = ra; t16 = le16_to_cpu(ra2->client_off); if (t16 == offsetof(struct RESTART_AREA, clients)) { memcpy(ra, ra2, log->ra_size); } else { memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); memcpy(ra->clients, Add2Ptr(ra2, t16), le16_to_cpu(ra2->ra_len) - t16); log->current_openlog_count = get_random_u32(); ra->open_log_count = cpu_to_le32(log->current_openlog_count); log->ra_size = offsetof(struct RESTART_AREA, clients) + sizeof(struct CLIENT_REC); ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); ra->ra_len = cpu_to_le16(log->ra_size); } le32_add_cpu(&ra->open_log_count, 1); /* Now we need to walk through looking for the last lsn. */ err = last_log_lsn(log); if (err) goto out; log->current_avail = current_log_avail(log); /* Remember which restart area to write first. */ log->init_ra = rst_info.vbo; process_log: /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ switch ((log->major_ver << 16) + log->minor_ver) { case 0x10000: case 0x10001: case 0x20000: break; default: ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", log->major_ver, log->minor_ver); err = -EOPNOTSUPP; log->set_dirty = true; goto out; } /* One client "NTFS" per logfile. */ ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); for (client = ra->client_idx[1];; client = cr->next_client) { if (client == LFS_NO_CLIENT_LE) { /* Insert "NTFS" client LogFile. */ client = ra->client_idx[0]; if (client == LFS_NO_CLIENT_LE) { err = -EINVAL; goto out; } t16 = le16_to_cpu(client); cr = ca + t16; remove_client(ca, cr, &ra->client_idx[0]); cr->restart_lsn = 0; cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); cr->name_bytes = cpu_to_le32(8); cr->name[0] = cpu_to_le16('N'); cr->name[1] = cpu_to_le16('T'); cr->name[2] = cpu_to_le16('F'); cr->name[3] = cpu_to_le16('S'); add_client(ca, t16, &ra->client_idx[1]); break; } cr = ca + le16_to_cpu(client); if (cpu_to_le32(8) == cr->name_bytes && cpu_to_le16('N') == cr->name[0] && cpu_to_le16('T') == cr->name[1] && cpu_to_le16('F') == cr->name[2] && cpu_to_le16('S') == cr->name[3]) break; } /* Update the client handle with the client block information. */ log->client_id.seq_num = cr->seq_num; log->client_id.client_idx = client; err = read_rst_area(log, &rst, &ra_lsn); if (err) goto out; if (!rst) goto out; bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; checkpt_lsn = le64_to_cpu(rst->check_point_start); if (!checkpt_lsn) checkpt_lsn = ra_lsn; /* Allocate and Read the Transaction Table. */ if (!rst->transact_table_len) goto check_dirty_page_table; t64 = le64_to_cpu(rst->transact_table_lsn); err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); if (err) goto out; lrh = lcb->log_rec; frh = lcb->lrh; rec_len = le32_to_cpu(frh->client_data_len); if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), bytes_per_attr_entry)) { err = -EINVAL; goto out; } t16 = le16_to_cpu(lrh->redo_off); rt = Add2Ptr(lrh, t16); t32 = rec_len - t16; /* Now check that this is a valid restart table. */ if (!check_rstbl(rt, t32)) { err = -EINVAL; goto out; } trtbl = kmemdup(rt, t32, GFP_NOFS); if (!trtbl) { err = -ENOMEM; goto out; } lcb_put(lcb); lcb = NULL; check_dirty_page_table: /* The next record back should be the Dirty Pages Table. */ if (!rst->dirty_pages_len) goto check_attribute_names; t64 = le64_to_cpu(rst->dirty_pages_table_lsn); err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); if (err) goto out; lrh = lcb->log_rec; frh = lcb->lrh; rec_len = le32_to_cpu(frh->client_data_len); if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), bytes_per_attr_entry)) { err = -EINVAL; goto out; } t16 = le16_to_cpu(lrh->redo_off); rt = Add2Ptr(lrh, t16); t32 = rec_len - t16; /* Now check that this is a valid restart table. */ if (!check_rstbl(rt, t32)) { err = -EINVAL; goto out; } dptbl = kmemdup(rt, t32, GFP_NOFS); if (!dptbl) { err = -ENOMEM; goto out; } /* Convert Ra version '0' into version '1'. */ if (rst->major_ver) goto end_conv_1; dp = NULL; while ((dp = enum_rstbl(dptbl, dp))) { struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; // NOTE: Danger. Check for of boundary. memmove(&dp->vcn, &dp0->vcn_low, 2 * sizeof(u64) + le32_to_cpu(dp->lcns_follow) * sizeof(u64)); } end_conv_1: lcb_put(lcb); lcb = NULL; /* * Go through the table and remove the duplicates, * remembering the oldest lsn values. */ if (sbi->cluster_size <= log->page_size) goto trace_dp_table; dp = NULL; while ((dp = enum_rstbl(dptbl, dp))) { struct DIR_PAGE_ENTRY *next = dp; while ((next = enum_rstbl(dptbl, next))) { if (next->target_attr == dp->target_attr && next->vcn == dp->vcn) { if (le64_to_cpu(next->oldest_lsn) < le64_to_cpu(dp->oldest_lsn)) { dp->oldest_lsn = next->oldest_lsn; } free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); } } } trace_dp_table: check_attribute_names: /* The next record should be the Attribute Names. */ if (!rst->attr_names_len) goto check_attr_table; t64 = le64_to_cpu(rst->attr_names_lsn); err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); if (err) goto out; lrh = lcb->log_rec; frh = lcb->lrh; rec_len = le32_to_cpu(frh->client_data_len); if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), bytes_per_attr_entry)) { err = -EINVAL; goto out; } t32 = lrh_length(lrh); rec_len -= t32; attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS); lcb_put(lcb); lcb = NULL; check_attr_table: /* The next record should be the attribute Table. */ if (!rst->open_attr_len) goto check_attribute_names2; t64 = le64_to_cpu(rst->open_attr_table_lsn); err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); if (err) goto out; lrh = lcb->log_rec; frh = lcb->lrh; rec_len = le32_to_cpu(frh->client_data_len); if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), bytes_per_attr_entry)) { err = -EINVAL; goto out; } t16 = le16_to_cpu(lrh->redo_off); rt = Add2Ptr(lrh, t16); t32 = rec_len - t16; if (!check_rstbl(rt, t32)) { err = -EINVAL; goto out; } oatbl = kmemdup(rt, t32, GFP_NOFS); if (!oatbl) { err = -ENOMEM; goto out; } log->open_attr_tbl = oatbl; /* Clear all of the Attr pointers. */ oe = NULL; while ((oe = enum_rstbl(oatbl, oe))) { if (!rst->major_ver) { struct OPEN_ATTR_ENRTY_32 oe0; /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); oe->bytes_per_index = oe0.bytes_per_index; oe->type = oe0.type; oe->is_dirty_pages = oe0.is_dirty_pages; oe->name_len = 0; oe->ref = oe0.ref; oe->open_record_lsn = oe0.open_record_lsn; } oe->is_attr_name = 0; oe->ptr = NULL; } lcb_put(lcb); lcb = NULL; check_attribute_names2: if (!rst->attr_names_len) goto trace_attribute_table; ane = attr_names; if (!oatbl) goto trace_attribute_table; while (ane->off) { /* TODO: Clear table on exit! */ oe = Add2Ptr(oatbl, le16_to_cpu(ane->off)); t16 = le16_to_cpu(ane->name_bytes); oe->name_len = t16 / sizeof(short); oe->ptr = ane->name; oe->is_attr_name = 2; ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16); } trace_attribute_table: /* * If the checkpt_lsn is zero, then this is a freshly * formatted disk and we have no work to do. */ if (!checkpt_lsn) { err = 0; goto out; } if (!oatbl) { oatbl = init_rsttbl(bytes_per_attr_entry, 8); if (!oatbl) { err = -ENOMEM; goto out; } } log->open_attr_tbl = oatbl; /* Start the analysis pass from the Checkpoint lsn. */ rec_lsn = checkpt_lsn; /* Read the first lsn. */ err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); if (err) goto out; /* Loop to read all subsequent records to the end of the log file. */ next_log_record_analyze: err = read_next_log_rec(log, lcb, &rec_lsn); if (err) goto out; if (!rec_lsn) goto end_log_records_enumerate; frh = lcb->lrh; transact_id = le32_to_cpu(frh->transact_id); rec_len = le32_to_cpu(frh->client_data_len); lrh = lcb->log_rec; if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { err = -EINVAL; goto out; } /* * The first lsn after the previous lsn remembered * the checkpoint is the first candidate for the rlsn. */ if (!rlsn) rlsn = rec_lsn; if (LfsClientRecord != frh->record_type) goto next_log_record_analyze; /* * Now update the Transaction Table for this transaction. If there * is no entry present or it is unallocated we allocate the entry. */ if (!trtbl) { trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), INITIAL_NUMBER_TRANSACTIONS); if (!trtbl) { err = -ENOMEM; goto out; } } tr = Add2Ptr(trtbl, transact_id); if (transact_id >= bytes_per_rt(trtbl) || tr->next != RESTART_ENTRY_ALLOCATED_LE) { tr = alloc_rsttbl_from_idx(&trtbl, transact_id); if (!tr) { err = -ENOMEM; goto out; } tr->transact_state = TransactionActive; tr->first_lsn = cpu_to_le64(rec_lsn); } tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); /* * If this is a compensation log record, then change * the undo_next_lsn to be the undo_next_lsn of this record. */ if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) tr->undo_next_lsn = frh->client_undo_next_lsn; /* Dispatch to handle log record depending on type. */ switch (le16_to_cpu(lrh->redo_op)) { case InitializeFileRecordSegment: case DeallocateFileRecordSegment: case WriteEndOfFileRecordSegment: case CreateAttribute: case DeleteAttribute: case UpdateResidentValue: case UpdateNonresidentValue: case UpdateMappingPairs: case SetNewAttributeSizes: case AddIndexEntryRoot: case DeleteIndexEntryRoot: case AddIndexEntryAllocation: case DeleteIndexEntryAllocation: case WriteEndOfIndexBuffer: case SetIndexEntryVcnRoot: case SetIndexEntryVcnAllocation: case UpdateFileNameRoot: case UpdateFileNameAllocation: case SetBitsInNonresidentBitMap: case ClearBitsInNonresidentBitMap: case UpdateRecordDataRoot: case UpdateRecordDataAllocation: case ZeroEndOfFileRecord: t16 = le16_to_cpu(lrh->target_attr); t64 = le64_to_cpu(lrh->target_vcn); dp = find_dp(dptbl, t16, t64); if (dp) goto copy_lcns; /* * Calculate the number of clusters per page the system * which wrote the checkpoint, possibly creating the table. */ if (dptbl) { t32 = (le16_to_cpu(dptbl->size) - sizeof(struct DIR_PAGE_ENTRY)) / sizeof(u64); } else { t32 = log->clst_per_page; kfree(dptbl); dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), 32); if (!dptbl) { err = -ENOMEM; goto out; } } dp = alloc_rsttbl_idx(&dptbl); if (!dp) { err = -ENOMEM; goto out; } dp->target_attr = cpu_to_le32(t16); dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); dp->lcns_follow = cpu_to_le32(t32); dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); dp->oldest_lsn = cpu_to_le64(rec_lsn); copy_lcns: /* * Copy the Lcns from the log record into the Dirty Page Entry. * TODO: For different page size support, must somehow make * whole routine a loop, case Lcns do not fit below. */ t16 = le16_to_cpu(lrh->lcns_follow); for (i = 0; i < t16; i++) { size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn)); dp->page_lcns[j + i] = lrh->page_lcns[i]; } goto next_log_record_analyze; case DeleteDirtyClusters: { u32 range_count = le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); const struct LCN_RANGE *r = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); /* Loop through all of the Lcn ranges this log record. */ for (i = 0; i < range_count; i++, r++) { u64 lcn0 = le64_to_cpu(r->lcn); u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; dp = NULL; while ((dp = enum_rstbl(dptbl, dp))) { u32 j; t32 = le32_to_cpu(dp->lcns_follow); for (j = 0; j < t32; j++) { t64 = le64_to_cpu(dp->page_lcns[j]); if (t64 >= lcn0 && t64 <= lcn_e) dp->page_lcns[j] = 0; } } } goto next_log_record_analyze; ; } case OpenNonresidentAttribute: t16 = le16_to_cpu(lrh->target_attr); if (t16 >= bytes_per_rt(oatbl)) { /* * Compute how big the table needs to be. * Add 10 extra entries for some cushion. */ u32 new_e = t16 / le16_to_cpu(oatbl->size); new_e += 10 - le16_to_cpu(oatbl->used); oatbl = extend_rsttbl(oatbl, new_e, ~0u); log->open_attr_tbl = oatbl; if (!oatbl) { err = -ENOMEM; goto out; } } /* Point to the entry being opened. */ oe = alloc_rsttbl_from_idx(&oatbl, t16); log->open_attr_tbl = oatbl; if (!oe) { err = -ENOMEM; goto out; } /* Initialize this entry from the log record. */ t16 = le16_to_cpu(lrh->redo_off); if (!rst->major_ver) { /* Convert version '0' into version '1'. */ struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); oe->bytes_per_index = oe0->bytes_per_index; oe->type = oe0->type; oe->is_dirty_pages = oe0->is_dirty_pages; oe->name_len = 0; //oe0.name_len; oe->ref = oe0->ref; oe->open_record_lsn = oe0->open_record_lsn; } else { memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); } t16 = le16_to_cpu(lrh->undo_len); if (t16) { oe->ptr = kmalloc(t16, GFP_NOFS); if (!oe->ptr) { err = -ENOMEM; goto out; } oe->name_len = t16 / sizeof(short); memcpy(oe->ptr, Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); oe->is_attr_name = 1; } else { oe->ptr = NULL; oe->is_attr_name = 0; } goto next_log_record_analyze; case HotFix: t16 = le16_to_cpu(lrh->target_attr); t64 = le64_to_cpu(lrh->target_vcn); dp = find_dp(dptbl, t16, t64); if (dp) { size_t j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); if (dp->page_lcns[j]) dp->page_lcns[j] = lrh->page_lcns[0]; } goto next_log_record_analyze; case EndTopLevelAction: tr = Add2Ptr(trtbl, transact_id); tr->prev_lsn = cpu_to_le64(rec_lsn); tr->undo_next_lsn = frh->client_undo_next_lsn; goto next_log_record_analyze; case PrepareTransaction: tr = Add2Ptr(trtbl, transact_id); tr->transact_state = TransactionPrepared; goto next_log_record_analyze; case CommitTransaction: tr = Add2Ptr(trtbl, transact_id); tr->transact_state = TransactionCommitted; goto next_log_record_analyze; case ForgetTransaction: free_rsttbl_idx(trtbl, transact_id); goto next_log_record_analyze; case Noop: case OpenAttributeTableDump: case AttributeNamesDump: case DirtyPageTableDump: case TransactionTableDump: /* The following cases require no action the Analysis Pass. */ goto next_log_record_analyze; default: /* * All codes will be explicitly handled. * If we see a code we do not expect, then we are trouble. */ goto next_log_record_analyze; } end_log_records_enumerate: lcb_put(lcb); lcb = NULL; /* * Scan the Dirty Page Table and Transaction Table for * the lowest lsn, and return it as the Redo lsn. */ dp = NULL; while ((dp = enum_rstbl(dptbl, dp))) { t64 = le64_to_cpu(dp->oldest_lsn); if (t64 && t64 < rlsn) rlsn = t64; } tr = NULL; while ((tr = enum_rstbl(trtbl, tr))) { t64 = le64_to_cpu(tr->first_lsn); if (t64 && t64 < rlsn) rlsn = t64; } /* * Only proceed if the Dirty Page Table or Transaction * table are not empty. */ if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) goto end_reply; sbi->flags |= NTFS_FLAGS_NEED_REPLAY; if (is_ro) goto out; /* Reopen all of the attributes with dirty pages. */ oe = NULL; next_open_attribute: oe = enum_rstbl(oatbl, oe); if (!oe) { err = 0; dp = NULL; goto next_dirty_page; } oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); if (!oa) { err = -ENOMEM; goto out; } inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); if (IS_ERR(inode)) goto fake_attr; if (is_bad_inode(inode)) { iput(inode); fake_attr: if (oa->ni) { iput(&oa->ni->vfs_inode); oa->ni = NULL; } attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, oe->name_len, 0); if (!attr) { kfree(oa); err = -ENOMEM; goto out; } oa->attr = attr; oa->run1 = &oa->run0; goto final_oe; } ni_oe = ntfs_i(inode); oa->ni = ni_oe; attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, NULL, NULL); if (!attr) goto fake_attr; t32 = le32_to_cpu(attr->size); oa->attr = kmemdup(attr, t32, GFP_NOFS); if (!oa->attr) goto fake_attr; if (!S_ISDIR(inode->i_mode)) { if (attr->type == ATTR_DATA && !attr->name_len) { oa->run1 = &ni_oe->file.run; goto final_oe; } } else { if (attr->type == ATTR_ALLOC && attr->name_len == ARRAY_SIZE(I30_NAME) && !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { oa->run1 = &ni_oe->dir.alloc_run; goto final_oe; } } if (attr->non_res) { u16 roff = le16_to_cpu(attr->nres.run_off); CLST svcn = le64_to_cpu(attr->nres.svcn); if (roff > t32) { kfree(oa->attr); oa->attr = NULL; goto fake_attr; } err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, le64_to_cpu(attr->nres.evcn), svcn, Add2Ptr(attr, roff), t32 - roff); if (err < 0) { kfree(oa->attr); oa->attr = NULL; goto fake_attr; } err = 0; } oa->run1 = &oa->run0; attr = oa->attr; final_oe: if (oe->is_attr_name == 1) kfree(oe->ptr); oe->is_attr_name = 0; oe->ptr = oa; oe->name_len = attr->name_len; goto next_open_attribute; /* * Now loop through the dirty page table to extract all of the Vcn/Lcn. * Mapping that we have, and insert it into the appropriate run. */ next_dirty_page: dp = enum_rstbl(dptbl, dp); if (!dp) goto do_redo_1; oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); if (oe->next != RESTART_ENTRY_ALLOCATED_LE) goto next_dirty_page; oa = oe->ptr; if (!oa) goto next_dirty_page; i = -1; next_dirty_page_vcn: i += 1; if (i >= le32_to_cpu(dp->lcns_follow)) goto next_dirty_page; vcn = le64_to_cpu(dp->vcn) + i; size = (vcn + 1) << sbi->cluster_bits; if (!dp->page_lcns[i]) goto next_dirty_page_vcn; rno = ino_get(&oe->ref); if (rno <= MFT_REC_MIRR && size < (MFT_REC_VOL + 1) * sbi->record_size && oe->type == ATTR_DATA) { goto next_dirty_page_vcn; } lcn = le64_to_cpu(dp->page_lcns[i]); if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || lcn0 != lcn) && !run_add_entry(oa->run1, vcn, lcn, 1, false)) { err = -ENOMEM; goto out; } attr = oa->attr; t64 = le64_to_cpu(attr->nres.alloc_size); if (size > t64) { attr->nres.valid_size = attr->nres.data_size = attr->nres.alloc_size = cpu_to_le64(size); } goto next_dirty_page_vcn; do_redo_1: /* * Perform the Redo Pass, to restore all of the dirty pages to the same * contents that they had immediately before the crash. If the dirty * page table is empty, then we can skip the entire Redo Pass. */ if (!dptbl || !dptbl->total) goto do_undo_action; rec_lsn = rlsn; /* * Read the record at the Redo lsn, before falling * into common code to handle each record. */ err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); if (err) goto out; /* * Now loop to read all of our log records forwards, until * we hit the end of the file, cleaning up at the end. */ do_action_next: frh = lcb->lrh; if (LfsClientRecord != frh->record_type) goto read_next_log_do_action; transact_id = le32_to_cpu(frh->transact_id); rec_len = le32_to_cpu(frh->client_data_len); lrh = lcb->log_rec; if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { err = -EINVAL; goto out; } /* Ignore log records that do not update pages. */ if (lrh->lcns_follow) goto find_dirty_page; goto read_next_log_do_action; find_dirty_page: t16 = le16_to_cpu(lrh->target_attr); t64 = le64_to_cpu(lrh->target_vcn); dp = find_dp(dptbl, t16, t64); if (!dp) goto read_next_log_do_action; if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) goto read_next_log_do_action; t16 = le16_to_cpu(lrh->target_attr); if (t16 >= bytes_per_rt(oatbl)) { err = -EINVAL; goto out; } oe = Add2Ptr(oatbl, t16); if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { err = -EINVAL; goto out; } oa = oe->ptr; if (!oa) { err = -EINVAL; goto out; } attr = oa->attr; vcn = le64_to_cpu(lrh->target_vcn); if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || lcn == SPARSE_LCN) { goto read_next_log_do_action; } /* Point to the Redo data and get its length. */ data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); dlen = le16_to_cpu(lrh->redo_len); /* Shorten length by any Lcns which were deleted. */ saved_len = dlen; for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { size_t j; u32 alen, voff; voff = le16_to_cpu(lrh->record_off) + le16_to_cpu(lrh->attr_off); voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; /* If the Vcn question is allocated, we can just get out. */ j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); if (dp->page_lcns[j + i - 1]) break; if (!saved_len) saved_len = 1; /* * Calculate the allocated space left relative to the * log record Vcn, after removing this unallocated Vcn. */ alen = (i - 1) << sbi->cluster_bits; /* * If the update described this log record goes beyond * the allocated space, then we will have to reduce the length. */ if (voff >= alen) dlen = 0; else if (voff + dlen > alen) dlen = alen - voff; } /* * If the resulting dlen from above is now zero, * we can skip this log record. */ if (!dlen && saved_len) goto read_next_log_do_action; t16 = le16_to_cpu(lrh->redo_op); if (can_skip_action(t16)) goto read_next_log_do_action; /* Apply the Redo operation a common routine. */ err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); if (err) goto out; /* Keep reading and looping back until end of file. */ read_next_log_do_action: err = read_next_log_rec(log, lcb, &rec_lsn); if (!err && rec_lsn) goto do_action_next; lcb_put(lcb); lcb = NULL; do_undo_action: /* Scan Transaction Table. */ tr = NULL; transaction_table_next: tr = enum_rstbl(trtbl, tr); if (!tr) goto undo_action_done; if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); goto transaction_table_next; } log->transaction_id = PtrOffset(trtbl, tr); undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); /* * We only have to do anything if the transaction has * something its undo_next_lsn field. */ if (!undo_next_lsn) goto commit_undo; /* Read the first record to be undone by this transaction. */ err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); if (err) goto out; /* * Now loop to read all of our log records forwards, * until we hit the end of the file, cleaning up at the end. */ undo_action_next: lrh = lcb->log_rec; frh = lcb->lrh; transact_id = le32_to_cpu(frh->transact_id); rec_len = le32_to_cpu(frh->client_data_len); if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { err = -EINVAL; goto out; } if (lrh->undo_op == cpu_to_le16(Noop)) goto read_next_log_undo_action; oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); oa = oe->ptr; t16 = le16_to_cpu(lrh->lcns_follow); if (!t16) goto add_allocated_vcns; is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), &lcn, &clen, NULL); /* * If the mapping isn't already the table or the mapping * corresponds to a hole the mapping, we need to make sure * there is no partial page already memory. */ if (is_mapped && lcn != SPARSE_LCN && clen >= t16) goto add_allocated_vcns; vcn = le64_to_cpu(lrh->target_vcn); vcn &= ~(u64)(log->clst_per_page - 1); add_allocated_vcns: for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), size = (vcn + 1) << sbi->cluster_bits; i < t16; i++, vcn += 1, size += sbi->cluster_size) { attr = oa->attr; if (!attr->non_res) { if (size > le32_to_cpu(attr->res.data_size)) attr->res.data_size = cpu_to_le32(size); } else { if (size > le64_to_cpu(attr->nres.data_size)) attr->nres.valid_size = attr->nres.data_size = attr->nres.alloc_size = cpu_to_le64(size); } } t16 = le16_to_cpu(lrh->undo_op); if (can_skip_action(t16)) goto read_next_log_undo_action; /* Point to the Redo data and get its length. */ data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); dlen = le16_to_cpu(lrh->undo_len); /* It is time to apply the undo action. */ err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); read_next_log_undo_action: /* * Keep reading and looping back until we have read the * last record for this transaction. */ err = read_next_log_rec(log, lcb, &rec_lsn); if (err) goto out; if (rec_lsn) goto undo_action_next; lcb_put(lcb); lcb = NULL; commit_undo: free_rsttbl_idx(trtbl, log->transaction_id); log->transaction_id = 0; goto transaction_table_next; undo_action_done: ntfs_update_mftmirr(sbi, 0); sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; end_reply: err = 0; if (is_ro) goto out; rh = kzalloc(log->page_size, GFP_NOFS); if (!rh) { err = -ENOMEM; goto out; } rh->rhdr.sign = NTFS_RSTR_SIGNATURE; rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); t16 = (log->page_size >> SECTOR_SHIFT) + 1; rh->rhdr.fix_num = cpu_to_le16(t16); rh->sys_page_size = cpu_to_le32(log->page_size); rh->page_size = cpu_to_le32(log->page_size); t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, 8); rh->ra_off = cpu_to_le16(t16); rh->minor_ver = cpu_to_le16(1); // 0x1A: rh->major_ver = cpu_to_le16(1); // 0x1C: ra2 = Add2Ptr(rh, t16); memcpy(ra2, ra, sizeof(struct RESTART_AREA)); ra2->client_idx[0] = 0; ra2->client_idx[1] = LFS_NO_CLIENT_LE; ra2->flags = cpu_to_le16(2); le32_add_cpu(&ra2->open_log_count, 1); ntfs_fix_pre_write(&rh->rhdr, log->page_size); err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0); if (!err) err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, rh, log->page_size, 0); kfree(rh); if (err) goto out; out: kfree(rst); if (lcb) lcb_put(lcb); /* * Scan the Open Attribute Table to close all of * the open attributes. */ oe = NULL; while ((oe = enum_rstbl(oatbl, oe))) { rno = ino_get(&oe->ref); if (oe->is_attr_name == 1) { kfree(oe->ptr); oe->ptr = NULL; continue; } if (oe->is_attr_name) continue; oa = oe->ptr; if (!oa) continue; run_close(&oa->run0); kfree(oa->attr); if (oa->ni) iput(&oa->ni->vfs_inode); kfree(oa); } kfree(trtbl); kfree(oatbl); kfree(dptbl); kfree(attr_names); kfree(rst_info.r_page); kfree(ra); kfree(log->one_page_buf); if (err) sbi->flags |= NTFS_FLAGS_NEED_REPLAY; if (err == -EROFS) err = 0; else if (log->set_dirty) ntfs_set_state(sbi, NTFS_DIRTY_ERROR); kfree(log); return err; }