/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "core_types.h" #include "ObjectID.h" #include "atomfirmware.h" #include "dc_bios_types.h" #include "include/grph_object_ctrl_defs.h" #include "include/bios_parser_interface.h" #include "include/i2caux_interface.h" #include "include/logger_interface.h" #include "command_table2.h" #include "bios_parser_helper.h" #include "command_table_helper2.h" #include "bios_parser2.h" #include "bios_parser_types_internal2.h" #include "bios_parser_interface.h" #include "bios_parser_common.h" #define DC_LOGGER \ bp->base.ctx->logger #define LAST_RECORD_TYPE 0xff #define SMU9_SYSPLL0_ID 0 static enum bp_result get_gpio_i2c_info(struct bios_parser *bp, struct atom_i2c_record *record, struct graphics_object_i2c_info *info); static enum bp_result bios_parser_get_firmware_info( struct dc_bios *dcb, struct dc_firmware_info *info); static enum bp_result bios_parser_get_encoder_cap_info( struct dc_bios *dcb, struct graphics_object_id object_id, struct bp_encoder_cap_info *info); static enum bp_result get_firmware_info_v3_1( struct bios_parser *bp, struct dc_firmware_info *info); static enum bp_result get_firmware_info_v3_2( struct bios_parser *bp, struct dc_firmware_info *info); static enum bp_result get_firmware_info_v3_4( struct bios_parser *bp, struct dc_firmware_info *info); static struct atom_hpd_int_record *get_hpd_record(struct bios_parser *bp, struct atom_display_object_path_v2 *object); static struct atom_encoder_caps_record *get_encoder_cap_record( struct bios_parser *bp, struct atom_display_object_path_v2 *object); #define BIOS_IMAGE_SIZE_OFFSET 2 #define BIOS_IMAGE_SIZE_UNIT 512 #define DATA_TABLES(table) (bp->master_data_tbl->listOfdatatables.table) static void bios_parser2_destruct(struct bios_parser *bp) { kfree(bp->base.bios_local_image); kfree(bp->base.integrated_info); } static void firmware_parser_destroy(struct dc_bios **dcb) { struct bios_parser *bp = BP_FROM_DCB(*dcb); if (!bp) { BREAK_TO_DEBUGGER(); return; } bios_parser2_destruct(bp); kfree(bp); *dcb = NULL; } static void get_atom_data_table_revision( struct atom_common_table_header *atom_data_tbl, struct atom_data_revision *tbl_revision) { if (!tbl_revision) return; /* initialize the revision to 0 which is invalid revision */ tbl_revision->major = 0; tbl_revision->minor = 0; if (!atom_data_tbl) return; tbl_revision->major = (uint32_t) atom_data_tbl->format_revision & 0x3f; tbl_revision->minor = (uint32_t) atom_data_tbl->content_revision & 0x3f; } /* BIOS oject table displaypath is per connector. * There is extra path not for connector. BIOS fill its encoderid as 0 */ static uint8_t bios_parser_get_connectors_number(struct dc_bios *dcb) { struct bios_parser *bp = BP_FROM_DCB(dcb); unsigned int count = 0; unsigned int i; switch (bp->object_info_tbl.revision.minor) { default: case 4: for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) if (bp->object_info_tbl.v1_4->display_path[i].encoderobjid != 0) count++; break; case 5: for (i = 0; i < bp->object_info_tbl.v1_5->number_of_path; i++) if (bp->object_info_tbl.v1_5->display_path[i].encoderobjid != 0) count++; break; } return count; } static struct graphics_object_id bios_parser_get_connector_id( struct dc_bios *dcb, uint8_t i) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct graphics_object_id object_id = dal_graphics_object_id_init( 0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN); struct object_info_table *tbl = &bp->object_info_tbl; struct display_object_info_table_v1_4 *v1_4 = tbl->v1_4; struct display_object_info_table_v1_5 *v1_5 = tbl->v1_5; switch (bp->object_info_tbl.revision.minor) { default: case 4: if (v1_4->number_of_path > i) { /* If display_objid is generic object id, the encoderObj * /extencoderobjId should be 0 */ if (v1_4->display_path[i].encoderobjid != 0 && v1_4->display_path[i].display_objid != 0) object_id = object_id_from_bios_object_id( v1_4->display_path[i].display_objid); } break; case 5: if (v1_5->number_of_path > i) { /* If display_objid is generic object id, the encoderObjId * should be 0 */ if (v1_5->display_path[i].encoderobjid != 0 && v1_5->display_path[i].display_objid != 0) object_id = object_id_from_bios_object_id( v1_5->display_path[i].display_objid); } break; } return object_id; } static enum bp_result bios_parser_get_src_obj(struct dc_bios *dcb, struct graphics_object_id object_id, uint32_t index, struct graphics_object_id *src_object_id) { struct bios_parser *bp = BP_FROM_DCB(dcb); unsigned int i; enum bp_result bp_result = BP_RESULT_BADINPUT; struct graphics_object_id obj_id = { 0 }; struct object_info_table *tbl = &bp->object_info_tbl; if (!src_object_id) return bp_result; switch (object_id.type) { /* Encoder's Source is GPU. BIOS does not provide GPU, since all * displaypaths point to same GPU (0x1100). Hardcode GPU object type */ case OBJECT_TYPE_ENCODER: /* TODO: since num of src must be less than 2. * If found in for loop, should break. * DAL2 implementation may be changed too */ switch (bp->object_info_tbl.revision.minor) { default: case 4: for (i = 0; i < tbl->v1_4->number_of_path; i++) { obj_id = object_id_from_bios_object_id( tbl->v1_4->display_path[i].encoderobjid); if (object_id.type == obj_id.type && object_id.id == obj_id.id && object_id.enum_id == obj_id.enum_id) { *src_object_id = object_id_from_bios_object_id( 0x1100); /* break; */ } } bp_result = BP_RESULT_OK; break; case 5: for (i = 0; i < tbl->v1_5->number_of_path; i++) { obj_id = object_id_from_bios_object_id( tbl->v1_5->display_path[i].encoderobjid); if (object_id.type == obj_id.type && object_id.id == obj_id.id && object_id.enum_id == obj_id.enum_id) { *src_object_id = object_id_from_bios_object_id( 0x1100); /* break; */ } } bp_result = BP_RESULT_OK; break; } break; case OBJECT_TYPE_CONNECTOR: switch (bp->object_info_tbl.revision.minor) { default: case 4: for (i = 0; i < tbl->v1_4->number_of_path; i++) { obj_id = object_id_from_bios_object_id( tbl->v1_4->display_path[i] .display_objid); if (object_id.type == obj_id.type && object_id.id == obj_id.id && object_id.enum_id == obj_id.enum_id) { *src_object_id = object_id_from_bios_object_id( tbl->v1_4 ->display_path[i] .encoderobjid); /* break; */ } } bp_result = BP_RESULT_OK; break; } bp_result = BP_RESULT_OK; break; case 5: for (i = 0; i < tbl->v1_5->number_of_path; i++) { obj_id = object_id_from_bios_object_id( tbl->v1_5->display_path[i].display_objid); if (object_id.type == obj_id.type && object_id.id == obj_id.id && object_id.enum_id == obj_id.enum_id) { *src_object_id = object_id_from_bios_object_id( tbl->v1_5->display_path[i].encoderobjid); /* break; */ } } bp_result = BP_RESULT_OK; break; default: bp_result = BP_RESULT_OK; break; } return bp_result; } /* from graphics_object_id, find display path which includes the object_id */ static struct atom_display_object_path_v2 *get_bios_object( struct bios_parser *bp, struct graphics_object_id id) { unsigned int i; struct graphics_object_id obj_id = {0}; switch (id.type) { case OBJECT_TYPE_ENCODER: for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) { obj_id = object_id_from_bios_object_id( bp->object_info_tbl.v1_4->display_path[i].encoderobjid); if (id.type == obj_id.type && id.id == obj_id.id && id.enum_id == obj_id.enum_id) return &bp->object_info_tbl.v1_4->display_path[i]; } fallthrough; case OBJECT_TYPE_CONNECTOR: case OBJECT_TYPE_GENERIC: /* Both Generic and Connector Object ID * will be stored on display_objid */ for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) { obj_id = object_id_from_bios_object_id( bp->object_info_tbl.v1_4->display_path[i].display_objid); if (id.type == obj_id.type && id.id == obj_id.id && id.enum_id == obj_id.enum_id) return &bp->object_info_tbl.v1_4->display_path[i]; } fallthrough; default: return NULL; } } /* from graphics_object_id, find display path which includes the object_id */ static struct atom_display_object_path_v3 *get_bios_object_from_path_v3( struct bios_parser *bp, struct graphics_object_id id) { unsigned int i; struct graphics_object_id obj_id = {0}; switch (id.type) { case OBJECT_TYPE_ENCODER: for (i = 0; i < bp->object_info_tbl.v1_5->number_of_path; i++) { obj_id = object_id_from_bios_object_id( bp->object_info_tbl.v1_5->display_path[i].encoderobjid); if (id.type == obj_id.type && id.id == obj_id.id && id.enum_id == obj_id.enum_id) return &bp->object_info_tbl.v1_5->display_path[i]; } break; case OBJECT_TYPE_CONNECTOR: case OBJECT_TYPE_GENERIC: /* Both Generic and Connector Object ID * will be stored on display_objid */ for (i = 0; i < bp->object_info_tbl.v1_5->number_of_path; i++) { obj_id = object_id_from_bios_object_id( bp->object_info_tbl.v1_5->display_path[i].display_objid); if (id.type == obj_id.type && id.id == obj_id.id && id.enum_id == obj_id.enum_id) return &bp->object_info_tbl.v1_5->display_path[i]; } break; default: return NULL; } return NULL; } static enum bp_result bios_parser_get_i2c_info(struct dc_bios *dcb, struct graphics_object_id id, struct graphics_object_i2c_info *info) { uint32_t offset; struct atom_display_object_path_v2 *object; struct atom_display_object_path_v3 *object_path_v3; struct atom_common_record_header *header; struct atom_i2c_record *record; struct atom_i2c_record dummy_record = {0}; struct bios_parser *bp = BP_FROM_DCB(dcb); if (!info) return BP_RESULT_BADINPUT; if (id.type == OBJECT_TYPE_GENERIC) { dummy_record.i2c_id = id.id; if (get_gpio_i2c_info(bp, &dummy_record, info) == BP_RESULT_OK) return BP_RESULT_OK; else return BP_RESULT_NORECORD; } switch (bp->object_info_tbl.revision.minor) { case 4: default: object = get_bios_object(bp, id); if (!object) return BP_RESULT_BADINPUT; offset = object->disp_recordoffset + bp->object_info_tbl_offset; break; case 5: object_path_v3 = get_bios_object_from_path_v3(bp, id); if (!object_path_v3) return BP_RESULT_BADINPUT; offset = object_path_v3->disp_recordoffset + bp->object_info_tbl_offset; break; } for (;;) { header = GET_IMAGE(struct atom_common_record_header, offset); if (!header) return BP_RESULT_BADBIOSTABLE; if (header->record_type == LAST_RECORD_TYPE || !header->record_size) break; if (header->record_type == ATOM_I2C_RECORD_TYPE && sizeof(struct atom_i2c_record) <= header->record_size) { /* get the I2C info */ record = (struct atom_i2c_record *) header; if (get_gpio_i2c_info(bp, record, info) == BP_RESULT_OK) return BP_RESULT_OK; } offset += header->record_size; } return BP_RESULT_NORECORD; } static enum bp_result get_gpio_i2c_info( struct bios_parser *bp, struct atom_i2c_record *record, struct graphics_object_i2c_info *info) { struct atom_gpio_pin_lut_v2_1 *header; uint32_t count = 0; unsigned int table_index = 0; bool find_valid = false; struct atom_gpio_pin_assignment *pin; if (!info) return BP_RESULT_BADINPUT; /* get the GPIO_I2C info */ if (!DATA_TABLES(gpio_pin_lut)) return BP_RESULT_BADBIOSTABLE; header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1, DATA_TABLES(gpio_pin_lut)); if (!header) return BP_RESULT_BADBIOSTABLE; if (sizeof(struct atom_common_table_header) + sizeof(struct atom_gpio_pin_assignment) > le16_to_cpu(header->table_header.structuresize)) return BP_RESULT_BADBIOSTABLE; /* TODO: is version change? */ if (header->table_header.content_revision != 1) return BP_RESULT_UNSUPPORTED; /* get data count */ count = (le16_to_cpu(header->table_header.structuresize) - sizeof(struct atom_common_table_header)) / sizeof(struct atom_gpio_pin_assignment); pin = (struct atom_gpio_pin_assignment *) header->gpio_pin; for (table_index = 0; table_index < count; table_index++) { if (((record->i2c_id & I2C_HW_CAP) == (pin->gpio_id & I2C_HW_CAP)) && ((record->i2c_id & I2C_HW_ENGINE_ID_MASK) == (pin->gpio_id & I2C_HW_ENGINE_ID_MASK)) && ((record->i2c_id & I2C_HW_LANE_MUX) == (pin->gpio_id & I2C_HW_LANE_MUX))) { /* still valid */ find_valid = true; break; } pin = (struct atom_gpio_pin_assignment *)((uint8_t *)pin + sizeof(struct atom_gpio_pin_assignment)); } /* If we don't find the entry that we are looking for then * we will return BP_Result_BadBiosTable. */ if (find_valid == false) return BP_RESULT_BADBIOSTABLE; /* get the GPIO_I2C_INFO */ info->i2c_hw_assist = (record->i2c_id & I2C_HW_CAP) ? true : false; info->i2c_line = record->i2c_id & I2C_HW_LANE_MUX; info->i2c_engine_id = (record->i2c_id & I2C_HW_ENGINE_ID_MASK) >> 4; info->i2c_slave_address = record->i2c_slave_addr; /* TODO: check how to get register offset for en, Y, etc. */ info->gpio_info.clk_a_register_index = le16_to_cpu( header->gpio_pin[table_index].data_a_reg_index); info->gpio_info.clk_a_shift = header->gpio_pin[table_index].gpio_bitshift; return BP_RESULT_OK; } static struct atom_hpd_int_record *get_hpd_record_for_path_v3( struct bios_parser *bp, struct atom_display_object_path_v3 *object) { struct atom_common_record_header *header; uint32_t offset; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = object->disp_recordoffset + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(struct atom_common_record_header, offset); if (!header) return NULL; if (header->record_type == ATOM_RECORD_END_TYPE || !header->record_size) break; if (header->record_type == ATOM_HPD_INT_RECORD_TYPE && sizeof(struct atom_hpd_int_record) <= header->record_size) return (struct atom_hpd_int_record *) header; offset += header->record_size; } return NULL; } static enum bp_result bios_parser_get_hpd_info( struct dc_bios *dcb, struct graphics_object_id id, struct graphics_object_hpd_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_display_object_path_v2 *object; struct atom_display_object_path_v3 *object_path_v3; struct atom_hpd_int_record *record = NULL; if (!info) return BP_RESULT_BADINPUT; switch (bp->object_info_tbl.revision.minor) { case 4: default: object = get_bios_object(bp, id); if (!object) return BP_RESULT_BADINPUT; record = get_hpd_record(bp, object); break; case 5: object_path_v3 = get_bios_object_from_path_v3(bp, id); if (!object_path_v3) return BP_RESULT_BADINPUT; record = get_hpd_record_for_path_v3(bp, object_path_v3); break; } if (record != NULL) { info->hpd_int_gpio_uid = record->pin_id; info->hpd_active = record->plugin_pin_state; return BP_RESULT_OK; } return BP_RESULT_NORECORD; } static struct atom_hpd_int_record *get_hpd_record( struct bios_parser *bp, struct atom_display_object_path_v2 *object) { struct atom_common_record_header *header; uint32_t offset; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = le16_to_cpu(object->disp_recordoffset) + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(struct atom_common_record_header, offset); if (!header) return NULL; if (header->record_type == LAST_RECORD_TYPE || !header->record_size) break; if (header->record_type == ATOM_HPD_INT_RECORD_TYPE && sizeof(struct atom_hpd_int_record) <= header->record_size) return (struct atom_hpd_int_record *) header; offset += header->record_size; } return NULL; } /** * bios_parser_get_gpio_pin_info * Get GpioPin information of input gpio id * * @dcb: pointer to the DC BIOS * @gpio_id: GPIO ID * @info: GpioPin information structure * return: Bios parser result code * note: * to get the GPIO PIN INFO, we need: * 1. get the GPIO_ID from other object table, see GetHPDInfo() * 2. in DATA_TABLE.GPIO_Pin_LUT, search all records, * to get the registerA offset/mask */ static enum bp_result bios_parser_get_gpio_pin_info( struct dc_bios *dcb, uint32_t gpio_id, struct gpio_pin_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_gpio_pin_lut_v2_1 *header; uint32_t count = 0; uint32_t i = 0; if (!DATA_TABLES(gpio_pin_lut)) return BP_RESULT_BADBIOSTABLE; header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1, DATA_TABLES(gpio_pin_lut)); if (!header) return BP_RESULT_BADBIOSTABLE; if (sizeof(struct atom_common_table_header) + sizeof(struct atom_gpio_pin_assignment) > le16_to_cpu(header->table_header.structuresize)) return BP_RESULT_BADBIOSTABLE; if (header->table_header.content_revision != 1) return BP_RESULT_UNSUPPORTED; /* Temporary hard code gpio pin info */ count = (le16_to_cpu(header->table_header.structuresize) - sizeof(struct atom_common_table_header)) / sizeof(struct atom_gpio_pin_assignment); for (i = 0; i < count; ++i) { if (header->gpio_pin[i].gpio_id != gpio_id) continue; info->offset = (uint32_t) le16_to_cpu( header->gpio_pin[i].data_a_reg_index); info->offset_y = info->offset + 2; info->offset_en = info->offset + 1; info->offset_mask = info->offset - 1; info->mask = (uint32_t) (1 << header->gpio_pin[i].gpio_bitshift); info->mask_y = info->mask + 2; info->mask_en = info->mask + 1; info->mask_mask = info->mask - 1; return BP_RESULT_OK; } return BP_RESULT_NORECORD; } static struct device_id device_type_from_device_id(uint16_t device_id) { struct device_id result_device_id; result_device_id.raw_device_tag = device_id; switch (device_id) { case ATOM_DISPLAY_LCD1_SUPPORT: result_device_id.device_type = DEVICE_TYPE_LCD; result_device_id.enum_id = 1; break; case ATOM_DISPLAY_LCD2_SUPPORT: result_device_id.device_type = DEVICE_TYPE_LCD; result_device_id.enum_id = 2; break; case ATOM_DISPLAY_DFP1_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 1; break; case ATOM_DISPLAY_DFP2_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 2; break; case ATOM_DISPLAY_DFP3_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 3; break; case ATOM_DISPLAY_DFP4_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 4; break; case ATOM_DISPLAY_DFP5_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 5; break; case ATOM_DISPLAY_DFP6_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 6; break; default: BREAK_TO_DEBUGGER(); /* Invalid device Id */ result_device_id.device_type = DEVICE_TYPE_UNKNOWN; result_device_id.enum_id = 0; } return result_device_id; } static enum bp_result bios_parser_get_device_tag( struct dc_bios *dcb, struct graphics_object_id connector_object_id, uint32_t device_tag_index, struct connector_device_tag_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_display_object_path_v2 *object; struct atom_display_object_path_v3 *object_path_v3; if (!info) return BP_RESULT_BADINPUT; switch (bp->object_info_tbl.revision.minor) { case 4: default: /* getBiosObject will return MXM object */ object = get_bios_object(bp, connector_object_id); if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object id */ return BP_RESULT_BADINPUT; } info->acpi_device = 0; /* BIOS no longer provides this */ info->dev_id = device_type_from_device_id(object->device_tag); break; case 5: object_path_v3 = get_bios_object_from_path_v3(bp, connector_object_id); if (!object_path_v3) { BREAK_TO_DEBUGGER(); /* Invalid object id */ return BP_RESULT_BADINPUT; } info->acpi_device = 0; /* BIOS no longer provides this */ info->dev_id = device_type_from_device_id(object_path_v3->device_tag); break; } return BP_RESULT_OK; } static enum bp_result get_ss_info_v4_1( struct bios_parser *bp, uint32_t id, uint32_t index, struct spread_spectrum_info *ss_info) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_1 *disp_cntl_tbl = NULL; struct atom_smu_info_v3_3 *smu_info = NULL; if (!ss_info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_1, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; ss_info->type.STEP_AND_DELAY_INFO = false; ss_info->spread_percentage_divider = 1000; /* BIOS no longer uses target clock. Always enable for now */ ss_info->target_clock_range = 0xffffffff; switch (id) { case AS_SIGNAL_TYPE_DVI: ss_info->spread_spectrum_percentage = disp_cntl_tbl->dvi_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->dvi_ss_rate_10hz * 10; if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; DC_LOG_BIOS("AS_SIGNAL_TYPE_DVI ss_percentage: %d\n", ss_info->spread_spectrum_percentage); break; case AS_SIGNAL_TYPE_HDMI: ss_info->spread_spectrum_percentage = disp_cntl_tbl->hdmi_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->hdmi_ss_rate_10hz * 10; if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; DC_LOG_BIOS("AS_SIGNAL_TYPE_HDMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage); break; /* TODO LVDS not support anymore? */ case AS_SIGNAL_TYPE_DISPLAY_PORT: ss_info->spread_spectrum_percentage = disp_cntl_tbl->dp_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->dp_ss_rate_10hz * 10; if (disp_cntl_tbl->dp_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; DC_LOG_BIOS("AS_SIGNAL_TYPE_DISPLAY_PORT ss_percentage: %d\n", ss_info->spread_spectrum_percentage); break; case AS_SIGNAL_TYPE_GPU_PLL: /* atom_firmware: DAL only get data from dce_info table. * if data within smu_info is needed for DAL, VBIOS should * copy it into dce_info */ result = BP_RESULT_UNSUPPORTED; break; case AS_SIGNAL_TYPE_XGMI: smu_info = GET_IMAGE(struct atom_smu_info_v3_3, DATA_TABLES(smu_info)); if (!smu_info) return BP_RESULT_BADBIOSTABLE; DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info->gpuclk_ss_percentage); ss_info->spread_spectrum_percentage = smu_info->waflclk_ss_percentage; ss_info->spread_spectrum_range = smu_info->gpuclk_ss_rate_10hz * 10; if (smu_info->waflclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; DC_LOG_BIOS("AS_SIGNAL_TYPE_XGMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage); break; default: result = BP_RESULT_UNSUPPORTED; } return result; } static enum bp_result get_ss_info_v4_2( struct bios_parser *bp, uint32_t id, uint32_t index, struct spread_spectrum_info *ss_info) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_2 *disp_cntl_tbl = NULL; struct atom_smu_info_v3_1 *smu_info = NULL; if (!ss_info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; if (!DATA_TABLES(smu_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_2, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; smu_info = GET_IMAGE(struct atom_smu_info_v3_1, DATA_TABLES(smu_info)); if (!smu_info) return BP_RESULT_BADBIOSTABLE; DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info->gpuclk_ss_percentage); ss_info->type.STEP_AND_DELAY_INFO = false; ss_info->spread_percentage_divider = 1000; /* BIOS no longer uses target clock. Always enable for now */ ss_info->target_clock_range = 0xffffffff; switch (id) { case AS_SIGNAL_TYPE_DVI: ss_info->spread_spectrum_percentage = disp_cntl_tbl->dvi_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->dvi_ss_rate_10hz * 10; if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; DC_LOG_BIOS("AS_SIGNAL_TYPE_DVI ss_percentage: %d\n", ss_info->spread_spectrum_percentage); break; case AS_SIGNAL_TYPE_HDMI: ss_info->spread_spectrum_percentage = disp_cntl_tbl->hdmi_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->hdmi_ss_rate_10hz * 10; if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; DC_LOG_BIOS("AS_SIGNAL_TYPE_HDMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage); break; /* TODO LVDS not support anymore? */ case AS_SIGNAL_TYPE_DISPLAY_PORT: ss_info->spread_spectrum_percentage = smu_info->gpuclk_ss_percentage; ss_info->spread_spectrum_range = smu_info->gpuclk_ss_rate_10hz * 10; if (smu_info->gpuclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; DC_LOG_BIOS("AS_SIGNAL_TYPE_DISPLAY_PORT ss_percentage: %d\n", ss_info->spread_spectrum_percentage); break; case AS_SIGNAL_TYPE_GPU_PLL: /* atom_firmware: DAL only get data from dce_info table. * if data within smu_info is needed for DAL, VBIOS should * copy it into dce_info */ result = BP_RESULT_UNSUPPORTED; break; default: result = BP_RESULT_UNSUPPORTED; } return result; } static enum bp_result get_ss_info_v4_5( struct bios_parser *bp, uint32_t id, uint32_t index, struct spread_spectrum_info *ss_info) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_5 *disp_cntl_tbl = NULL; if (!ss_info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_5, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; ss_info->type.STEP_AND_DELAY_INFO = false; ss_info->spread_percentage_divider = 1000; /* BIOS no longer uses target clock. Always enable for now */ ss_info->target_clock_range = 0xffffffff; switch (id) { case AS_SIGNAL_TYPE_DVI: ss_info->spread_spectrum_percentage = disp_cntl_tbl->dvi_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->dvi_ss_rate_10hz * 10; if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; DC_LOG_BIOS("AS_SIGNAL_TYPE_DVI ss_percentage: %d\n", ss_info->spread_spectrum_percentage); break; case AS_SIGNAL_TYPE_HDMI: ss_info->spread_spectrum_percentage = disp_cntl_tbl->hdmi_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->hdmi_ss_rate_10hz * 10; if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; DC_LOG_BIOS("AS_SIGNAL_TYPE_HDMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage); break; case AS_SIGNAL_TYPE_DISPLAY_PORT: ss_info->spread_spectrum_percentage = disp_cntl_tbl->dp_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->dp_ss_rate_10hz * 10; if (disp_cntl_tbl->dp_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; DC_LOG_BIOS("AS_SIGNAL_TYPE_DISPLAY_PORT ss_percentage: %d\n", ss_info->spread_spectrum_percentage); break; case AS_SIGNAL_TYPE_GPU_PLL: /* atom_smu_info_v4_0 does not have fields for SS for SMU Display PLL anymore. * SMU Display PLL supposed to be without spread. * Better place for it would be in atom_display_controller_info_v4_5 table. */ result = BP_RESULT_UNSUPPORTED; break; default: result = BP_RESULT_UNSUPPORTED; break; } return result; } /** * bios_parser_get_spread_spectrum_info * Get spread spectrum information from the ASIC_InternalSS_Info(ver 2.1 or * ver 3.1) or SS_Info table from the VBIOS. Currently ASIC_InternalSS_Info * ver 2.1 can co-exist with SS_Info table. Expect ASIC_InternalSS_Info * ver 3.1, * there is only one entry for each signal /ss id. However, there is * no planning of supporting multiple spread Sprectum entry for EverGreen * @dcb: pointer to the DC BIOS * @signal: ASSignalType to be converted to info index * @index: number of entries that match the converted info index * @ss_info: sprectrum information structure, * return: Bios parser result code */ static enum bp_result bios_parser_get_spread_spectrum_info( struct dc_bios *dcb, enum as_signal_type signal, uint32_t index, struct spread_spectrum_info *ss_info) { struct bios_parser *bp = BP_FROM_DCB(dcb); enum bp_result result = BP_RESULT_UNSUPPORTED; struct atom_common_table_header *header; struct atom_data_revision tbl_revision; if (!ss_info) /* check for bad input */ return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_UNSUPPORTED; header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(dce_info)); get_atom_data_table_revision(header, &tbl_revision); switch (tbl_revision.major) { case 4: switch (tbl_revision.minor) { case 1: return get_ss_info_v4_1(bp, signal, index, ss_info); case 2: case 3: case 4: return get_ss_info_v4_2(bp, signal, index, ss_info); case 5: return get_ss_info_v4_5(bp, signal, index, ss_info); default: ASSERT(0); break; } break; default: break; } /* there can not be more then one entry for SS Info table */ return result; } static enum bp_result get_soc_bb_info_v4_4( struct bios_parser *bp, struct bp_soc_bb_info *soc_bb_info) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_4 *disp_cntl_tbl = NULL; if (!soc_bb_info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; if (!DATA_TABLES(smu_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_4, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; soc_bb_info->dram_clock_change_latency_100ns = disp_cntl_tbl->max_mclk_chg_lat; soc_bb_info->dram_sr_enter_exit_latency_100ns = disp_cntl_tbl->max_sr_enter_exit_lat; soc_bb_info->dram_sr_exit_latency_100ns = disp_cntl_tbl->max_sr_exit_lat; return result; } static enum bp_result get_soc_bb_info_v4_5( struct bios_parser *bp, struct bp_soc_bb_info *soc_bb_info) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_5 *disp_cntl_tbl = NULL; if (!soc_bb_info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_5, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; soc_bb_info->dram_clock_change_latency_100ns = disp_cntl_tbl->max_mclk_chg_lat; soc_bb_info->dram_sr_enter_exit_latency_100ns = disp_cntl_tbl->max_sr_enter_exit_lat; soc_bb_info->dram_sr_exit_latency_100ns = disp_cntl_tbl->max_sr_exit_lat; return result; } static enum bp_result bios_parser_get_soc_bb_info( struct dc_bios *dcb, struct bp_soc_bb_info *soc_bb_info) { struct bios_parser *bp = BP_FROM_DCB(dcb); enum bp_result result = BP_RESULT_UNSUPPORTED; struct atom_common_table_header *header; struct atom_data_revision tbl_revision; if (!soc_bb_info) /* check for bad input */ return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_UNSUPPORTED; header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(dce_info)); get_atom_data_table_revision(header, &tbl_revision); switch (tbl_revision.major) { case 4: switch (tbl_revision.minor) { case 1: case 2: case 3: break; case 4: result = get_soc_bb_info_v4_4(bp, soc_bb_info); break; case 5: result = get_soc_bb_info_v4_5(bp, soc_bb_info); break; default: break; } break; default: break; } return result; } static enum bp_result get_disp_caps_v4_1( struct bios_parser *bp, uint8_t *dce_caps) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_1 *disp_cntl_tbl = NULL; if (!dce_caps) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_1, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; *dce_caps = disp_cntl_tbl->display_caps; return result; } static enum bp_result get_disp_caps_v4_2( struct bios_parser *bp, uint8_t *dce_caps) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_2 *disp_cntl_tbl = NULL; if (!dce_caps) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_2, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; *dce_caps = disp_cntl_tbl->display_caps; return result; } static enum bp_result get_disp_caps_v4_3( struct bios_parser *bp, uint8_t *dce_caps) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_3 *disp_cntl_tbl = NULL; if (!dce_caps) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_3, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; *dce_caps = disp_cntl_tbl->display_caps; return result; } static enum bp_result get_disp_caps_v4_4( struct bios_parser *bp, uint8_t *dce_caps) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_4 *disp_cntl_tbl = NULL; if (!dce_caps) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_4, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; *dce_caps = disp_cntl_tbl->display_caps; return result; } static enum bp_result get_disp_caps_v4_5( struct bios_parser *bp, uint8_t *dce_caps) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_5 *disp_cntl_tbl = NULL; if (!dce_caps) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_5, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; *dce_caps = disp_cntl_tbl->display_caps; return result; } static enum bp_result bios_parser_get_lttpr_interop( struct dc_bios *dcb, uint8_t *dce_caps) { struct bios_parser *bp = BP_FROM_DCB(dcb); enum bp_result result = BP_RESULT_UNSUPPORTED; struct atom_common_table_header *header; struct atom_data_revision tbl_revision; if (!DATA_TABLES(dce_info)) return BP_RESULT_UNSUPPORTED; header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(dce_info)); get_atom_data_table_revision(header, &tbl_revision); switch (tbl_revision.major) { case 4: switch (tbl_revision.minor) { case 1: result = get_disp_caps_v4_1(bp, dce_caps); *dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE); break; case 2: result = get_disp_caps_v4_2(bp, dce_caps); *dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE); break; case 3: result = get_disp_caps_v4_3(bp, dce_caps); *dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE); break; case 4: result = get_disp_caps_v4_4(bp, dce_caps); *dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE); break; case 5: result = get_disp_caps_v4_5(bp, dce_caps); *dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE); break; default: break; } break; default: break; } DC_LOG_BIOS("DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE: %d tbl_revision.major = %d tbl_revision.minor = %d\n", *dce_caps, tbl_revision.major, tbl_revision.minor); return result; } static enum bp_result bios_parser_get_lttpr_caps( struct dc_bios *dcb, uint8_t *dce_caps) { struct bios_parser *bp = BP_FROM_DCB(dcb); enum bp_result result = BP_RESULT_UNSUPPORTED; struct atom_common_table_header *header; struct atom_data_revision tbl_revision; if (!DATA_TABLES(dce_info)) return BP_RESULT_UNSUPPORTED; *dce_caps = 0; header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(dce_info)); get_atom_data_table_revision(header, &tbl_revision); switch (tbl_revision.major) { case 4: switch (tbl_revision.minor) { case 1: result = get_disp_caps_v4_1(bp, dce_caps); *dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE); break; case 2: result = get_disp_caps_v4_2(bp, dce_caps); *dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE); break; case 3: result = get_disp_caps_v4_3(bp, dce_caps); *dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE); break; case 4: result = get_disp_caps_v4_4(bp, dce_caps); *dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE); break; case 5: result = get_disp_caps_v4_5(bp, dce_caps); *dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE); break; default: break; } break; default: break; } DC_LOG_BIOS("DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE: %d tbl_revision.major = %d tbl_revision.minor = %d\n", *dce_caps, tbl_revision.major, tbl_revision.minor); if (dcb->ctx->dc->config.force_bios_enable_lttpr && *dce_caps == 0) { *dce_caps = 1; DC_LOG_BIOS("DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE: forced enabled"); } return result; } static enum bp_result get_embedded_panel_info_v2_1( struct bios_parser *bp, struct embedded_panel_info *info) { struct lcd_info_v2_1 *lvds; if (!info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(lcd_info)) return BP_RESULT_UNSUPPORTED; lvds = GET_IMAGE(struct lcd_info_v2_1, DATA_TABLES(lcd_info)); if (!lvds) return BP_RESULT_BADBIOSTABLE; /* TODO: previous vv1_3, should v2_1 */ if (!((lvds->table_header.format_revision == 2) && (lvds->table_header.content_revision >= 1))) return BP_RESULT_UNSUPPORTED; memset(info, 0, sizeof(struct embedded_panel_info)); /* We need to convert from 10KHz units into KHz units */ info->lcd_timing.pixel_clk = le16_to_cpu(lvds->lcd_timing.pixclk) * 10; /* usHActive does not include borders, according to VBIOS team */ info->lcd_timing.horizontal_addressable = le16_to_cpu(lvds->lcd_timing.h_active); /* usHBlanking_Time includes borders, so we should really be * subtractingborders duing this translation, but LVDS generally * doesn't have borders, so we should be okay leaving this as is for * now. May need to revisit if we ever have LVDS with borders */ info->lcd_timing.horizontal_blanking_time = le16_to_cpu(lvds->lcd_timing.h_blanking_time); /* usVActive does not include borders, according to VBIOS team*/ info->lcd_timing.vertical_addressable = le16_to_cpu(lvds->lcd_timing.v_active); /* usVBlanking_Time includes borders, so we should really be * subtracting borders duing this translation, but LVDS generally * doesn't have borders, so we should be okay leaving this as is for * now. May need to revisit if we ever have LVDS with borders */ info->lcd_timing.vertical_blanking_time = le16_to_cpu(lvds->lcd_timing.v_blanking_time); info->lcd_timing.horizontal_sync_offset = le16_to_cpu(lvds->lcd_timing.h_sync_offset); info->lcd_timing.horizontal_sync_width = le16_to_cpu(lvds->lcd_timing.h_sync_width); info->lcd_timing.vertical_sync_offset = le16_to_cpu(lvds->lcd_timing.v_sync_offset); info->lcd_timing.vertical_sync_width = le16_to_cpu(lvds->lcd_timing.v_syncwidth); info->lcd_timing.horizontal_border = lvds->lcd_timing.h_border; info->lcd_timing.vertical_border = lvds->lcd_timing.v_border; /* not provided by VBIOS */ info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF = 0; info->lcd_timing.misc_info.H_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo & ATOM_HSYNC_POLARITY); info->lcd_timing.misc_info.V_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo & ATOM_VSYNC_POLARITY); /* not provided by VBIOS */ info->lcd_timing.misc_info.VERTICAL_CUT_OFF = 0; info->lcd_timing.misc_info.H_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo & ATOM_H_REPLICATIONBY2); info->lcd_timing.misc_info.V_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo & ATOM_V_REPLICATIONBY2); info->lcd_timing.misc_info.COMPOSITE_SYNC = !!(lvds->lcd_timing.miscinfo & ATOM_COMPOSITESYNC); info->lcd_timing.misc_info.INTERLACE = !!(lvds->lcd_timing.miscinfo & ATOM_INTERLACE); /* not provided by VBIOS*/ info->lcd_timing.misc_info.DOUBLE_CLOCK = 0; /* not provided by VBIOS*/ info->ss_id = 0; info->realtek_eDPToLVDS = !!(lvds->dplvdsrxid == eDP_TO_LVDS_REALTEK_ID); return BP_RESULT_OK; } static enum bp_result bios_parser_get_embedded_panel_info( struct dc_bios *dcb, struct embedded_panel_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_common_table_header *header; struct atom_data_revision tbl_revision; if (!DATA_TABLES(lcd_info)) return BP_RESULT_FAILURE; header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(lcd_info)); if (!header) return BP_RESULT_BADBIOSTABLE; get_atom_data_table_revision(header, &tbl_revision); switch (tbl_revision.major) { case 2: switch (tbl_revision.minor) { case 1: return get_embedded_panel_info_v2_1(bp, info); default: break; } break; default: break; } return BP_RESULT_FAILURE; } static uint32_t get_support_mask_for_device_id(struct device_id device_id) { enum dal_device_type device_type = device_id.device_type; uint32_t enum_id = device_id.enum_id; switch (device_type) { case DEVICE_TYPE_LCD: switch (enum_id) { case 1: return ATOM_DISPLAY_LCD1_SUPPORT; default: break; } break; case DEVICE_TYPE_DFP: switch (enum_id) { case 1: return ATOM_DISPLAY_DFP1_SUPPORT; case 2: return ATOM_DISPLAY_DFP2_SUPPORT; case 3: return ATOM_DISPLAY_DFP3_SUPPORT; case 4: return ATOM_DISPLAY_DFP4_SUPPORT; case 5: return ATOM_DISPLAY_DFP5_SUPPORT; case 6: return ATOM_DISPLAY_DFP6_SUPPORT; default: break; } break; default: break; } /* Unidentified device ID, return empty support mask. */ return 0; } static bool bios_parser_is_device_id_supported( struct dc_bios *dcb, struct device_id id) { struct bios_parser *bp = BP_FROM_DCB(dcb); uint32_t mask = get_support_mask_for_device_id(id); switch (bp->object_info_tbl.revision.minor) { case 4: default: return (le16_to_cpu(bp->object_info_tbl.v1_4->supporteddevices) & mask) != 0; break; case 5: return (le16_to_cpu(bp->object_info_tbl.v1_5->supporteddevices) & mask) != 0; break; } return false; } static uint32_t bios_parser_get_ss_entry_number( struct dc_bios *dcb, enum as_signal_type signal) { /* TODO: DAL2 atomfirmware implementation does not need this. * why DAL3 need this? */ return 1; } static enum bp_result bios_parser_transmitter_control( struct dc_bios *dcb, struct bp_transmitter_control *cntl) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.transmitter_control) return BP_RESULT_FAILURE; return bp->cmd_tbl.transmitter_control(bp, cntl); } static enum bp_result bios_parser_encoder_control( struct dc_bios *dcb, struct bp_encoder_control *cntl) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.dig_encoder_control) return BP_RESULT_FAILURE; return bp->cmd_tbl.dig_encoder_control(bp, cntl); } static enum bp_result bios_parser_set_pixel_clock( struct dc_bios *dcb, struct bp_pixel_clock_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.set_pixel_clock) return BP_RESULT_FAILURE; return bp->cmd_tbl.set_pixel_clock(bp, bp_params); } static enum bp_result bios_parser_set_dce_clock( struct dc_bios *dcb, struct bp_set_dce_clock_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.set_dce_clock) return BP_RESULT_FAILURE; return bp->cmd_tbl.set_dce_clock(bp, bp_params); } static enum bp_result bios_parser_program_crtc_timing( struct dc_bios *dcb, struct bp_hw_crtc_timing_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.set_crtc_timing) return BP_RESULT_FAILURE; return bp->cmd_tbl.set_crtc_timing(bp, bp_params); } static enum bp_result bios_parser_enable_crtc( struct dc_bios *dcb, enum controller_id id, bool enable) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.enable_crtc) return BP_RESULT_FAILURE; return bp->cmd_tbl.enable_crtc(bp, id, enable); } static enum bp_result bios_parser_enable_disp_power_gating( struct dc_bios *dcb, enum controller_id controller_id, enum bp_pipe_control_action action) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.enable_disp_power_gating) return BP_RESULT_FAILURE; return bp->cmd_tbl.enable_disp_power_gating(bp, controller_id, action); } static enum bp_result bios_parser_enable_lvtma_control( struct dc_bios *dcb, uint8_t uc_pwr_on, uint8_t panel_instance) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.enable_lvtma_control) return BP_RESULT_FAILURE; return bp->cmd_tbl.enable_lvtma_control(bp, uc_pwr_on, panel_instance); } static bool bios_parser_is_accelerated_mode( struct dc_bios *dcb) { return bios_is_accelerated_mode(dcb); } /** * bios_parser_set_scratch_critical_state - update critical state bit * in VBIOS scratch register * * @dcb: pointer to the DC BIO * @state: set or reset state */ static void bios_parser_set_scratch_critical_state( struct dc_bios *dcb, bool state) { bios_set_scratch_critical_state(dcb, state); } struct atom_dig_transmitter_info_header_v5_3 { struct atom_common_table_header table_header; uint16_t dpphy_hdmi_settings_offset; uint16_t dpphy_dvi_settings_offset; uint16_t dpphy_dp_setting_table_offset; uint16_t uniphy_xbar_settings_v2_table_offset; uint16_t dpphy_internal_reg_overide_offset; }; static enum bp_result bios_parser_get_firmware_info( struct dc_bios *dcb, struct dc_firmware_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); static enum bp_result result = BP_RESULT_BADBIOSTABLE; struct atom_common_table_header *header; struct atom_data_revision revision; if (info && DATA_TABLES(firmwareinfo)) { header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(firmwareinfo)); get_atom_data_table_revision(header, &revision); switch (revision.major) { case 3: switch (revision.minor) { case 1: result = get_firmware_info_v3_1(bp, info); break; case 2: case 3: result = get_firmware_info_v3_2(bp, info); break; case 4: result = get_firmware_info_v3_4(bp, info); break; default: break; } break; default: break; } } return result; } static enum bp_result get_firmware_info_v3_1( struct bios_parser *bp, struct dc_firmware_info *info) { struct atom_firmware_info_v3_1 *firmware_info; struct atom_display_controller_info_v4_1 *dce_info = NULL; if (!info) return BP_RESULT_BADINPUT; firmware_info = GET_IMAGE(struct atom_firmware_info_v3_1, DATA_TABLES(firmwareinfo)); dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1, DATA_TABLES(dce_info)); if (!firmware_info || !dce_info) return BP_RESULT_BADBIOSTABLE; memset(info, 0, sizeof(*info)); /* Pixel clock pll information. */ /* We need to convert from 10KHz units into KHz units */ info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10; info->default_engine_clk = firmware_info->bootup_sclk_in10khz * 10; /* 27MHz for Vega10: */ info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10; /* Hardcode frequency if BIOS gives no DCE Ref Clk */ if (info->pll_info.crystal_frequency == 0) info->pll_info.crystal_frequency = 27000; /*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/ info->dp_phy_ref_clk = dce_info->dpphy_refclk_10khz * 10; info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10; /* Get GPU PLL VCO Clock */ if (bp->cmd_tbl.get_smu_clock_info != NULL) { /* VBIOS gives in 10KHz */ info->smu_gpu_pll_output_freq = bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10; } info->oem_i2c_present = false; return BP_RESULT_OK; } static enum bp_result get_firmware_info_v3_2( struct bios_parser *bp, struct dc_firmware_info *info) { struct atom_firmware_info_v3_2 *firmware_info; struct atom_display_controller_info_v4_1 *dce_info = NULL; struct atom_common_table_header *header; struct atom_data_revision revision; struct atom_smu_info_v3_2 *smu_info_v3_2 = NULL; struct atom_smu_info_v3_3 *smu_info_v3_3 = NULL; if (!info) return BP_RESULT_BADINPUT; firmware_info = GET_IMAGE(struct atom_firmware_info_v3_2, DATA_TABLES(firmwareinfo)); dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1, DATA_TABLES(dce_info)); if (!firmware_info || !dce_info) return BP_RESULT_BADBIOSTABLE; memset(info, 0, sizeof(*info)); header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(smu_info)); get_atom_data_table_revision(header, &revision); if (revision.minor == 2) { /* Vega12 */ smu_info_v3_2 = GET_IMAGE(struct atom_smu_info_v3_2, DATA_TABLES(smu_info)); DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info_v3_2->gpuclk_ss_percentage); if (!smu_info_v3_2) return BP_RESULT_BADBIOSTABLE; info->default_engine_clk = smu_info_v3_2->bootup_dcefclk_10khz * 10; } else if (revision.minor == 3) { /* Vega20 */ smu_info_v3_3 = GET_IMAGE(struct atom_smu_info_v3_3, DATA_TABLES(smu_info)); DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info_v3_3->gpuclk_ss_percentage); if (!smu_info_v3_3) return BP_RESULT_BADBIOSTABLE; info->default_engine_clk = smu_info_v3_3->bootup_dcefclk_10khz * 10; } // We need to convert from 10KHz units into KHz units. info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10; /* 27MHz for Vega10 & Vega12; 100MHz for Vega20 */ info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10; /* Hardcode frequency if BIOS gives no DCE Ref Clk */ if (info->pll_info.crystal_frequency == 0) { if (revision.minor == 2) info->pll_info.crystal_frequency = 27000; else if (revision.minor == 3) info->pll_info.crystal_frequency = 100000; } /*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/ info->dp_phy_ref_clk = dce_info->dpphy_refclk_10khz * 10; info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10; /* Get GPU PLL VCO Clock */ if (bp->cmd_tbl.get_smu_clock_info != NULL) { if (revision.minor == 2) info->smu_gpu_pll_output_freq = bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10; else if (revision.minor == 3) info->smu_gpu_pll_output_freq = bp->cmd_tbl.get_smu_clock_info(bp, SMU11_SYSPLL3_0_ID) * 10; } if (firmware_info->board_i2c_feature_id == 0x2) { info->oem_i2c_present = true; info->oem_i2c_obj_id = firmware_info->board_i2c_feature_gpio_id; } else { info->oem_i2c_present = false; } return BP_RESULT_OK; } static enum bp_result get_firmware_info_v3_4( struct bios_parser *bp, struct dc_firmware_info *info) { struct atom_firmware_info_v3_4 *firmware_info; struct atom_common_table_header *header; struct atom_data_revision revision; struct atom_display_controller_info_v4_1 *dce_info_v4_1 = NULL; struct atom_display_controller_info_v4_4 *dce_info_v4_4 = NULL; struct atom_smu_info_v3_5 *smu_info_v3_5 = NULL; struct atom_display_controller_info_v4_5 *dce_info_v4_5 = NULL; struct atom_smu_info_v4_0 *smu_info_v4_0 = NULL; if (!info) return BP_RESULT_BADINPUT; firmware_info = GET_IMAGE(struct atom_firmware_info_v3_4, DATA_TABLES(firmwareinfo)); if (!firmware_info) return BP_RESULT_BADBIOSTABLE; memset(info, 0, sizeof(*info)); header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(dce_info)); get_atom_data_table_revision(header, &revision); switch (revision.major) { case 4: switch (revision.minor) { case 5: dce_info_v4_5 = GET_IMAGE(struct atom_display_controller_info_v4_5, DATA_TABLES(dce_info)); if (!dce_info_v4_5) return BP_RESULT_BADBIOSTABLE; /* 100MHz expected */ info->pll_info.crystal_frequency = dce_info_v4_5->dce_refclk_10khz * 10; info->dp_phy_ref_clk = dce_info_v4_5->dpphy_refclk_10khz * 10; /* 50MHz expected */ info->i2c_engine_ref_clk = dce_info_v4_5->i2c_engine_refclk_10khz * 10; /* For DCN32/321 Display PLL VCO Frequency from dce_info_v4_5 may not be reliable */ break; case 4: dce_info_v4_4 = GET_IMAGE(struct atom_display_controller_info_v4_4, DATA_TABLES(dce_info)); if (!dce_info_v4_4) return BP_RESULT_BADBIOSTABLE; /* 100MHz expected */ info->pll_info.crystal_frequency = dce_info_v4_4->dce_refclk_10khz * 10; info->dp_phy_ref_clk = dce_info_v4_4->dpphy_refclk_10khz * 10; /* 50MHz expected */ info->i2c_engine_ref_clk = dce_info_v4_4->i2c_engine_refclk_10khz * 10; /* Get SMU Display PLL VCO Frequency in KHz*/ info->smu_gpu_pll_output_freq = dce_info_v4_4->dispclk_pll_vco_freq * 10; break; default: /* should not come here, keep as backup, as was before */ dce_info_v4_1 = GET_IMAGE(struct atom_display_controller_info_v4_1, DATA_TABLES(dce_info)); if (!dce_info_v4_1) return BP_RESULT_BADBIOSTABLE; info->pll_info.crystal_frequency = dce_info_v4_1->dce_refclk_10khz * 10; info->dp_phy_ref_clk = dce_info_v4_1->dpphy_refclk_10khz * 10; info->i2c_engine_ref_clk = dce_info_v4_1->i2c_engine_refclk_10khz * 10; break; } break; default: ASSERT(0); break; } header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(smu_info)); get_atom_data_table_revision(header, &revision); switch (revision.major) { case 3: switch (revision.minor) { case 5: smu_info_v3_5 = GET_IMAGE(struct atom_smu_info_v3_5, DATA_TABLES(smu_info)); if (!smu_info_v3_5) return BP_RESULT_BADBIOSTABLE; DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info_v3_5->gpuclk_ss_percentage); info->default_engine_clk = smu_info_v3_5->bootup_dcefclk_10khz * 10; break; default: break; } break; case 4: switch (revision.minor) { case 0: smu_info_v4_0 = GET_IMAGE(struct atom_smu_info_v4_0, DATA_TABLES(smu_info)); if (!smu_info_v4_0) return BP_RESULT_BADBIOSTABLE; /* For DCN32/321 bootup DCFCLK from smu_info_v4_0 may not be reliable */ break; default: break; } break; default: break; } // We need to convert from 10KHz units into KHz units. info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10; if (firmware_info->board_i2c_feature_id == 0x2) { info->oem_i2c_present = true; info->oem_i2c_obj_id = firmware_info->board_i2c_feature_gpio_id; } else { info->oem_i2c_present = false; } return BP_RESULT_OK; } static enum bp_result bios_parser_get_encoder_cap_info( struct dc_bios *dcb, struct graphics_object_id object_id, struct bp_encoder_cap_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_display_object_path_v2 *object; struct atom_encoder_caps_record *record = NULL; if (!info) return BP_RESULT_BADINPUT; #if defined(CONFIG_DRM_AMD_DC_DCN) /* encoder cap record not available in v1_5 */ if (bp->object_info_tbl.revision.minor == 5) return BP_RESULT_NORECORD; #endif object = get_bios_object(bp, object_id); if (!object) return BP_RESULT_BADINPUT; record = get_encoder_cap_record(bp, object); if (!record) return BP_RESULT_NORECORD; DC_LOG_BIOS("record->encodercaps 0x%x for object_id 0x%x", record->encodercaps, object_id.id); info->DP_HBR2_CAP = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_HBR2) ? 1 : 0; info->DP_HBR2_EN = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_HBR2_EN) ? 1 : 0; info->DP_HBR3_EN = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_HBR3_EN) ? 1 : 0; info->HDMI_6GB_EN = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_HDMI6Gbps_EN) ? 1 : 0; info->IS_DP2_CAPABLE = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_DP2) ? 1 : 0; info->DP_UHBR10_EN = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_UHBR10_EN) ? 1 : 0; info->DP_UHBR13_5_EN = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_UHBR13_5_EN) ? 1 : 0; info->DP_UHBR20_EN = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_UHBR20_EN) ? 1 : 0; info->DP_IS_USB_C = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_USB_C_TYPE) ? 1 : 0; DC_LOG_BIOS("\t info->DP_IS_USB_C %d", info->DP_IS_USB_C); return BP_RESULT_OK; } static struct atom_encoder_caps_record *get_encoder_cap_record( struct bios_parser *bp, struct atom_display_object_path_v2 *object) { struct atom_common_record_header *header; uint32_t offset; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = object->encoder_recordoffset + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(struct atom_common_record_header, offset); if (!header) return NULL; offset += header->record_size; if (header->record_type == LAST_RECORD_TYPE || !header->record_size) break; if (header->record_type != ATOM_ENCODER_CAP_RECORD_TYPE) continue; if (sizeof(struct atom_encoder_caps_record) <= header->record_size) return (struct atom_encoder_caps_record *)header; } return NULL; } static struct atom_disp_connector_caps_record *get_disp_connector_caps_record( struct bios_parser *bp, struct atom_display_object_path_v2 *object) { struct atom_common_record_header *header; uint32_t offset; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = object->disp_recordoffset + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(struct atom_common_record_header, offset); if (!header) return NULL; offset += header->record_size; if (header->record_type == LAST_RECORD_TYPE || !header->record_size) break; if (header->record_type != ATOM_DISP_CONNECTOR_CAPS_RECORD_TYPE) continue; if (sizeof(struct atom_disp_connector_caps_record) <= header->record_size) return (struct atom_disp_connector_caps_record *)header; } return NULL; } static struct atom_connector_caps_record *get_connector_caps_record( struct bios_parser *bp, struct atom_display_object_path_v3 *object) { struct atom_common_record_header *header; uint32_t offset; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = object->disp_recordoffset + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(struct atom_common_record_header, offset); if (!header) return NULL; offset += header->record_size; if (header->record_type == ATOM_RECORD_END_TYPE || !header->record_size) break; if (header->record_type != ATOM_CONNECTOR_CAP_RECORD_TYPE) continue; if (sizeof(struct atom_connector_caps_record) <= header->record_size) return (struct atom_connector_caps_record *)header; } return NULL; } static enum bp_result bios_parser_get_disp_connector_caps_info( struct dc_bios *dcb, struct graphics_object_id object_id, struct bp_disp_connector_caps_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_display_object_path_v2 *object; struct atom_display_object_path_v3 *object_path_v3; struct atom_connector_caps_record *record_path_v3; struct atom_disp_connector_caps_record *record = NULL; if (!info) return BP_RESULT_BADINPUT; switch (bp->object_info_tbl.revision.minor) { case 4: default: object = get_bios_object(bp, object_id); if (!object) return BP_RESULT_BADINPUT; record = get_disp_connector_caps_record(bp, object); if (!record) return BP_RESULT_NORECORD; info->INTERNAL_DISPLAY = (record->connectcaps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY) ? 1 : 0; info->INTERNAL_DISPLAY_BL = (record->connectcaps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY_BL) ? 1 : 0; break; case 5: object_path_v3 = get_bios_object_from_path_v3(bp, object_id); if (!object_path_v3) return BP_RESULT_BADINPUT; record_path_v3 = get_connector_caps_record(bp, object_path_v3); if (!record_path_v3) return BP_RESULT_NORECORD; info->INTERNAL_DISPLAY = (record_path_v3->connector_caps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY) ? 1 : 0; info->INTERNAL_DISPLAY_BL = (record_path_v3->connector_caps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY_BL) ? 1 : 0; break; } return BP_RESULT_OK; } static struct atom_connector_speed_record *get_connector_speed_cap_record( struct bios_parser *bp, struct atom_display_object_path_v3 *object) { struct atom_common_record_header *header; uint32_t offset; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = object->disp_recordoffset + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(struct atom_common_record_header, offset); if (!header) return NULL; offset += header->record_size; if (header->record_type == ATOM_RECORD_END_TYPE || !header->record_size) break; if (header->record_type != ATOM_CONNECTOR_SPEED_UPTO) continue; if (sizeof(struct atom_connector_speed_record) <= header->record_size) return (struct atom_connector_speed_record *)header; } return NULL; } static enum bp_result bios_parser_get_connector_speed_cap_info( struct dc_bios *dcb, struct graphics_object_id object_id, struct bp_connector_speed_cap_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_display_object_path_v3 *object_path_v3; //struct atom_connector_speed_record *record = NULL; struct atom_connector_speed_record *record; if (!info) return BP_RESULT_BADINPUT; object_path_v3 = get_bios_object_from_path_v3(bp, object_id); if (!object_path_v3) return BP_RESULT_BADINPUT; record = get_connector_speed_cap_record(bp, object_path_v3); if (!record) return BP_RESULT_NORECORD; info->DP_HBR2_EN = (record->connector_max_speed >= 5400) ? 1 : 0; info->DP_HBR3_EN = (record->connector_max_speed >= 8100) ? 1 : 0; info->HDMI_6GB_EN = (record->connector_max_speed >= 5940) ? 1 : 0; info->DP_UHBR10_EN = (record->connector_max_speed >= 10000) ? 1 : 0; info->DP_UHBR13_5_EN = (record->connector_max_speed >= 13500) ? 1 : 0; info->DP_UHBR20_EN = (record->connector_max_speed >= 20000) ? 1 : 0; return BP_RESULT_OK; } static enum bp_result get_vram_info_v23( struct bios_parser *bp, struct dc_vram_info *info) { struct atom_vram_info_header_v2_3 *info_v23; static enum bp_result result = BP_RESULT_OK; info_v23 = GET_IMAGE(struct atom_vram_info_header_v2_3, DATA_TABLES(vram_info)); if (info_v23 == NULL) return BP_RESULT_BADBIOSTABLE; info->num_chans = info_v23->vram_module[0].channel_num; info->dram_channel_width_bytes = (1 << info_v23->vram_module[0].channel_width) / 8; return result; } static enum bp_result get_vram_info_v24( struct bios_parser *bp, struct dc_vram_info *info) { struct atom_vram_info_header_v2_4 *info_v24; static enum bp_result result = BP_RESULT_OK; info_v24 = GET_IMAGE(struct atom_vram_info_header_v2_4, DATA_TABLES(vram_info)); if (info_v24 == NULL) return BP_RESULT_BADBIOSTABLE; info->num_chans = info_v24->vram_module[0].channel_num; info->dram_channel_width_bytes = (1 << info_v24->vram_module[0].channel_width) / 8; return result; } static enum bp_result get_vram_info_v25( struct bios_parser *bp, struct dc_vram_info *info) { struct atom_vram_info_header_v2_5 *info_v25; static enum bp_result result = BP_RESULT_OK; info_v25 = GET_IMAGE(struct atom_vram_info_header_v2_5, DATA_TABLES(vram_info)); if (info_v25 == NULL) return BP_RESULT_BADBIOSTABLE; info->num_chans = info_v25->vram_module[0].channel_num; info->dram_channel_width_bytes = (1 << info_v25->vram_module[0].channel_width) / 8; return result; } static enum bp_result get_vram_info_v30( struct bios_parser *bp, struct dc_vram_info *info) { struct atom_vram_info_header_v3_0 *info_v30; enum bp_result result = BP_RESULT_OK; info_v30 = GET_IMAGE(struct atom_vram_info_header_v3_0, DATA_TABLES(vram_info)); if (info_v30 == NULL) return BP_RESULT_BADBIOSTABLE; info->num_chans = info_v30->channel_num; info->dram_channel_width_bytes = (1 << info_v30->channel_width) / 8; return result; } /* * get_integrated_info_v11 * * @brief * Get V8 integrated BIOS information * * @param * bios_parser *bp - [in]BIOS parser handler to get master data table * integrated_info *info - [out] store and output integrated info * * @return * static enum bp_result - BP_RESULT_OK if information is available, * BP_RESULT_BADBIOSTABLE otherwise. */ static enum bp_result get_integrated_info_v11( struct bios_parser *bp, struct integrated_info *info) { struct atom_integrated_system_info_v1_11 *info_v11; uint32_t i; info_v11 = GET_IMAGE(struct atom_integrated_system_info_v1_11, DATA_TABLES(integratedsysteminfo)); DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", info_v11->gpuclk_ss_percentage); if (info_v11 == NULL) return BP_RESULT_BADBIOSTABLE; info->gpu_cap_info = le32_to_cpu(info_v11->gpucapinfo); /* * system_config: Bit[0] = 0 : PCIE power gating disabled * = 1 : PCIE power gating enabled * Bit[1] = 0 : DDR-PLL shut down disabled * = 1 : DDR-PLL shut down enabled * Bit[2] = 0 : DDR-PLL power down disabled * = 1 : DDR-PLL power down enabled */ info->system_config = le32_to_cpu(info_v11->system_config); info->cpu_cap_info = le32_to_cpu(info_v11->cpucapinfo); info->memory_type = info_v11->memorytype; info->ma_channel_number = info_v11->umachannelnumber; info->lvds_ss_percentage = le16_to_cpu(info_v11->lvds_ss_percentage); info->dp_ss_control = le16_to_cpu(info_v11->reserved1); info->lvds_sspread_rate_in_10hz = le16_to_cpu(info_v11->lvds_ss_rate_10hz); info->hdmi_ss_percentage = le16_to_cpu(info_v11->hdmi_ss_percentage); info->hdmi_sspread_rate_in_10hz = le16_to_cpu(info_v11->hdmi_ss_rate_10hz); info->dvi_ss_percentage = le16_to_cpu(info_v11->dvi_ss_percentage); info->dvi_sspread_rate_in_10_hz = le16_to_cpu(info_v11->dvi_ss_rate_10hz); info->lvds_misc = info_v11->lvds_misc; for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) { info->ext_disp_conn_info.gu_id[i] = info_v11->extdispconninfo.guid[i]; } for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) { info->ext_disp_conn_info.path[i].device_connector_id = object_id_from_bios_object_id( le16_to_cpu(info_v11->extdispconninfo.path[i].connectorobjid)); info->ext_disp_conn_info.path[i].ext_encoder_obj_id = object_id_from_bios_object_id( le16_to_cpu( info_v11->extdispconninfo.path[i].ext_encoder_objid)); info->ext_disp_conn_info.path[i].device_tag = le16_to_cpu( info_v11->extdispconninfo.path[i].device_tag); info->ext_disp_conn_info.path[i].device_acpi_enum = le16_to_cpu( info_v11->extdispconninfo.path[i].device_acpi_enum); info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index = info_v11->extdispconninfo.path[i].auxddclut_index; info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index = info_v11->extdispconninfo.path[i].hpdlut_index; info->ext_disp_conn_info.path[i].channel_mapping.raw = info_v11->extdispconninfo.path[i].channelmapping; info->ext_disp_conn_info.path[i].caps = le16_to_cpu(info_v11->extdispconninfo.path[i].caps); } info->ext_disp_conn_info.checksum = info_v11->extdispconninfo.checksum; info->dp0_ext_hdmi_slv_addr = info_v11->dp0_retimer_set.HdmiSlvAddr; info->dp0_ext_hdmi_reg_num = info_v11->dp0_retimer_set.HdmiRegNum; for (i = 0; i < info->dp0_ext_hdmi_reg_num; i++) { info->dp0_ext_hdmi_reg_settings[i].i2c_reg_index = info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp0_ext_hdmi_reg_settings[i].i2c_reg_val = info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp0_ext_hdmi_6g_reg_num = info_v11->dp0_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp0_ext_hdmi_6g_reg_num; i++) { info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } info->dp1_ext_hdmi_slv_addr = info_v11->dp1_retimer_set.HdmiSlvAddr; info->dp1_ext_hdmi_reg_num = info_v11->dp1_retimer_set.HdmiRegNum; for (i = 0; i < info->dp1_ext_hdmi_reg_num; i++) { info->dp1_ext_hdmi_reg_settings[i].i2c_reg_index = info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp1_ext_hdmi_reg_settings[i].i2c_reg_val = info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp1_ext_hdmi_6g_reg_num = info_v11->dp1_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp1_ext_hdmi_6g_reg_num; i++) { info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } info->dp2_ext_hdmi_slv_addr = info_v11->dp2_retimer_set.HdmiSlvAddr; info->dp2_ext_hdmi_reg_num = info_v11->dp2_retimer_set.HdmiRegNum; for (i = 0; i < info->dp2_ext_hdmi_reg_num; i++) { info->dp2_ext_hdmi_reg_settings[i].i2c_reg_index = info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp2_ext_hdmi_reg_settings[i].i2c_reg_val = info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp2_ext_hdmi_6g_reg_num = info_v11->dp2_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp2_ext_hdmi_6g_reg_num; i++) { info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } info->dp3_ext_hdmi_slv_addr = info_v11->dp3_retimer_set.HdmiSlvAddr; info->dp3_ext_hdmi_reg_num = info_v11->dp3_retimer_set.HdmiRegNum; for (i = 0; i < info->dp3_ext_hdmi_reg_num; i++) { info->dp3_ext_hdmi_reg_settings[i].i2c_reg_index = info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp3_ext_hdmi_reg_settings[i].i2c_reg_val = info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp3_ext_hdmi_6g_reg_num = info_v11->dp3_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp3_ext_hdmi_6g_reg_num; i++) { info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } /** TODO - review **/ #if 0 info->boot_up_engine_clock = le32_to_cpu(info_v11->ulBootUpEngineClock) * 10; info->dentist_vco_freq = le32_to_cpu(info_v11->ulDentistVCOFreq) * 10; info->boot_up_uma_clock = le32_to_cpu(info_v8->ulBootUpUMAClock) * 10; for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) { /* Convert [10KHz] into [KHz] */ info->disp_clk_voltage[i].max_supported_clk = le32_to_cpu(info_v11->sDISPCLK_Voltage[i]. ulMaximumSupportedCLK) * 10; info->disp_clk_voltage[i].voltage_index = le32_to_cpu(info_v11->sDISPCLK_Voltage[i].ulVoltageIndex); } info->boot_up_req_display_vector = le32_to_cpu(info_v11->ulBootUpReqDisplayVector); info->boot_up_nb_voltage = le16_to_cpu(info_v11->usBootUpNBVoltage); info->ext_disp_conn_info_offset = le16_to_cpu(info_v11->usExtDispConnInfoOffset); info->gmc_restore_reset_time = le32_to_cpu(info_v11->ulGMCRestoreResetTime); info->minimum_n_clk = le32_to_cpu(info_v11->ulNbpStateNClkFreq[0]); for (i = 1; i < 4; ++i) info->minimum_n_clk = info->minimum_n_clk < le32_to_cpu(info_v11->ulNbpStateNClkFreq[i]) ? info->minimum_n_clk : le32_to_cpu( info_v11->ulNbpStateNClkFreq[i]); info->idle_n_clk = le32_to_cpu(info_v11->ulIdleNClk); info->ddr_dll_power_up_time = le32_to_cpu(info_v11->ulDDR_DLL_PowerUpTime); info->ddr_pll_power_up_time = le32_to_cpu(info_v11->ulDDR_PLL_PowerUpTime); info->pcie_clk_ss_type = le16_to_cpu(info_v11->usPCIEClkSSType); info->max_lvds_pclk_freq_in_single_link = le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink); info->max_lvds_pclk_freq_in_single_link = le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink); info->lvds_pwr_on_seq_dig_on_to_de_in_4ms = info_v11->ucLVDSPwrOnSeqDIGONtoDE_in4Ms; info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms = info_v11->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms; info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms = info_v11->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms; info->lvds_pwr_off_seq_vary_bl_to_de_in4ms = info_v11->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms; info->lvds_pwr_off_seq_de_to_dig_on_in4ms = info_v11->ucLVDSPwrOffSeqDEtoDIGON_in4Ms; info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms = info_v11->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms; info->lvds_off_to_on_delay_in_4ms = info_v11->ucLVDSOffToOnDelay_in4Ms; info->lvds_bit_depth_control_val = le32_to_cpu(info_v11->ulLCDBitDepthControlVal); for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) { /* Convert [10KHz] into [KHz] */ info->avail_s_clk[i].supported_s_clk = le32_to_cpu(info_v11->sAvail_SCLK[i].ulSupportedSCLK) * 10; info->avail_s_clk[i].voltage_index = le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageIndex); info->avail_s_clk[i].voltage_id = le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageID); } #endif /* TODO*/ return BP_RESULT_OK; } static enum bp_result get_integrated_info_v2_1( struct bios_parser *bp, struct integrated_info *info) { struct atom_integrated_system_info_v2_1 *info_v2_1; uint32_t i; info_v2_1 = GET_IMAGE(struct atom_integrated_system_info_v2_1, DATA_TABLES(integratedsysteminfo)); DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", info_v2_1->gpuclk_ss_percentage); if (info_v2_1 == NULL) return BP_RESULT_BADBIOSTABLE; info->gpu_cap_info = le32_to_cpu(info_v2_1->gpucapinfo); /* * system_config: Bit[0] = 0 : PCIE power gating disabled * = 1 : PCIE power gating enabled * Bit[1] = 0 : DDR-PLL shut down disabled * = 1 : DDR-PLL shut down enabled * Bit[2] = 0 : DDR-PLL power down disabled * = 1 : DDR-PLL power down enabled */ info->system_config = le32_to_cpu(info_v2_1->system_config); info->cpu_cap_info = le32_to_cpu(info_v2_1->cpucapinfo); info->memory_type = info_v2_1->memorytype; info->ma_channel_number = info_v2_1->umachannelnumber; info->dp_ss_control = le16_to_cpu(info_v2_1->reserved1); for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) { info->ext_disp_conn_info.gu_id[i] = info_v2_1->extdispconninfo.guid[i]; } for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) { info->ext_disp_conn_info.path[i].device_connector_id = object_id_from_bios_object_id( le16_to_cpu(info_v2_1->extdispconninfo.path[i].connectorobjid)); info->ext_disp_conn_info.path[i].ext_encoder_obj_id = object_id_from_bios_object_id( le16_to_cpu( info_v2_1->extdispconninfo.path[i].ext_encoder_objid)); info->ext_disp_conn_info.path[i].device_tag = le16_to_cpu( info_v2_1->extdispconninfo.path[i].device_tag); info->ext_disp_conn_info.path[i].device_acpi_enum = le16_to_cpu( info_v2_1->extdispconninfo.path[i].device_acpi_enum); info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index = info_v2_1->extdispconninfo.path[i].auxddclut_index; info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index = info_v2_1->extdispconninfo.path[i].hpdlut_index; info->ext_disp_conn_info.path[i].channel_mapping.raw = info_v2_1->extdispconninfo.path[i].channelmapping; info->ext_disp_conn_info.path[i].caps = le16_to_cpu(info_v2_1->extdispconninfo.path[i].caps); } info->ext_disp_conn_info.checksum = info_v2_1->extdispconninfo.checksum; info->dp0_ext_hdmi_slv_addr = info_v2_1->dp0_retimer_set.HdmiSlvAddr; info->dp0_ext_hdmi_reg_num = info_v2_1->dp0_retimer_set.HdmiRegNum; for (i = 0; i < info->dp0_ext_hdmi_reg_num; i++) { info->dp0_ext_hdmi_reg_settings[i].i2c_reg_index = info_v2_1->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp0_ext_hdmi_reg_settings[i].i2c_reg_val = info_v2_1->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp0_ext_hdmi_6g_reg_num = info_v2_1->dp0_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp0_ext_hdmi_6g_reg_num; i++) { info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v2_1->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v2_1->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } info->dp1_ext_hdmi_slv_addr = info_v2_1->dp1_retimer_set.HdmiSlvAddr; info->dp1_ext_hdmi_reg_num = info_v2_1->dp1_retimer_set.HdmiRegNum; for (i = 0; i < info->dp1_ext_hdmi_reg_num; i++) { info->dp1_ext_hdmi_reg_settings[i].i2c_reg_index = info_v2_1->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp1_ext_hdmi_reg_settings[i].i2c_reg_val = info_v2_1->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp1_ext_hdmi_6g_reg_num = info_v2_1->dp1_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp1_ext_hdmi_6g_reg_num; i++) { info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v2_1->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v2_1->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } info->dp2_ext_hdmi_slv_addr = info_v2_1->dp2_retimer_set.HdmiSlvAddr; info->dp2_ext_hdmi_reg_num = info_v2_1->dp2_retimer_set.HdmiRegNum; for (i = 0; i < info->dp2_ext_hdmi_reg_num; i++) { info->dp2_ext_hdmi_reg_settings[i].i2c_reg_index = info_v2_1->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp2_ext_hdmi_reg_settings[i].i2c_reg_val = info_v2_1->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp2_ext_hdmi_6g_reg_num = info_v2_1->dp2_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp2_ext_hdmi_6g_reg_num; i++) { info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v2_1->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v2_1->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } info->dp3_ext_hdmi_slv_addr = info_v2_1->dp3_retimer_set.HdmiSlvAddr; info->dp3_ext_hdmi_reg_num = info_v2_1->dp3_retimer_set.HdmiRegNum; for (i = 0; i < info->dp3_ext_hdmi_reg_num; i++) { info->dp3_ext_hdmi_reg_settings[i].i2c_reg_index = info_v2_1->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp3_ext_hdmi_reg_settings[i].i2c_reg_val = info_v2_1->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp3_ext_hdmi_6g_reg_num = info_v2_1->dp3_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp3_ext_hdmi_6g_reg_num; i++) { info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v2_1->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v2_1->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } info->edp1_info.edp_backlight_pwm_hz = le16_to_cpu(info_v2_1->edp1_info.edp_backlight_pwm_hz); info->edp1_info.edp_ss_percentage = le16_to_cpu(info_v2_1->edp1_info.edp_ss_percentage); info->edp1_info.edp_ss_rate_10hz = le16_to_cpu(info_v2_1->edp1_info.edp_ss_rate_10hz); info->edp1_info.edp_pwr_on_off_delay = info_v2_1->edp1_info.edp_pwr_on_off_delay; info->edp1_info.edp_pwr_on_vary_bl_to_blon = info_v2_1->edp1_info.edp_pwr_on_vary_bl_to_blon; info->edp1_info.edp_pwr_down_bloff_to_vary_bloff = info_v2_1->edp1_info.edp_pwr_down_bloff_to_vary_bloff; info->edp1_info.edp_panel_bpc = info_v2_1->edp1_info.edp_panel_bpc; info->edp1_info.edp_bootup_bl_level = info_v2_1->edp1_info.edp_bootup_bl_level; info->edp2_info.edp_backlight_pwm_hz = le16_to_cpu(info_v2_1->edp2_info.edp_backlight_pwm_hz); info->edp2_info.edp_ss_percentage = le16_to_cpu(info_v2_1->edp2_info.edp_ss_percentage); info->edp2_info.edp_ss_rate_10hz = le16_to_cpu(info_v2_1->edp2_info.edp_ss_rate_10hz); info->edp2_info.edp_pwr_on_off_delay = info_v2_1->edp2_info.edp_pwr_on_off_delay; info->edp2_info.edp_pwr_on_vary_bl_to_blon = info_v2_1->edp2_info.edp_pwr_on_vary_bl_to_blon; info->edp2_info.edp_pwr_down_bloff_to_vary_bloff = info_v2_1->edp2_info.edp_pwr_down_bloff_to_vary_bloff; info->edp2_info.edp_panel_bpc = info_v2_1->edp2_info.edp_panel_bpc; info->edp2_info.edp_bootup_bl_level = info_v2_1->edp2_info.edp_bootup_bl_level; return BP_RESULT_OK; } static enum bp_result get_integrated_info_v2_2( struct bios_parser *bp, struct integrated_info *info) { struct atom_integrated_system_info_v2_2 *info_v2_2; uint32_t i; info_v2_2 = GET_IMAGE(struct atom_integrated_system_info_v2_2, DATA_TABLES(integratedsysteminfo)); DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", info_v2_2->gpuclk_ss_percentage); if (info_v2_2 == NULL) return BP_RESULT_BADBIOSTABLE; info->gpu_cap_info = le32_to_cpu(info_v2_2->gpucapinfo); /* * system_config: Bit[0] = 0 : PCIE power gating disabled * = 1 : PCIE power gating enabled * Bit[1] = 0 : DDR-PLL shut down disabled * = 1 : DDR-PLL shut down enabled * Bit[2] = 0 : DDR-PLL power down disabled * = 1 : DDR-PLL power down enabled */ info->system_config = le32_to_cpu(info_v2_2->system_config); info->cpu_cap_info = le32_to_cpu(info_v2_2->cpucapinfo); info->memory_type = info_v2_2->memorytype; info->ma_channel_number = info_v2_2->umachannelnumber; info->dp_ss_control = le16_to_cpu(info_v2_2->reserved1); for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) { info->ext_disp_conn_info.gu_id[i] = info_v2_2->extdispconninfo.guid[i]; } for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) { info->ext_disp_conn_info.path[i].device_connector_id = object_id_from_bios_object_id( le16_to_cpu(info_v2_2->extdispconninfo.path[i].connectorobjid)); info->ext_disp_conn_info.path[i].ext_encoder_obj_id = object_id_from_bios_object_id( le16_to_cpu( info_v2_2->extdispconninfo.path[i].ext_encoder_objid)); info->ext_disp_conn_info.path[i].device_tag = le16_to_cpu( info_v2_2->extdispconninfo.path[i].device_tag); info->ext_disp_conn_info.path[i].device_acpi_enum = le16_to_cpu( info_v2_2->extdispconninfo.path[i].device_acpi_enum); info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index = info_v2_2->extdispconninfo.path[i].auxddclut_index; info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index = info_v2_2->extdispconninfo.path[i].hpdlut_index; info->ext_disp_conn_info.path[i].channel_mapping.raw = info_v2_2->extdispconninfo.path[i].channelmapping; info->ext_disp_conn_info.path[i].caps = le16_to_cpu(info_v2_2->extdispconninfo.path[i].caps); } info->ext_disp_conn_info.checksum = info_v2_2->extdispconninfo.checksum; info->ext_disp_conn_info.fixdpvoltageswing = info_v2_2->extdispconninfo.fixdpvoltageswing; info->edp1_info.edp_backlight_pwm_hz = le16_to_cpu(info_v2_2->edp1_info.edp_backlight_pwm_hz); info->edp1_info.edp_ss_percentage = le16_to_cpu(info_v2_2->edp1_info.edp_ss_percentage); info->edp1_info.edp_ss_rate_10hz = le16_to_cpu(info_v2_2->edp1_info.edp_ss_rate_10hz); info->edp1_info.edp_pwr_on_off_delay = info_v2_2->edp1_info.edp_pwr_on_off_delay; info->edp1_info.edp_pwr_on_vary_bl_to_blon = info_v2_2->edp1_info.edp_pwr_on_vary_bl_to_blon; info->edp1_info.edp_pwr_down_bloff_to_vary_bloff = info_v2_2->edp1_info.edp_pwr_down_bloff_to_vary_bloff; info->edp1_info.edp_panel_bpc = info_v2_2->edp1_info.edp_panel_bpc; info->edp1_info.edp_bootup_bl_level = info->edp2_info.edp_backlight_pwm_hz = le16_to_cpu(info_v2_2->edp2_info.edp_backlight_pwm_hz); info->edp2_info.edp_ss_percentage = le16_to_cpu(info_v2_2->edp2_info.edp_ss_percentage); info->edp2_info.edp_ss_rate_10hz = le16_to_cpu(info_v2_2->edp2_info.edp_ss_rate_10hz); info->edp2_info.edp_pwr_on_off_delay = info_v2_2->edp2_info.edp_pwr_on_off_delay; info->edp2_info.edp_pwr_on_vary_bl_to_blon = info_v2_2->edp2_info.edp_pwr_on_vary_bl_to_blon; info->edp2_info.edp_pwr_down_bloff_to_vary_bloff = info_v2_2->edp2_info.edp_pwr_down_bloff_to_vary_bloff; info->edp2_info.edp_panel_bpc = info_v2_2->edp2_info.edp_panel_bpc; info->edp2_info.edp_bootup_bl_level = info_v2_2->edp2_info.edp_bootup_bl_level; return BP_RESULT_OK; } /* * construct_integrated_info * * @brief * Get integrated BIOS information based on table revision * * @param * bios_parser *bp - [in]BIOS parser handler to get master data table * integrated_info *info - [out] store and output integrated info * * @return * static enum bp_result - BP_RESULT_OK if information is available, * BP_RESULT_BADBIOSTABLE otherwise. */ static enum bp_result construct_integrated_info( struct bios_parser *bp, struct integrated_info *info) { static enum bp_result result = BP_RESULT_BADBIOSTABLE; struct atom_common_table_header *header; struct atom_data_revision revision; struct clock_voltage_caps temp = {0, 0}; uint32_t i; uint32_t j; if (info && DATA_TABLES(integratedsysteminfo)) { header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(integratedsysteminfo)); get_atom_data_table_revision(header, &revision); switch (revision.major) { case 1: switch (revision.minor) { case 11: case 12: result = get_integrated_info_v11(bp, info); break; default: return result; } break; case 2: switch (revision.minor) { case 1: result = get_integrated_info_v2_1(bp, info); break; case 2: result = get_integrated_info_v2_2(bp, info); break; default: return result; } break; default: return result; } if (result == BP_RESULT_OK) { DC_LOG_BIOS("edp1:\n" "\tedp_pwr_on_off_delay = %d\n" "\tedp_pwr_on_vary_bl_to_blon = %d\n" "\tedp_pwr_down_bloff_to_vary_bloff = %d\n" "\tedp_bootup_bl_level = %d\n", info->edp1_info.edp_pwr_on_off_delay, info->edp1_info.edp_pwr_on_vary_bl_to_blon, info->edp1_info.edp_pwr_down_bloff_to_vary_bloff, info->edp1_info.edp_bootup_bl_level); DC_LOG_BIOS("edp2:\n" "\tedp_pwr_on_off_delayv = %d\n" "\tedp_pwr_on_vary_bl_to_blon = %d\n" "\tedp_pwr_down_bloff_to_vary_bloff = %d\n" "\tedp_bootup_bl_level = %d\n", info->edp2_info.edp_pwr_on_off_delay, info->edp2_info.edp_pwr_on_vary_bl_to_blon, info->edp2_info.edp_pwr_down_bloff_to_vary_bloff, info->edp2_info.edp_bootup_bl_level); } } if (result != BP_RESULT_OK) return result; else { // Log each external path for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; i++) { if (info->ext_disp_conn_info.path[i].device_tag != 0) DC_LOG_BIOS("integrated_info:For EXTERNAL DISPLAY PATH %d --------------\n" "DEVICE_TAG: 0x%x\n" "DEVICE_ACPI_ENUM: 0x%x\n" "DEVICE_CONNECTOR_ID: 0x%x\n" "EXT_AUX_DDC_LUT_INDEX: %d\n" "EXT_HPD_PIN_LUT_INDEX: %d\n" "EXT_ENCODER_OBJ_ID: 0x%x\n" "Encoder CAPS: 0x%x\n", i, info->ext_disp_conn_info.path[i].device_tag, info->ext_disp_conn_info.path[i].device_acpi_enum, info->ext_disp_conn_info.path[i].device_connector_id.id, info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index, info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index, info->ext_disp_conn_info.path[i].ext_encoder_obj_id.id, info->ext_disp_conn_info.path[i].caps ); if (info->ext_disp_conn_info.path[i].caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) DC_LOG_BIOS("BIOS EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN on path %d\n", i); else if (bp->base.ctx->dc->config.force_bios_fixed_vs) { info->ext_disp_conn_info.path[i].caps |= EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN; DC_LOG_BIOS("driver forced EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN on path %d\n", i); } } // Log the Checksum and Voltage Swing DC_LOG_BIOS("Integrated info table CHECKSUM: %d\n" "Integrated info table FIX_DP_VOLTAGE_SWING: %d\n", info->ext_disp_conn_info.checksum, info->ext_disp_conn_info.fixdpvoltageswing); if (bp->base.ctx->dc->config.force_bios_fixed_vs && info->ext_disp_conn_info.fixdpvoltageswing == 0) { info->ext_disp_conn_info.fixdpvoltageswing = bp->base.ctx->dc->config.force_bios_fixed_vs & 0xF; DC_LOG_BIOS("driver forced fixdpvoltageswing = %d\n", info->ext_disp_conn_info.fixdpvoltageswing); } } /* Sort voltage table from low to high*/ for (i = 1; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) { for (j = i; j > 0; --j) { if (info->disp_clk_voltage[j].max_supported_clk < info->disp_clk_voltage[j-1].max_supported_clk ) { /* swap j and j - 1*/ temp = info->disp_clk_voltage[j-1]; info->disp_clk_voltage[j-1] = info->disp_clk_voltage[j]; info->disp_clk_voltage[j] = temp; } } } return result; } static enum bp_result bios_parser_get_vram_info( struct dc_bios *dcb, struct dc_vram_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); static enum bp_result result = BP_RESULT_BADBIOSTABLE; struct atom_common_table_header *header; struct atom_data_revision revision; if (info && DATA_TABLES(vram_info)) { header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(vram_info)); get_atom_data_table_revision(header, &revision); switch (revision.major) { case 2: switch (revision.minor) { case 3: result = get_vram_info_v23(bp, info); break; case 4: result = get_vram_info_v24(bp, info); break; case 5: result = get_vram_info_v25(bp, info); break; default: break; } break; case 3: switch (revision.minor) { case 0: result = get_vram_info_v30(bp, info); break; default: break; } break; default: return result; } } return result; } static struct integrated_info *bios_parser_create_integrated_info( struct dc_bios *dcb) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct integrated_info *info = NULL; info = kzalloc(sizeof(struct integrated_info), GFP_KERNEL); if (info == NULL) { ASSERT_CRITICAL(0); return NULL; } if (construct_integrated_info(bp, info) == BP_RESULT_OK) return info; kfree(info); return NULL; } static enum bp_result update_slot_layout_info( struct dc_bios *dcb, unsigned int i, struct slot_layout_info *slot_layout_info) { unsigned int record_offset; unsigned int j; struct atom_display_object_path_v2 *object; struct atom_bracket_layout_record *record; struct atom_common_record_header *record_header; static enum bp_result result; struct bios_parser *bp; struct object_info_table *tbl; struct display_object_info_table_v1_4 *v1_4; record = NULL; record_header = NULL; result = BP_RESULT_NORECORD; bp = BP_FROM_DCB(dcb); tbl = &bp->object_info_tbl; v1_4 = tbl->v1_4; object = &v1_4->display_path[i]; record_offset = (unsigned int) (object->disp_recordoffset) + (unsigned int)(bp->object_info_tbl_offset); for (;;) { record_header = (struct atom_common_record_header *) GET_IMAGE(struct atom_common_record_header, record_offset); if (record_header == NULL) { result = BP_RESULT_BADBIOSTABLE; break; } /* the end of the list */ if (record_header->record_type == 0xff || record_header->record_size == 0) { break; } if (record_header->record_type == ATOM_BRACKET_LAYOUT_RECORD_TYPE && sizeof(struct atom_bracket_layout_record) <= record_header->record_size) { record = (struct atom_bracket_layout_record *) (record_header); result = BP_RESULT_OK; break; } record_offset += record_header->record_size; } /* return if the record not found */ if (result != BP_RESULT_OK) return result; /* get slot sizes */ slot_layout_info->length = record->bracketlen; slot_layout_info->width = record->bracketwidth; /* get info for each connector in the slot */ slot_layout_info->num_of_connectors = record->conn_num; for (j = 0; j < slot_layout_info->num_of_connectors; ++j) { slot_layout_info->connectors[j].connector_type = (enum connector_layout_type) (record->conn_info[j].connector_type); switch (record->conn_info[j].connector_type) { case CONNECTOR_TYPE_DVI_D: slot_layout_info->connectors[j].connector_type = CONNECTOR_LAYOUT_TYPE_DVI_D; slot_layout_info->connectors[j].length = CONNECTOR_SIZE_DVI; break; case CONNECTOR_TYPE_HDMI: slot_layout_info->connectors[j].connector_type = CONNECTOR_LAYOUT_TYPE_HDMI; slot_layout_info->connectors[j].length = CONNECTOR_SIZE_HDMI; break; case CONNECTOR_TYPE_DISPLAY_PORT: slot_layout_info->connectors[j].connector_type = CONNECTOR_LAYOUT_TYPE_DP; slot_layout_info->connectors[j].length = CONNECTOR_SIZE_DP; break; case CONNECTOR_TYPE_MINI_DISPLAY_PORT: slot_layout_info->connectors[j].connector_type = CONNECTOR_LAYOUT_TYPE_MINI_DP; slot_layout_info->connectors[j].length = CONNECTOR_SIZE_MINI_DP; break; default: slot_layout_info->connectors[j].connector_type = CONNECTOR_LAYOUT_TYPE_UNKNOWN; slot_layout_info->connectors[j].length = CONNECTOR_SIZE_UNKNOWN; } slot_layout_info->connectors[j].position = record->conn_info[j].position; slot_layout_info->connectors[j].connector_id = object_id_from_bios_object_id( record->conn_info[j].connectorobjid); } return result; } static enum bp_result update_slot_layout_info_v2( struct dc_bios *dcb, unsigned int i, struct slot_layout_info *slot_layout_info) { unsigned int record_offset; struct atom_display_object_path_v3 *object; struct atom_bracket_layout_record_v2 *record; struct atom_common_record_header *record_header; static enum bp_result result; struct bios_parser *bp; struct object_info_table *tbl; struct display_object_info_table_v1_5 *v1_5; struct graphics_object_id connector_id; record = NULL; record_header = NULL; result = BP_RESULT_NORECORD; bp = BP_FROM_DCB(dcb); tbl = &bp->object_info_tbl; v1_5 = tbl->v1_5; object = &v1_5->display_path[i]; record_offset = (unsigned int) (object->disp_recordoffset) + (unsigned int)(bp->object_info_tbl_offset); for (;;) { record_header = (struct atom_common_record_header *) GET_IMAGE(struct atom_common_record_header, record_offset); if (record_header == NULL) { result = BP_RESULT_BADBIOSTABLE; break; } /* the end of the list */ if (record_header->record_type == ATOM_RECORD_END_TYPE || record_header->record_size == 0) { break; } if (record_header->record_type == ATOM_BRACKET_LAYOUT_V2_RECORD_TYPE && sizeof(struct atom_bracket_layout_record_v2) <= record_header->record_size) { record = (struct atom_bracket_layout_record_v2 *) (record_header); result = BP_RESULT_OK; break; } record_offset += record_header->record_size; } /* return if the record not found */ if (result != BP_RESULT_OK) return result; /* get slot sizes */ connector_id = object_id_from_bios_object_id(object->display_objid); slot_layout_info->length = record->bracketlen; slot_layout_info->width = record->bracketwidth; slot_layout_info->num_of_connectors = v1_5->number_of_path; slot_layout_info->connectors[i].position = record->conn_num; slot_layout_info->connectors[i].connector_id = connector_id; switch (connector_id.id) { case CONNECTOR_ID_SINGLE_LINK_DVID: case CONNECTOR_ID_DUAL_LINK_DVID: slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_DVI_D; slot_layout_info->connectors[i].length = CONNECTOR_SIZE_DVI; break; case CONNECTOR_ID_HDMI_TYPE_A: slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_HDMI; slot_layout_info->connectors[i].length = CONNECTOR_SIZE_HDMI; break; case CONNECTOR_ID_DISPLAY_PORT: case CONNECTOR_ID_USBC: if (record->mini_type == MINI_TYPE_NORMAL) { slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_DP; slot_layout_info->connectors[i].length = CONNECTOR_SIZE_DP; } else { slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_MINI_DP; slot_layout_info->connectors[i].length = CONNECTOR_SIZE_MINI_DP; } break; default: slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_UNKNOWN; slot_layout_info->connectors[i].length = CONNECTOR_SIZE_UNKNOWN; } return result; } static enum bp_result get_bracket_layout_record( struct dc_bios *dcb, unsigned int bracket_layout_id, struct slot_layout_info *slot_layout_info) { unsigned int i; struct bios_parser *bp = BP_FROM_DCB(dcb); static enum bp_result result; struct object_info_table *tbl; struct display_object_info_table_v1_4 *v1_4; struct display_object_info_table_v1_5 *v1_5; if (slot_layout_info == NULL) { DC_LOG_DETECTION_EDID_PARSER("Invalid slot_layout_info\n"); return BP_RESULT_BADINPUT; } tbl = &bp->object_info_tbl; v1_4 = tbl->v1_4; v1_5 = tbl->v1_5; result = BP_RESULT_NORECORD; switch (bp->object_info_tbl.revision.minor) { case 4: default: for (i = 0; i < v1_4->number_of_path; ++i) { if (bracket_layout_id == v1_4->display_path[i].display_objid) { result = update_slot_layout_info(dcb, i, slot_layout_info); break; } } break; case 5: for (i = 0; i < v1_5->number_of_path; ++i) result = update_slot_layout_info_v2(dcb, i, slot_layout_info); break; } return result; } static enum bp_result bios_get_board_layout_info( struct dc_bios *dcb, struct board_layout_info *board_layout_info) { unsigned int i; struct bios_parser *bp; static enum bp_result record_result; unsigned int max_slots; const unsigned int slot_index_to_vbios_id[MAX_BOARD_SLOTS] = { GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1, GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2, 0, 0 }; bp = BP_FROM_DCB(dcb); if (board_layout_info == NULL) { DC_LOG_DETECTION_EDID_PARSER("Invalid board_layout_info\n"); return BP_RESULT_BADINPUT; } board_layout_info->num_of_slots = 0; max_slots = MAX_BOARD_SLOTS; // Assume single slot on v1_5 if (bp->object_info_tbl.revision.minor == 5) { max_slots = 1; } for (i = 0; i < max_slots; ++i) { record_result = get_bracket_layout_record(dcb, slot_index_to_vbios_id[i], &board_layout_info->slots[i]); if (record_result == BP_RESULT_NORECORD && i > 0) break; /* no more slots present in bios */ else if (record_result != BP_RESULT_OK) return record_result; /* fail */ ++board_layout_info->num_of_slots; } /* all data is valid */ board_layout_info->is_number_of_slots_valid = 1; board_layout_info->is_slots_size_valid = 1; board_layout_info->is_connector_offsets_valid = 1; board_layout_info->is_connector_lengths_valid = 1; return BP_RESULT_OK; } static uint16_t bios_parser_pack_data_tables( struct dc_bios *dcb, void *dst) { // TODO: There is data bytes alignment issue, disable it for now. return 0; } static struct atom_dc_golden_table_v1 *bios_get_golden_table( struct bios_parser *bp, uint32_t rev_major, uint32_t rev_minor, uint16_t *dc_golden_table_ver) { struct atom_display_controller_info_v4_4 *disp_cntl_tbl_4_4 = NULL; uint32_t dc_golden_offset = 0; *dc_golden_table_ver = 0; if (!DATA_TABLES(dce_info)) return NULL; /* ver.4.4 or higher */ switch (rev_major) { case 4: switch (rev_minor) { case 4: disp_cntl_tbl_4_4 = GET_IMAGE(struct atom_display_controller_info_v4_4, DATA_TABLES(dce_info)); if (!disp_cntl_tbl_4_4) return NULL; dc_golden_offset = DATA_TABLES(dce_info) + disp_cntl_tbl_4_4->dc_golden_table_offset; *dc_golden_table_ver = disp_cntl_tbl_4_4->dc_golden_table_ver; break; case 5: default: /* For atom_display_controller_info_v4_5 there is no need to get golden table from * dc_golden_table_offset as all these fields previously in golden table used for AUX * pre-charge settings are now available directly in atom_display_controller_info_v4_5. */ break; } break; } if (!dc_golden_offset) return NULL; if (*dc_golden_table_ver != 1) return NULL; return GET_IMAGE(struct atom_dc_golden_table_v1, dc_golden_offset); } static enum bp_result bios_get_atom_dc_golden_table( struct dc_bios *dcb) { struct bios_parser *bp = BP_FROM_DCB(dcb); enum bp_result result = BP_RESULT_OK; struct atom_dc_golden_table_v1 *atom_dc_golden_table = NULL; struct atom_common_table_header *header; struct atom_data_revision tbl_revision; uint16_t dc_golden_table_ver = 0; header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(dce_info)); if (!header) return BP_RESULT_UNSUPPORTED; get_atom_data_table_revision(header, &tbl_revision); atom_dc_golden_table = bios_get_golden_table(bp, tbl_revision.major, tbl_revision.minor, &dc_golden_table_ver); if (!atom_dc_golden_table) return BP_RESULT_UNSUPPORTED; dcb->golden_table.dc_golden_table_ver = dc_golden_table_ver; dcb->golden_table.aux_dphy_rx_control0_val = atom_dc_golden_table->aux_dphy_rx_control0_val; dcb->golden_table.aux_dphy_rx_control1_val = atom_dc_golden_table->aux_dphy_rx_control1_val; dcb->golden_table.aux_dphy_tx_control_val = atom_dc_golden_table->aux_dphy_tx_control_val; dcb->golden_table.dc_gpio_aux_ctrl_0_val = atom_dc_golden_table->dc_gpio_aux_ctrl_0_val; dcb->golden_table.dc_gpio_aux_ctrl_1_val = atom_dc_golden_table->dc_gpio_aux_ctrl_1_val; dcb->golden_table.dc_gpio_aux_ctrl_2_val = atom_dc_golden_table->dc_gpio_aux_ctrl_2_val; dcb->golden_table.dc_gpio_aux_ctrl_3_val = atom_dc_golden_table->dc_gpio_aux_ctrl_3_val; dcb->golden_table.dc_gpio_aux_ctrl_4_val = atom_dc_golden_table->dc_gpio_aux_ctrl_4_val; dcb->golden_table.dc_gpio_aux_ctrl_5_val = atom_dc_golden_table->dc_gpio_aux_ctrl_5_val; return result; } static const struct dc_vbios_funcs vbios_funcs = { .get_connectors_number = bios_parser_get_connectors_number, .get_connector_id = bios_parser_get_connector_id, .get_src_obj = bios_parser_get_src_obj, .get_i2c_info = bios_parser_get_i2c_info, .get_hpd_info = bios_parser_get_hpd_info, .get_device_tag = bios_parser_get_device_tag, .get_spread_spectrum_info = bios_parser_get_spread_spectrum_info, .get_ss_entry_number = bios_parser_get_ss_entry_number, .get_embedded_panel_info = bios_parser_get_embedded_panel_info, .get_gpio_pin_info = bios_parser_get_gpio_pin_info, .get_encoder_cap_info = bios_parser_get_encoder_cap_info, .is_device_id_supported = bios_parser_is_device_id_supported, .is_accelerated_mode = bios_parser_is_accelerated_mode, .set_scratch_critical_state = bios_parser_set_scratch_critical_state, /* COMMANDS */ .encoder_control = bios_parser_encoder_control, .transmitter_control = bios_parser_transmitter_control, .enable_crtc = bios_parser_enable_crtc, .set_pixel_clock = bios_parser_set_pixel_clock, .set_dce_clock = bios_parser_set_dce_clock, .program_crtc_timing = bios_parser_program_crtc_timing, .enable_disp_power_gating = bios_parser_enable_disp_power_gating, .bios_parser_destroy = firmware_parser_destroy, .get_board_layout_info = bios_get_board_layout_info, /* TODO: use this fn in hw init?*/ .pack_data_tables = bios_parser_pack_data_tables, .get_atom_dc_golden_table = bios_get_atom_dc_golden_table, .enable_lvtma_control = bios_parser_enable_lvtma_control, .get_soc_bb_info = bios_parser_get_soc_bb_info, .get_disp_connector_caps_info = bios_parser_get_disp_connector_caps_info, .get_lttpr_caps = bios_parser_get_lttpr_caps, .get_lttpr_interop = bios_parser_get_lttpr_interop, .get_connector_speed_cap_info = bios_parser_get_connector_speed_cap_info, }; static bool bios_parser2_construct( struct bios_parser *bp, struct bp_init_data *init, enum dce_version dce_version) { uint16_t *rom_header_offset = NULL; struct atom_rom_header_v2_2 *rom_header = NULL; struct display_object_info_table_v1_4 *object_info_tbl; struct atom_data_revision tbl_rev = {0}; if (!init) return false; if (!init->bios) return false; bp->base.funcs = &vbios_funcs; bp->base.bios = init->bios; bp->base.bios_size = bp->base.bios[OFFSET_TO_ATOM_ROM_IMAGE_SIZE] * BIOS_IMAGE_SIZE_UNIT; bp->base.ctx = init->ctx; bp->base.bios_local_image = NULL; rom_header_offset = GET_IMAGE(uint16_t, OFFSET_TO_ATOM_ROM_HEADER_POINTER); if (!rom_header_offset) return false; rom_header = GET_IMAGE(struct atom_rom_header_v2_2, *rom_header_offset); if (!rom_header) return false; get_atom_data_table_revision(&rom_header->table_header, &tbl_rev); if (!(tbl_rev.major >= 2 && tbl_rev.minor >= 2)) return false; bp->master_data_tbl = GET_IMAGE(struct atom_master_data_table_v2_1, rom_header->masterdatatable_offset); if (!bp->master_data_tbl) return false; bp->object_info_tbl_offset = DATA_TABLES(displayobjectinfo); if (!bp->object_info_tbl_offset) return false; object_info_tbl = GET_IMAGE(struct display_object_info_table_v1_4, bp->object_info_tbl_offset); if (!object_info_tbl) return false; get_atom_data_table_revision(&object_info_tbl->table_header, &bp->object_info_tbl.revision); if (bp->object_info_tbl.revision.major == 1 && bp->object_info_tbl.revision.minor == 4) { struct display_object_info_table_v1_4 *tbl_v1_4; tbl_v1_4 = GET_IMAGE(struct display_object_info_table_v1_4, bp->object_info_tbl_offset); if (!tbl_v1_4) return false; bp->object_info_tbl.v1_4 = tbl_v1_4; } else if (bp->object_info_tbl.revision.major == 1 && bp->object_info_tbl.revision.minor == 5) { struct display_object_info_table_v1_5 *tbl_v1_5; tbl_v1_5 = GET_IMAGE(struct display_object_info_table_v1_5, bp->object_info_tbl_offset); if (!tbl_v1_5) return false; bp->object_info_tbl.v1_5 = tbl_v1_5; } else { ASSERT(0); return false; } dal_firmware_parser_init_cmd_tbl(bp); dal_bios_parser_init_cmd_tbl_helper2(&bp->cmd_helper, dce_version); bp->base.integrated_info = bios_parser_create_integrated_info(&bp->base); bp->base.fw_info_valid = bios_parser_get_firmware_info(&bp->base, &bp->base.fw_info) == BP_RESULT_OK; bios_parser_get_vram_info(&bp->base, &bp->base.vram_info); return true; } struct dc_bios *firmware_parser_create( struct bp_init_data *init, enum dce_version dce_version) { struct bios_parser *bp = NULL; bp = kzalloc(sizeof(struct bios_parser), GFP_KERNEL); if (!bp) return NULL; if (bios_parser2_construct(bp, init, dce_version)) return &bp->base; kfree(bp); return NULL; }