// SPDX-License-Identifier: GPL-2.0-or-later /* * pSeries_lpar.c * Copyright (C) 2001 Todd Inglett, IBM Corporation * * pSeries LPAR support. */ /* Enables debugging of low-level hash table routines - careful! */ #undef DEBUG #define pr_fmt(fmt) "lpar: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pseries.h" /* Flag bits for H_BULK_REMOVE */ #define HBR_REQUEST 0x4000000000000000UL #define HBR_RESPONSE 0x8000000000000000UL #define HBR_END 0xc000000000000000UL #define HBR_AVPN 0x0200000000000000UL #define HBR_ANDCOND 0x0100000000000000UL /* in hvCall.S */ EXPORT_SYMBOL(plpar_hcall); EXPORT_SYMBOL(plpar_hcall9); EXPORT_SYMBOL(plpar_hcall_norets); #ifdef CONFIG_PPC_64S_HASH_MMU /* * H_BLOCK_REMOVE supported block size for this page size in segment who's base * page size is that page size. * * The first index is the segment base page size, the second one is the actual * page size. */ static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; #endif /* * Due to the involved complexity, and that the current hypervisor is only * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE * buffer size to 8 size block. */ #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE static u8 dtl_mask = DTL_LOG_PREEMPT; #else static u8 dtl_mask; #endif void alloc_dtl_buffers(unsigned long *time_limit) { int cpu; struct paca_struct *pp; struct dtl_entry *dtl; for_each_possible_cpu(cpu) { pp = paca_ptrs[cpu]; if (pp->dispatch_log) continue; dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); if (!dtl) { pr_warn("Failed to allocate dispatch trace log for cpu %d\n", cpu); #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE pr_warn("Stolen time statistics will be unreliable\n"); #endif break; } pp->dtl_ridx = 0; pp->dispatch_log = dtl; pp->dispatch_log_end = dtl + N_DISPATCH_LOG; pp->dtl_curr = dtl; if (time_limit && time_after(jiffies, *time_limit)) { cond_resched(); *time_limit = jiffies + HZ; } } } void register_dtl_buffer(int cpu) { long ret; struct paca_struct *pp; struct dtl_entry *dtl; int hwcpu = get_hard_smp_processor_id(cpu); pp = paca_ptrs[cpu]; dtl = pp->dispatch_log; if (dtl && dtl_mask) { pp->dtl_ridx = 0; pp->dtl_curr = dtl; lppaca_of(cpu).dtl_idx = 0; /* hypervisor reads buffer length from this field */ dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); ret = register_dtl(hwcpu, __pa(dtl)); if (ret) pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", cpu, hwcpu, ret); lppaca_of(cpu).dtl_enable_mask = dtl_mask; } } #ifdef CONFIG_PPC_SPLPAR struct dtl_worker { struct delayed_work work; int cpu; }; struct vcpu_dispatch_data { int last_disp_cpu; int total_disp; int same_cpu_disp; int same_chip_disp; int diff_chip_disp; int far_chip_disp; int numa_home_disp; int numa_remote_disp; int numa_far_disp; }; /* * This represents the number of cpus in the hypervisor. Since there is no * architected way to discover the number of processors in the host, we * provision for dealing with NR_CPUS. This is currently 2048 by default, and * is sufficient for our purposes. This will need to be tweaked if * CONFIG_NR_CPUS is changed. */ #define NR_CPUS_H NR_CPUS DEFINE_RWLOCK(dtl_access_lock); static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); static DEFINE_PER_CPU(u64, dtl_entry_ridx); static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); static enum cpuhp_state dtl_worker_state; static DEFINE_MUTEX(dtl_enable_mutex); static int vcpudispatch_stats_on __read_mostly; static int vcpudispatch_stats_freq = 50; static __be32 *vcpu_associativity, *pcpu_associativity; static void free_dtl_buffers(unsigned long *time_limit) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE int cpu; struct paca_struct *pp; for_each_possible_cpu(cpu) { pp = paca_ptrs[cpu]; if (!pp->dispatch_log) continue; kmem_cache_free(dtl_cache, pp->dispatch_log); pp->dtl_ridx = 0; pp->dispatch_log = 0; pp->dispatch_log_end = 0; pp->dtl_curr = 0; if (time_limit && time_after(jiffies, *time_limit)) { cond_resched(); *time_limit = jiffies + HZ; } } #endif } static int init_cpu_associativity(void) { vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); if (!vcpu_associativity || !pcpu_associativity) { pr_err("error allocating memory for associativity information\n"); return -ENOMEM; } return 0; } static void destroy_cpu_associativity(void) { kfree(vcpu_associativity); kfree(pcpu_associativity); vcpu_associativity = pcpu_associativity = 0; } static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) { __be32 *assoc; int rc = 0; assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; if (!assoc[0]) { rc = hcall_vphn(cpu, flag, &assoc[0]); if (rc) return NULL; } return assoc; } static __be32 *get_pcpu_associativity(int cpu) { return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); } static __be32 *get_vcpu_associativity(int cpu) { return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); } static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) { __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) return -EINVAL; last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) return -EIO; return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); } static int cpu_home_node_dispatch_distance(int disp_cpu) { __be32 *disp_cpu_assoc, *vcpu_assoc; int vcpu_id = smp_processor_id(); if (disp_cpu >= NR_CPUS_H) { pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", disp_cpu, NR_CPUS_H); return -EINVAL; } disp_cpu_assoc = get_pcpu_associativity(disp_cpu); vcpu_assoc = get_vcpu_associativity(vcpu_id); if (!disp_cpu_assoc || !vcpu_assoc) return -EIO; return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); } static void update_vcpu_disp_stat(int disp_cpu) { struct vcpu_dispatch_data *disp; int distance; disp = this_cpu_ptr(&vcpu_disp_data); if (disp->last_disp_cpu == -1) { disp->last_disp_cpu = disp_cpu; return; } disp->total_disp++; if (disp->last_disp_cpu == disp_cpu || (cpu_first_thread_sibling(disp->last_disp_cpu) == cpu_first_thread_sibling(disp_cpu))) disp->same_cpu_disp++; else { distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, disp_cpu); if (distance < 0) pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", smp_processor_id()); else { switch (distance) { case 0: disp->same_chip_disp++; break; case 1: disp->diff_chip_disp++; break; case 2: disp->far_chip_disp++; break; default: pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", smp_processor_id(), disp->last_disp_cpu, disp_cpu, distance); } } } distance = cpu_home_node_dispatch_distance(disp_cpu); if (distance < 0) pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", smp_processor_id()); else { switch (distance) { case 0: disp->numa_home_disp++; break; case 1: disp->numa_remote_disp++; break; case 2: disp->numa_far_disp++; break; default: pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", smp_processor_id(), disp_cpu, distance); } } disp->last_disp_cpu = disp_cpu; } static void process_dtl_buffer(struct work_struct *work) { struct dtl_entry dtle; u64 i = __this_cpu_read(dtl_entry_ridx); struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); struct dtl_entry *dtl_end = local_paca->dispatch_log_end; struct lppaca *vpa = local_paca->lppaca_ptr; struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); if (!local_paca->dispatch_log) return; /* if we have been migrated away, we cancel ourself */ if (d->cpu != smp_processor_id()) { pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", smp_processor_id()); return; } if (i == be64_to_cpu(vpa->dtl_idx)) goto out; while (i < be64_to_cpu(vpa->dtl_idx)) { dtle = *dtl; barrier(); if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { /* buffer has overflowed */ pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", d->cpu, be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); continue; } update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); ++i; ++dtl; if (dtl == dtl_end) dtl = local_paca->dispatch_log; } __this_cpu_write(dtl_entry_ridx, i); out: schedule_delayed_work_on(d->cpu, to_delayed_work(work), HZ / vcpudispatch_stats_freq); } static int dtl_worker_online(unsigned int cpu) { struct dtl_worker *d = &per_cpu(dtl_workers, cpu); memset(d, 0, sizeof(*d)); INIT_DELAYED_WORK(&d->work, process_dtl_buffer); d->cpu = cpu; #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE per_cpu(dtl_entry_ridx, cpu) = 0; register_dtl_buffer(cpu); #else per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); #endif schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); return 0; } static int dtl_worker_offline(unsigned int cpu) { struct dtl_worker *d = &per_cpu(dtl_workers, cpu); cancel_delayed_work_sync(&d->work); #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE unregister_dtl(get_hard_smp_processor_id(cpu)); #endif return 0; } static void set_global_dtl_mask(u8 mask) { int cpu; dtl_mask = mask; for_each_present_cpu(cpu) lppaca_of(cpu).dtl_enable_mask = dtl_mask; } static void reset_global_dtl_mask(void) { int cpu; #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE dtl_mask = DTL_LOG_PREEMPT; #else dtl_mask = 0; #endif for_each_present_cpu(cpu) lppaca_of(cpu).dtl_enable_mask = dtl_mask; } static int dtl_worker_enable(unsigned long *time_limit) { int rc = 0, state; if (!write_trylock(&dtl_access_lock)) { rc = -EBUSY; goto out; } set_global_dtl_mask(DTL_LOG_ALL); /* Setup dtl buffers and register those */ alloc_dtl_buffers(time_limit); state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", dtl_worker_online, dtl_worker_offline); if (state < 0) { pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); free_dtl_buffers(time_limit); reset_global_dtl_mask(); write_unlock(&dtl_access_lock); rc = -EINVAL; goto out; } dtl_worker_state = state; out: return rc; } static void dtl_worker_disable(unsigned long *time_limit) { cpuhp_remove_state(dtl_worker_state); free_dtl_buffers(time_limit); reset_global_dtl_mask(); write_unlock(&dtl_access_lock); } static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, size_t count, loff_t *ppos) { unsigned long time_limit = jiffies + HZ; struct vcpu_dispatch_data *disp; int rc, cmd, cpu; char buf[16]; if (count > 15) return -EINVAL; if (copy_from_user(buf, p, count)) return -EFAULT; buf[count] = 0; rc = kstrtoint(buf, 0, &cmd); if (rc || cmd < 0 || cmd > 1) { pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); return rc ? rc : -EINVAL; } mutex_lock(&dtl_enable_mutex); if ((cmd == 0 && !vcpudispatch_stats_on) || (cmd == 1 && vcpudispatch_stats_on)) goto out; if (cmd) { rc = init_cpu_associativity(); if (rc) goto out; for_each_possible_cpu(cpu) { disp = per_cpu_ptr(&vcpu_disp_data, cpu); memset(disp, 0, sizeof(*disp)); disp->last_disp_cpu = -1; } rc = dtl_worker_enable(&time_limit); if (rc) { destroy_cpu_associativity(); goto out; } } else { dtl_worker_disable(&time_limit); destroy_cpu_associativity(); } vcpudispatch_stats_on = cmd; out: mutex_unlock(&dtl_enable_mutex); if (rc) return rc; return count; } static int vcpudispatch_stats_display(struct seq_file *p, void *v) { int cpu; struct vcpu_dispatch_data *disp; if (!vcpudispatch_stats_on) { seq_puts(p, "off\n"); return 0; } for_each_online_cpu(cpu) { disp = per_cpu_ptr(&vcpu_disp_data, cpu); seq_printf(p, "cpu%d", cpu); seq_put_decimal_ull(p, " ", disp->total_disp); seq_put_decimal_ull(p, " ", disp->same_cpu_disp); seq_put_decimal_ull(p, " ", disp->same_chip_disp); seq_put_decimal_ull(p, " ", disp->diff_chip_disp); seq_put_decimal_ull(p, " ", disp->far_chip_disp); seq_put_decimal_ull(p, " ", disp->numa_home_disp); seq_put_decimal_ull(p, " ", disp->numa_remote_disp); seq_put_decimal_ull(p, " ", disp->numa_far_disp); seq_puts(p, "\n"); } return 0; } static int vcpudispatch_stats_open(struct inode *inode, struct file *file) { return single_open(file, vcpudispatch_stats_display, NULL); } static const struct proc_ops vcpudispatch_stats_proc_ops = { .proc_open = vcpudispatch_stats_open, .proc_read = seq_read, .proc_write = vcpudispatch_stats_write, .proc_lseek = seq_lseek, .proc_release = single_release, }; static ssize_t vcpudispatch_stats_freq_write(struct file *file, const char __user *p, size_t count, loff_t *ppos) { int rc, freq; char buf[16]; if (count > 15) return -EINVAL; if (copy_from_user(buf, p, count)) return -EFAULT; buf[count] = 0; rc = kstrtoint(buf, 0, &freq); if (rc || freq < 1 || freq > HZ) { pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", HZ); return rc ? rc : -EINVAL; } vcpudispatch_stats_freq = freq; return count; } static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) { seq_printf(p, "%d\n", vcpudispatch_stats_freq); return 0; } static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) { return single_open(file, vcpudispatch_stats_freq_display, NULL); } static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { .proc_open = vcpudispatch_stats_freq_open, .proc_read = seq_read, .proc_write = vcpudispatch_stats_freq_write, .proc_lseek = seq_lseek, .proc_release = single_release, }; static int __init vcpudispatch_stats_procfs_init(void) { /* * Avoid smp_processor_id while preemptible. All CPUs should have * the same value for lppaca_shared_proc. */ preempt_disable(); if (!lppaca_shared_proc(get_lppaca())) { preempt_enable(); return 0; } preempt_enable(); if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, &vcpudispatch_stats_proc_ops)) pr_err("vcpudispatch_stats: error creating procfs file\n"); else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, &vcpudispatch_stats_freq_proc_ops)) pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); return 0; } machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING u64 pseries_paravirt_steal_clock(int cpu) { struct lppaca *lppaca = &lppaca_of(cpu); return be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) + be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb)); } #endif #endif /* CONFIG_PPC_SPLPAR */ void vpa_init(int cpu) { int hwcpu = get_hard_smp_processor_id(cpu); unsigned long addr; long ret; /* * The spec says it "may be problematic" if CPU x registers the VPA of * CPU y. We should never do that, but wail if we ever do. */ WARN_ON(cpu != smp_processor_id()); if (cpu_has_feature(CPU_FTR_ALTIVEC)) lppaca_of(cpu).vmxregs_in_use = 1; if (cpu_has_feature(CPU_FTR_ARCH_207S)) lppaca_of(cpu).ebb_regs_in_use = 1; addr = __pa(&lppaca_of(cpu)); ret = register_vpa(hwcpu, addr); if (ret) { pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " "%lx failed with %ld\n", cpu, hwcpu, addr, ret); return; } #ifdef CONFIG_PPC_64S_HASH_MMU /* * PAPR says this feature is SLB-Buffer but firmware never * reports that. All SPLPAR support SLB shadow buffer. */ if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); ret = register_slb_shadow(hwcpu, addr); if (ret) pr_err("WARNING: SLB shadow buffer registration for " "cpu %d (hw %d) of area %lx failed with %ld\n", cpu, hwcpu, addr, ret); } #endif /* CONFIG_PPC_64S_HASH_MMU */ /* * Register dispatch trace log, if one has been allocated. */ register_dtl_buffer(cpu); } #ifdef CONFIG_PPC_BOOK3S_64 static int __init pseries_lpar_register_process_table(unsigned long base, unsigned long page_size, unsigned long table_size) { long rc; unsigned long flags = 0; if (table_size) flags |= PROC_TABLE_NEW; if (radix_enabled()) { flags |= PROC_TABLE_RADIX; if (mmu_has_feature(MMU_FTR_GTSE)) flags |= PROC_TABLE_GTSE; } else flags |= PROC_TABLE_HPT_SLB; for (;;) { rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, page_size, table_size); if (!H_IS_LONG_BUSY(rc)) break; mdelay(get_longbusy_msecs(rc)); } if (rc != H_SUCCESS) { pr_err("Failed to register process table (rc=%ld)\n", rc); BUG(); } return rc; } #ifdef CONFIG_PPC_64S_HASH_MMU static long pSeries_lpar_hpte_insert(unsigned long hpte_group, unsigned long vpn, unsigned long pa, unsigned long rflags, unsigned long vflags, int psize, int apsize, int ssize) { unsigned long lpar_rc; unsigned long flags; unsigned long slot; unsigned long hpte_v, hpte_r; if (!(vflags & HPTE_V_BOLTED)) pr_devel("hpte_insert(group=%lx, vpn=%016lx, " "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", hpte_group, vpn, pa, rflags, vflags, psize); hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; if (!(vflags & HPTE_V_BOLTED)) pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); /* Now fill in the actual HPTE */ /* Set CEC cookie to 0 */ /* Zero page = 0 */ /* I-cache Invalidate = 0 */ /* I-cache synchronize = 0 */ /* Exact = 0 */ flags = 0; if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) flags |= H_COALESCE_CAND; lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); if (unlikely(lpar_rc == H_PTEG_FULL)) { pr_devel("Hash table group is full\n"); return -1; } /* * Since we try and ioremap PHBs we don't own, the pte insert * will fail. However we must catch the failure in hash_page * or we will loop forever, so return -2 in this case. */ if (unlikely(lpar_rc != H_SUCCESS)) { pr_err("Failed hash pte insert with error %ld\n", lpar_rc); return -2; } if (!(vflags & HPTE_V_BOLTED)) pr_devel(" -> slot: %lu\n", slot & 7); /* Because of iSeries, we have to pass down the secondary * bucket bit here as well */ return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); } static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); static long pSeries_lpar_hpte_remove(unsigned long hpte_group) { unsigned long slot_offset; unsigned long lpar_rc; int i; unsigned long dummy1, dummy2; /* pick a random slot to start at */ slot_offset = mftb() & 0x7; for (i = 0; i < HPTES_PER_GROUP; i++) { /* don't remove a bolted entry */ lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, HPTE_V_BOLTED, &dummy1, &dummy2); if (lpar_rc == H_SUCCESS) return i; /* * The test for adjunct partition is performed before the * ANDCOND test. H_RESOURCE may be returned, so we need to * check for that as well. */ BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); slot_offset++; slot_offset &= 0x7; } return -1; } /* Called during kexec sequence with MMU off */ static notrace void manual_hpte_clear_all(void) { unsigned long size_bytes = 1UL << ppc64_pft_size; unsigned long hpte_count = size_bytes >> 4; struct { unsigned long pteh; unsigned long ptel; } ptes[4]; long lpar_rc; unsigned long i, j; /* Read in batches of 4, * invalidate only valid entries not in the VRMA * hpte_count will be a multiple of 4 */ for (i = 0; i < hpte_count; i += 4) { lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); if (lpar_rc != H_SUCCESS) { pr_info("Failed to read hash page table at %ld err %ld\n", i, lpar_rc); continue; } for (j = 0; j < 4; j++){ if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == HPTE_V_VRMA_MASK) continue; if (ptes[j].pteh & HPTE_V_VALID) plpar_pte_remove_raw(0, i + j, 0, &(ptes[j].pteh), &(ptes[j].ptel)); } } } /* Called during kexec sequence with MMU off */ static notrace int hcall_hpte_clear_all(void) { int rc; do { rc = plpar_hcall_norets(H_CLEAR_HPT); } while (rc == H_CONTINUE); return rc; } /* Called during kexec sequence with MMU off */ static notrace void pseries_hpte_clear_all(void) { int rc; rc = hcall_hpte_clear_all(); if (rc != H_SUCCESS) manual_hpte_clear_all(); #ifdef __LITTLE_ENDIAN__ /* * Reset exceptions to big endian. * * FIXME this is a hack for kexec, we need to reset the exception * endian before starting the new kernel and this is a convenient place * to do it. * * This is also called on boot when a fadump happens. In that case we * must not change the exception endian mode. */ if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) pseries_big_endian_exceptions(); #endif } /* * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and * the low 3 bits of flags happen to line up. So no transform is needed. * We can probably optimize here and assume the high bits of newpp are * already zero. For now I am paranoid. */ static long pSeries_lpar_hpte_updatepp(unsigned long slot, unsigned long newpp, unsigned long vpn, int psize, int apsize, int ssize, unsigned long inv_flags) { unsigned long lpar_rc; unsigned long flags; unsigned long want_v; want_v = hpte_encode_avpn(vpn, psize, ssize); flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; flags |= (newpp & HPTE_R_KEY_HI) >> 48; if (mmu_has_feature(MMU_FTR_KERNEL_RO)) /* Move pp0 into bit 8 (IBM 55) */ flags |= (newpp & HPTE_R_PP0) >> 55; pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", want_v, slot, flags, psize); lpar_rc = plpar_pte_protect(flags, slot, want_v); if (lpar_rc == H_NOT_FOUND) { pr_devel("not found !\n"); return -1; } pr_devel("ok\n"); BUG_ON(lpar_rc != H_SUCCESS); return 0; } static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) { long lpar_rc; unsigned long i, j; struct { unsigned long pteh; unsigned long ptel; } ptes[4]; for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); if (lpar_rc != H_SUCCESS) { pr_info("Failed to read hash page table at %ld err %ld\n", hpte_group, lpar_rc); continue; } for (j = 0; j < 4; j++) { if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && (ptes[j].pteh & HPTE_V_VALID)) return i + j; } } return -1; } static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) { long slot; unsigned long hash; unsigned long want_v; unsigned long hpte_group; hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); want_v = hpte_encode_avpn(vpn, psize, ssize); /* * We try to keep bolted entries always in primary hash * But in some case we can find them in secondary too. */ hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; slot = __pSeries_lpar_hpte_find(want_v, hpte_group); if (slot < 0) { /* Try in secondary */ hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; slot = __pSeries_lpar_hpte_find(want_v, hpte_group); if (slot < 0) return -1; } return hpte_group + slot; } static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, unsigned long ea, int psize, int ssize) { unsigned long vpn; unsigned long lpar_rc, slot, vsid, flags; vsid = get_kernel_vsid(ea, ssize); vpn = hpt_vpn(ea, vsid, ssize); slot = pSeries_lpar_hpte_find(vpn, psize, ssize); BUG_ON(slot == -1); flags = newpp & (HPTE_R_PP | HPTE_R_N); if (mmu_has_feature(MMU_FTR_KERNEL_RO)) /* Move pp0 into bit 8 (IBM 55) */ flags |= (newpp & HPTE_R_PP0) >> 55; flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); lpar_rc = plpar_pte_protect(flags, slot, 0); BUG_ON(lpar_rc != H_SUCCESS); } static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, int psize, int apsize, int ssize, int local) { unsigned long want_v; unsigned long lpar_rc; unsigned long dummy1, dummy2; pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", slot, vpn, psize, local); want_v = hpte_encode_avpn(vpn, psize, ssize); lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); if (lpar_rc == H_NOT_FOUND) return; BUG_ON(lpar_rc != H_SUCCESS); } /* * As defined in the PAPR's section 14.5.4.1.8 * The control mask doesn't include the returned reference and change bit from * the processed PTE. */ #define HBLKR_AVPN 0x0100000000000000UL #define HBLKR_CTRL_MASK 0xf800000000000000UL #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL /* * Returned true if we are supporting this block size for the specified segment * base page size and actual page size. * * Currently, we only support 8 size block. */ static inline bool is_supported_hlbkrm(int bpsize, int psize) { return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); } /** * H_BLOCK_REMOVE caller. * @idx should point to the latest @param entry set with a PTEX. * If PTE cannot be processed because another CPUs has already locked that * group, those entries are put back in @param starting at index 1. * If entries has to be retried and @retry_busy is set to true, these entries * are retried until success. If @retry_busy is set to false, the returned * is the number of entries yet to process. */ static unsigned long call_block_remove(unsigned long idx, unsigned long *param, bool retry_busy) { unsigned long i, rc, new_idx; unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; if (idx < 2) { pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); return 0; } again: new_idx = 0; if (idx > PLPAR_HCALL9_BUFSIZE) { pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); idx = PLPAR_HCALL9_BUFSIZE; } else if (idx < PLPAR_HCALL9_BUFSIZE) param[idx] = HBR_END; rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, param[0], /* AVA */ param[1], param[2], param[3], param[4], /* TS0-7 */ param[5], param[6], param[7], param[8]); if (rc == H_SUCCESS) return 0; BUG_ON(rc != H_PARTIAL); /* Check that the unprocessed entries were 'not found' or 'busy' */ for (i = 0; i < idx-1; i++) { unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; if (ctrl == HBLKR_CTRL_ERRBUSY) { param[++new_idx] = param[i+1]; continue; } BUG_ON(ctrl != HBLKR_CTRL_SUCCESS && ctrl != HBLKR_CTRL_ERRNOTFOUND); } /* * If there were entries found busy, retry these entries if requested, * of if all the entries have to be retried. */ if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { idx = new_idx + 1; goto again; } return new_idx; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need * to make sure that we avoid bouncing the hypervisor tlbie lock. */ #define PPC64_HUGE_HPTE_BATCH 12 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, int count, int psize, int ssize) { unsigned long param[PLPAR_HCALL9_BUFSIZE]; unsigned long shift, current_vpgb, vpgb; int i, pix = 0; shift = mmu_psize_defs[psize].shift; for (i = 0; i < count; i++) { /* * Shifting 3 bits more on the right to get a * 8 pages aligned virtual addresse. */ vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); if (!pix || vpgb != current_vpgb) { /* * Need to start a new 8 pages block, flush * the current one if needed. */ if (pix) (void)call_block_remove(pix, param, true); current_vpgb = vpgb; param[0] = hpte_encode_avpn(vpn[i], psize, ssize); pix = 1; } param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; if (pix == PLPAR_HCALL9_BUFSIZE) { pix = call_block_remove(pix, param, false); /* * pix = 0 means that all the entries were * removed, we can start a new block. * Otherwise, this means that there are entries * to retry, and pix points to latest one, so * we should increment it and try to continue * the same block. */ if (pix) pix++; } } if (pix) (void)call_block_remove(pix, param, true); } static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, int count, int psize, int ssize) { unsigned long param[PLPAR_HCALL9_BUFSIZE]; int i = 0, pix = 0, rc; for (i = 0; i < count; i++) { if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, ssize, 0); } else { param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); pix += 2; if (pix == 8) { rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], param[2], param[3], param[4], param[5], param[6], param[7]); BUG_ON(rc != H_SUCCESS); pix = 0; } } } if (pix) { param[pix] = HBR_END; rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], param[2], param[3], param[4], param[5], param[6], param[7]); BUG_ON(rc != H_SUCCESS); } } static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, unsigned long *vpn, int count, int psize, int ssize) { unsigned long flags = 0; int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); if (lock_tlbie) spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); /* Assuming THP size is 16M */ if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) hugepage_block_invalidate(slot, vpn, count, psize, ssize); else hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); if (lock_tlbie) spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); } static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, unsigned long addr, unsigned char *hpte_slot_array, int psize, int ssize, int local) { int i, index = 0; unsigned long s_addr = addr; unsigned int max_hpte_count, valid; unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; unsigned long shift, hidx, vpn = 0, hash, slot; shift = mmu_psize_defs[psize].shift; max_hpte_count = 1U << (PMD_SHIFT - shift); for (i = 0; i < max_hpte_count; i++) { valid = hpte_valid(hpte_slot_array, i); if (!valid) continue; hidx = hpte_hash_index(hpte_slot_array, i); /* get the vpn */ addr = s_addr + (i * (1ul << shift)); vpn = hpt_vpn(addr, vsid, ssize); hash = hpt_hash(vpn, shift, ssize); if (hidx & _PTEIDX_SECONDARY) hash = ~hash; slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; slot += hidx & _PTEIDX_GROUP_IX; slot_array[index] = slot; vpn_array[index] = vpn; if (index == PPC64_HUGE_HPTE_BATCH - 1) { /* * Now do a bluk invalidate */ __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, PPC64_HUGE_HPTE_BATCH, psize, ssize); index = 0; } else index++; } if (index) __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, index, psize, ssize); } #else static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, unsigned long addr, unsigned char *hpte_slot_array, int psize, int ssize, int local) { WARN(1, "%s called without THP support\n", __func__); } #endif static int pSeries_lpar_hpte_removebolted(unsigned long ea, int psize, int ssize) { unsigned long vpn; unsigned long slot, vsid; vsid = get_kernel_vsid(ea, ssize); vpn = hpt_vpn(ea, vsid, ssize); slot = pSeries_lpar_hpte_find(vpn, psize, ssize); if (slot == -1) return -ENOENT; /* * lpar doesn't use the passed actual page size */ pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); return 0; } static inline unsigned long compute_slot(real_pte_t pte, unsigned long vpn, unsigned long index, unsigned long shift, int ssize) { unsigned long slot, hash, hidx; hash = hpt_hash(vpn, shift, ssize); hidx = __rpte_to_hidx(pte, index); if (hidx & _PTEIDX_SECONDARY) hash = ~hash; slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; slot += hidx & _PTEIDX_GROUP_IX; return slot; } /** * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are * "all within the same naturally aligned 8 page virtual address block". */ static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, unsigned long *param) { unsigned long vpn; unsigned long i, pix = 0; unsigned long index, shift, slot, current_vpgb, vpgb; real_pte_t pte; int psize, ssize; psize = batch->psize; ssize = batch->ssize; for (i = 0; i < number; i++) { vpn = batch->vpn[i]; pte = batch->pte[i]; pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { /* * Shifting 3 bits more on the right to get a * 8 pages aligned virtual addresse. */ vpgb = (vpn >> (shift - VPN_SHIFT + 3)); if (!pix || vpgb != current_vpgb) { /* * Need to start a new 8 pages block, flush * the current one if needed. */ if (pix) (void)call_block_remove(pix, param, true); current_vpgb = vpgb; param[0] = hpte_encode_avpn(vpn, psize, ssize); pix = 1; } slot = compute_slot(pte, vpn, index, shift, ssize); param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; if (pix == PLPAR_HCALL9_BUFSIZE) { pix = call_block_remove(pix, param, false); /* * pix = 0 means that all the entries were * removed, we can start a new block. * Otherwise, this means that there are entries * to retry, and pix points to latest one, so * we should increment it and try to continue * the same block. */ if (pix) pix++; } } pte_iterate_hashed_end(); } if (pix) (void)call_block_remove(pix, param, true); } /* * TLB Block Invalidate Characteristics * * These characteristics define the size of the block the hcall H_BLOCK_REMOVE * is able to process for each couple segment base page size, actual page size. * * The ibm,get-system-parameter properties is returning a buffer with the * following layout: * * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] * ----------------- * TLB Block Invalidate Specifiers: * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] * [ 1 byte Number of page sizes (N) that are supported for the specified * TLB invalidate block size ] * [ 1 byte Encoded segment base page size and actual page size * MSB=0 means 4k segment base page size and actual page size * MSB=1 the penc value in mmu_psize_def ] * ... * ----------------- * Next TLB Block Invalidate Specifiers... * ----------------- * [ 0 ] */ static inline void set_hblkrm_bloc_size(int bpsize, int psize, unsigned int block_size) { if (block_size > hblkrm_size[bpsize][psize]) hblkrm_size[bpsize][psize] = block_size; } /* * Decode the Encoded segment base page size and actual page size. * PAPR specifies: * - bit 7 is the L bit * - bits 0-5 are the penc value * If the L bit is 0, this means 4K segment base page size and actual page size * otherwise the penc value should be read. */ #define HBLKRM_L_MASK 0x80 #define HBLKRM_PENC_MASK 0x3f static inline void __init check_lp_set_hblkrm(unsigned int lp, unsigned int block_size) { unsigned int bpsize, psize; /* First, check the L bit, if not set, this means 4K */ if ((lp & HBLKRM_L_MASK) == 0) { set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); return; } lp &= HBLKRM_PENC_MASK; for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { if (def->penc[psize] == lp) { set_hblkrm_bloc_size(bpsize, psize, block_size); return; } } } } #define SPLPAR_TLB_BIC_TOKEN 50 /* * The size of the TLB Block Invalidate Characteristics is variable. But at the * maximum it will be the number of possible page sizes *2 + 10 bytes. * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size * (128 bytes) for the buffer to get plenty of space. */ #define SPLPAR_TLB_BIC_MAXLENGTH 128 void __init pseries_lpar_read_hblkrm_characteristics(void) { unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; int call_status, len, idx, bpsize; if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) return; spin_lock(&rtas_data_buf_lock); memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, NULL, SPLPAR_TLB_BIC_TOKEN, __pa(rtas_data_buf), RTAS_DATA_BUF_SIZE); memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; spin_unlock(&rtas_data_buf_lock); if (call_status != 0) { pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", __FILE__, __func__, call_status); return; } /* * The first two (2) bytes of the data in the buffer are the length of * the returned data, not counting these first two (2) bytes. */ len = be16_to_cpu(*((u16 *)local_buffer)) + 2; if (len > SPLPAR_TLB_BIC_MAXLENGTH) { pr_warn("%s too large returned buffer %d", __func__, len); return; } idx = 2; while (idx < len) { u8 block_shift = local_buffer[idx++]; u32 block_size; unsigned int npsize; if (!block_shift) break; block_size = 1 << block_shift; for (npsize = local_buffer[idx++]; npsize > 0 && idx < len; npsize--) check_lp_set_hblkrm((unsigned int) local_buffer[idx++], block_size); } for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) for (idx = 0; idx < MMU_PAGE_COUNT; idx++) if (hblkrm_size[bpsize][idx]) pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", bpsize, idx, hblkrm_size[bpsize][idx]); } /* * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie * lock. */ static void pSeries_lpar_flush_hash_range(unsigned long number, int local) { unsigned long vpn; unsigned long i, pix, rc; unsigned long flags = 0; struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); unsigned long param[PLPAR_HCALL9_BUFSIZE]; unsigned long index, shift, slot; real_pte_t pte; int psize, ssize; if (lock_tlbie) spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); if (is_supported_hlbkrm(batch->psize, batch->psize)) { do_block_remove(number, batch, param); goto out; } psize = batch->psize; ssize = batch->ssize; pix = 0; for (i = 0; i < number; i++) { vpn = batch->vpn[i]; pte = batch->pte[i]; pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { slot = compute_slot(pte, vpn, index, shift, ssize); if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { /* * lpar doesn't use the passed actual page size */ pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, local); } else { param[pix] = HBR_REQUEST | HBR_AVPN | slot; param[pix+1] = hpte_encode_avpn(vpn, psize, ssize); pix += 2; if (pix == 8) { rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], param[2], param[3], param[4], param[5], param[6], param[7]); BUG_ON(rc != H_SUCCESS); pix = 0; } } } pte_iterate_hashed_end(); } if (pix) { param[pix] = HBR_END; rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], param[2], param[3], param[4], param[5], param[6], param[7]); BUG_ON(rc != H_SUCCESS); } out: if (lock_tlbie) spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); } static int __init disable_bulk_remove(char *str) { if (strcmp(str, "off") == 0 && firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { pr_info("Disabling BULK_REMOVE firmware feature"); powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; } return 1; } __setup("bulk_remove=", disable_bulk_remove); #define HPT_RESIZE_TIMEOUT 10000 /* ms */ struct hpt_resize_state { unsigned long shift; int commit_rc; }; static int pseries_lpar_resize_hpt_commit(void *data) { struct hpt_resize_state *state = data; state->commit_rc = plpar_resize_hpt_commit(0, state->shift); if (state->commit_rc != H_SUCCESS) return -EIO; /* Hypervisor has transitioned the HTAB, update our globals */ ppc64_pft_size = state->shift; htab_size_bytes = 1UL << ppc64_pft_size; htab_hash_mask = (htab_size_bytes >> 7) - 1; return 0; } /* * Must be called in process context. The caller must hold the * cpus_lock. */ static int pseries_lpar_resize_hpt(unsigned long shift) { struct hpt_resize_state state = { .shift = shift, .commit_rc = H_FUNCTION, }; unsigned int delay, total_delay = 0; int rc; ktime_t t0, t1, t2; might_sleep(); if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) return -ENODEV; pr_info("Attempting to resize HPT to shift %lu\n", shift); t0 = ktime_get(); rc = plpar_resize_hpt_prepare(0, shift); while (H_IS_LONG_BUSY(rc)) { delay = get_longbusy_msecs(rc); total_delay += delay; if (total_delay > HPT_RESIZE_TIMEOUT) { /* prepare with shift==0 cancels an in-progress resize */ rc = plpar_resize_hpt_prepare(0, 0); if (rc != H_SUCCESS) pr_warn("Unexpected error %d cancelling timed out HPT resize\n", rc); return -ETIMEDOUT; } msleep(delay); rc = plpar_resize_hpt_prepare(0, shift); } switch (rc) { case H_SUCCESS: /* Continue on */ break; case H_PARAMETER: pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); return -EINVAL; case H_RESOURCE: pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); return -EPERM; default: pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); return -EIO; } t1 = ktime_get(); rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, &state, NULL); t2 = ktime_get(); if (rc != 0) { switch (state.commit_rc) { case H_PTEG_FULL: return -ENOSPC; default: pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", state.commit_rc); return -EIO; }; } pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", shift, (long long) ktime_ms_delta(t1, t0), (long long) ktime_ms_delta(t2, t1)); return 0; } void __init hpte_init_pseries(void) { mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; /* * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall * to inform the hypervisor that we wish to use the HPT. */ if (cpu_has_feature(CPU_FTR_ARCH_300)) pseries_lpar_register_process_table(0, 0, 0); } #endif /* CONFIG_PPC_64S_HASH_MMU */ #ifdef CONFIG_PPC_RADIX_MMU void __init radix_init_pseries(void) { pr_info("Using radix MMU under hypervisor\n"); pseries_lpar_register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12); } #endif #ifdef CONFIG_PPC_SMLPAR #define CMO_FREE_HINT_DEFAULT 1 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; static int __init cmo_free_hint(char *str) { char *parm; parm = strstrip(str); if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { pr_info("%s: CMO free page hinting is not active.\n", __func__); cmo_free_hint_flag = 0; return 1; } cmo_free_hint_flag = 1; pr_info("%s: CMO free page hinting is active.\n", __func__); if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) return 1; return 0; } __setup("cmo_free_hint=", cmo_free_hint); static void pSeries_set_page_state(struct page *page, int order, unsigned long state) { int i, j; unsigned long cmo_page_sz, addr; cmo_page_sz = cmo_get_page_size(); addr = __pa((unsigned long)page_address(page)); for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); } } void arch_free_page(struct page *page, int order) { if (radix_enabled()) return; if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) return; pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); } EXPORT_SYMBOL(arch_free_page); #endif /* CONFIG_PPC_SMLPAR */ #endif /* CONFIG_PPC_BOOK3S_64 */ #ifdef CONFIG_TRACEPOINTS #ifdef CONFIG_JUMP_LABEL struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; int hcall_tracepoint_regfunc(void) { static_key_slow_inc(&hcall_tracepoint_key); return 0; } void hcall_tracepoint_unregfunc(void) { static_key_slow_dec(&hcall_tracepoint_key); } #else /* * We optimise our hcall path by placing hcall_tracepoint_refcount * directly in the TOC so we can check if the hcall tracepoints are * enabled via a single load. */ /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ extern long hcall_tracepoint_refcount; int hcall_tracepoint_regfunc(void) { hcall_tracepoint_refcount++; return 0; } void hcall_tracepoint_unregfunc(void) { hcall_tracepoint_refcount--; } #endif /* * Keep track of hcall tracing depth and prevent recursion. Warn if any is * detected because it may indicate a problem. This will not catch all * problems with tracing code making hcalls, because the tracing might have * been invoked from a non-hcall, so the first hcall could recurse into it * without warning here, but this better than nothing. * * Hcalls with specific problems being traced should use the _notrace * plpar_hcall variants. */ static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) { unsigned long flags; unsigned int *depth; local_irq_save(flags); depth = this_cpu_ptr(&hcall_trace_depth); if (WARN_ON_ONCE(*depth)) goto out; (*depth)++; preempt_disable(); trace_hcall_entry(opcode, args); (*depth)--; out: local_irq_restore(flags); } notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) { unsigned long flags; unsigned int *depth; local_irq_save(flags); depth = this_cpu_ptr(&hcall_trace_depth); if (*depth) /* Don't warn again on the way out */ goto out; (*depth)++; trace_hcall_exit(opcode, retval, retbuf); preempt_enable(); (*depth)--; out: local_irq_restore(flags); } #endif /** * h_get_mpp * H_GET_MPP hcall returns info in 7 parms */ int h_get_mpp(struct hvcall_mpp_data *mpp_data) { int rc; unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; rc = plpar_hcall9(H_GET_MPP, retbuf); mpp_data->entitled_mem = retbuf[0]; mpp_data->mapped_mem = retbuf[1]; mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; mpp_data->pool_num = retbuf[2] & 0xffff; mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; mpp_data->pool_size = retbuf[4]; mpp_data->loan_request = retbuf[5]; mpp_data->backing_mem = retbuf[6]; return rc; } EXPORT_SYMBOL(h_get_mpp); int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) { int rc; unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; rc = plpar_hcall9(H_GET_MPP_X, retbuf); mpp_x_data->coalesced_bytes = retbuf[0]; mpp_x_data->pool_coalesced_bytes = retbuf[1]; mpp_x_data->pool_purr_cycles = retbuf[2]; mpp_x_data->pool_spurr_cycles = retbuf[3]; return rc; } #ifdef CONFIG_PPC_64S_HASH_MMU static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize) { unsigned long protovsid; unsigned long va_bits = VA_BITS; unsigned long modinv, vsid_modulus; unsigned long max_mod_inv, tmp_modinv; if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) va_bits = 65; if (ssize == MMU_SEGSIZE_256M) { modinv = VSID_MULINV_256M; vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); } else { modinv = VSID_MULINV_1T; vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); } /* * vsid outside our range. */ if (vsid >= vsid_modulus) return 0; /* * If modinv is the modular multiplicate inverse of (x % vsid_modulus) * and vsid = (protovsid * x) % vsid_modulus, then we say: * protovsid = (vsid * modinv) % vsid_modulus */ /* Check if (vsid * modinv) overflow (63 bits) */ max_mod_inv = 0x7fffffffffffffffull / vsid; if (modinv < max_mod_inv) return (vsid * modinv) % vsid_modulus; tmp_modinv = modinv/max_mod_inv; modinv %= max_mod_inv; protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; protovsid = (protovsid + vsid * modinv) % vsid_modulus; return protovsid; } static int __init reserve_vrma_context_id(void) { unsigned long protovsid; /* * Reserve context ids which map to reserved virtual addresses. For now * we only reserve the context id which maps to the VRMA VSID. We ignore * the addresses in "ibm,adjunct-virtual-addresses" because we don't * enable adjunct support via the "ibm,client-architecture-support" * interface. */ protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); hash__reserve_context_id(protovsid >> ESID_BITS_1T); return 0; } machine_device_initcall(pseries, reserve_vrma_context_id); #endif #ifdef CONFIG_DEBUG_FS /* debugfs file interface for vpa data */ static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, loff_t *pos) { int cpu = (long)filp->private_data; struct lppaca *lppaca = &lppaca_of(cpu); return simple_read_from_buffer(buf, len, pos, lppaca, sizeof(struct lppaca)); } static const struct file_operations vpa_fops = { .open = simple_open, .read = vpa_file_read, .llseek = default_llseek, }; static int __init vpa_debugfs_init(void) { char name[16]; long i; struct dentry *vpa_dir; if (!firmware_has_feature(FW_FEATURE_SPLPAR)) return 0; vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); /* set up the per-cpu vpa file*/ for_each_possible_cpu(i) { sprintf(name, "cpu-%ld", i); debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); } return 0; } machine_arch_initcall(pseries, vpa_debugfs_init); #endif /* CONFIG_DEBUG_FS */