// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2009-2012 Realtek Corporation.*/ #include "../wifi.h" #include "../pci.h" #include "../ps.h" #include "../core.h" #include "reg.h" #include "def.h" #include "hw.h" #include "phy.h" #include "../rtl8192c/phy_common.h" #include "rf.h" #include "dm.h" #include "../rtl8192c/dm_common.h" #include "../rtl8192c/fw_common.h" #include "table.h" static bool _rtl92c_phy_config_mac_with_headerfile(struct ieee80211_hw *hw); u32 rtl92c_phy_query_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 original_value, readback_value, bitshift; struct rtl_phy *rtlphy = &(rtlpriv->phy); rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n", regaddr, rfpath, bitmask); spin_lock(&rtlpriv->locks.rf_lock); if (rtlphy->rf_mode != RF_OP_BY_FW) { original_value = _rtl92c_phy_rf_serial_read(hw, rfpath, regaddr); } else { original_value = _rtl92c_phy_fw_rf_serial_read(hw, rfpath, regaddr); } bitshift = _rtl92c_phy_calculate_bit_shift(bitmask); readback_value = (original_value & bitmask) >> bitshift; spin_unlock(&rtlpriv->locks.rf_lock); rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n", regaddr, rfpath, bitmask, original_value); return readback_value; } bool rtl92c_phy_mac_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool is92c = IS_92C_SERIAL(rtlhal->version); bool rtstatus = _rtl92c_phy_config_mac_with_headerfile(hw); if (is92c) rtl_write_byte(rtlpriv, 0x14, 0x71); else rtl_write_byte(rtlpriv, 0x04CA, 0x0A); return rtstatus; } bool rtl92c_phy_bb_config(struct ieee80211_hw *hw) { bool rtstatus = true; struct rtl_priv *rtlpriv = rtl_priv(hw); u16 regval; u32 regvaldw; u8 reg_hwparafile = 1; _rtl92c_phy_init_bb_rf_register_definition(hw); regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, regval | BIT(13) | BIT(0) | BIT(1)); rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x83); rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL + 1, 0xdb); rtl_write_byte(rtlpriv, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE | FEN_BB_GLB_RSTN | FEN_BBRSTB); rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL + 1, 0x80); regvaldw = rtl_read_dword(rtlpriv, REG_LEDCFG0); rtl_write_dword(rtlpriv, REG_LEDCFG0, regvaldw | BIT(23)); if (reg_hwparafile == 1) rtstatus = _rtl92c_phy_bb8192c_config_parafile(hw); return rtstatus; } void rtl92ce_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 original_value, bitshift; rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", regaddr, bitmask, data, rfpath); spin_lock(&rtlpriv->locks.rf_lock); if (rtlphy->rf_mode != RF_OP_BY_FW) { if (bitmask != RFREG_OFFSET_MASK) { original_value = _rtl92c_phy_rf_serial_read(hw, rfpath, regaddr); bitshift = _rtl92c_phy_calculate_bit_shift(bitmask); data = ((original_value & (~bitmask)) | (data << bitshift)); } _rtl92c_phy_rf_serial_write(hw, rfpath, regaddr, data); } else { if (bitmask != RFREG_OFFSET_MASK) { original_value = _rtl92c_phy_fw_rf_serial_read(hw, rfpath, regaddr); bitshift = _rtl92c_phy_calculate_bit_shift(bitmask); data = ((original_value & (~bitmask)) | (data << bitshift)); } _rtl92c_phy_fw_rf_serial_write(hw, rfpath, regaddr, data); } spin_unlock(&rtlpriv->locks.rf_lock); rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", regaddr, bitmask, data, rfpath); } static bool _rtl92c_phy_config_mac_with_headerfile(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; u32 arraylength; u32 *ptrarray; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl819XMACPHY_Array\n"); arraylength = MAC_2T_ARRAYLENGTH; ptrarray = RTL8192CEMAC_2T_ARRAY; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Img:RTL8192CEMAC_2T_ARRAY\n"); for (i = 0; i < arraylength; i = i + 2) rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]); return true; } bool _rtl92ce_phy_config_bb_with_headerfile(struct ieee80211_hw *hw, u8 configtype) { int i; u32 *phy_regarray_table; u32 *agctab_array_table; u16 phy_reg_arraylen, agctab_arraylen; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); if (IS_92C_SERIAL(rtlhal->version)) { agctab_arraylen = AGCTAB_2TARRAYLENGTH; agctab_array_table = RTL8192CEAGCTAB_2TARRAY; phy_reg_arraylen = PHY_REG_2TARRAY_LENGTH; phy_regarray_table = RTL8192CEPHY_REG_2TARRAY; } else { agctab_arraylen = AGCTAB_1TARRAYLENGTH; agctab_array_table = RTL8192CEAGCTAB_1TARRAY; phy_reg_arraylen = PHY_REG_1TARRAY_LENGTH; phy_regarray_table = RTL8192CEPHY_REG_1TARRAY; } if (configtype == BASEBAND_CONFIG_PHY_REG) { for (i = 0; i < phy_reg_arraylen; i = i + 2) { rtl_addr_delay(phy_regarray_table[i]); rtl_set_bbreg(hw, phy_regarray_table[i], MASKDWORD, phy_regarray_table[i + 1]); udelay(1); rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n", phy_regarray_table[i], phy_regarray_table[i + 1]); } } else if (configtype == BASEBAND_CONFIG_AGC_TAB) { for (i = 0; i < agctab_arraylen; i = i + 2) { rtl_set_bbreg(hw, agctab_array_table[i], MASKDWORD, agctab_array_table[i + 1]); udelay(1); rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "The agctab_array_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n", agctab_array_table[i], agctab_array_table[i + 1]); } } return true; } bool _rtl92ce_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw, u8 configtype) { struct rtl_priv *rtlpriv = rtl_priv(hw); int i; u32 *phy_regarray_table_pg; u16 phy_regarray_pg_len; phy_regarray_pg_len = PHY_REG_ARRAY_PGLENGTH; phy_regarray_table_pg = RTL8192CEPHY_REG_ARRAY_PG; if (configtype == BASEBAND_CONFIG_PHY_REG) { for (i = 0; i < phy_regarray_pg_len; i = i + 3) { rtl_addr_delay(phy_regarray_table_pg[i]); _rtl92c_store_pwrindex_diffrate_offset(hw, phy_regarray_table_pg[i], phy_regarray_table_pg[i + 1], phy_regarray_table_pg[i + 2]); } } else { rtl_dbg(rtlpriv, COMP_SEND, DBG_TRACE, "configtype != BaseBand_Config_PHY_REG\n"); } return true; } bool rtl92c_phy_config_rf_with_headerfile(struct ieee80211_hw *hw, enum radio_path rfpath) { int i; u32 *radioa_array_table; u32 *radiob_array_table; u16 radioa_arraylen, radiob_arraylen; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); if (IS_92C_SERIAL(rtlhal->version)) { radioa_arraylen = RADIOA_2TARRAYLENGTH; radioa_array_table = RTL8192CERADIOA_2TARRAY; radiob_arraylen = RADIOB_2TARRAYLENGTH; radiob_array_table = RTL8192CE_RADIOB_2TARRAY; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Radio_A:RTL8192CERADIOA_2TARRAY\n"); rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Radio_B:RTL8192CE_RADIOB_2TARRAY\n"); } else { radioa_arraylen = RADIOA_1TARRAYLENGTH; radioa_array_table = RTL8192CE_RADIOA_1TARRAY; radiob_arraylen = RADIOB_1TARRAYLENGTH; radiob_array_table = RTL8192CE_RADIOB_1TARRAY; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Radio_A:RTL8192CE_RADIOA_1TARRAY\n"); rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Radio_B:RTL8192CE_RADIOB_1TARRAY\n"); } rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Radio No %x\n", rfpath); switch (rfpath) { case RF90_PATH_A: for (i = 0; i < radioa_arraylen; i = i + 2) { rtl_rfreg_delay(hw, rfpath, radioa_array_table[i], RFREG_OFFSET_MASK, radioa_array_table[i + 1]); } break; case RF90_PATH_B: for (i = 0; i < radiob_arraylen; i = i + 2) { rtl_rfreg_delay(hw, rfpath, radiob_array_table[i], RFREG_OFFSET_MASK, radiob_array_table[i + 1]); } break; case RF90_PATH_C: case RF90_PATH_D: pr_info("Incorrect rfpath %#x\n", rfpath); break; default: pr_info("switch case %#x not processed\n", rfpath); break; } return true; } void rtl92ce_phy_set_bw_mode_callback(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u8 reg_bw_opmode; u8 reg_prsr_rsc; rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n", rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ? "20MHz" : "40MHz"); if (is_hal_stop(rtlhal)) { rtlphy->set_bwmode_inprogress = false; return; } reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE); reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2); switch (rtlphy->current_chan_bw) { case HT_CHANNEL_WIDTH_20: reg_bw_opmode |= BW_OPMODE_20MHZ; rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); break; case HT_CHANNEL_WIDTH_20_40: reg_bw_opmode &= ~BW_OPMODE_20MHZ; rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); reg_prsr_rsc = (reg_prsr_rsc & 0x90) | (mac->cur_40_prime_sc << 5); rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc); break; default: pr_info("unknown bandwidth: %#X\n", rtlphy->current_chan_bw); break; } switch (rtlphy->current_chan_bw) { case HT_CHANNEL_WIDTH_20: rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0); rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1); break; case HT_CHANNEL_WIDTH_20_40: rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1); rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1); rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND, (mac->cur_40_prime_sc >> 1)); rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 0); rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)), (mac->cur_40_prime_sc == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1); break; default: pr_err("unknown bandwidth: %#X\n", rtlphy->current_chan_bw); break; } rtl92ce_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw); rtlphy->set_bwmode_inprogress = false; rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n"); } void _rtl92ce_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t) { u8 tmpreg; u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal; struct rtl_priv *rtlpriv = rtl_priv(hw); tmpreg = rtl_read_byte(rtlpriv, 0xd03); if ((tmpreg & 0x70) != 0) rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F); else rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF); if ((tmpreg & 0x70) != 0) { rf_a_mode = rtl_get_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS); if (is2t) rf_b_mode = rtl_get_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS); rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS, (rf_a_mode & 0x8FFFF) | 0x10000); if (is2t) rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS, (rf_b_mode & 0x8FFFF) | 0x10000); } lc_cal = rtl_get_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS); rtl_set_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS, lc_cal | 0x08000); mdelay(100); if ((tmpreg & 0x70) != 0) { rtl_write_byte(rtlpriv, 0xd03, tmpreg); rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS, rf_a_mode); if (is2t) rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS, rf_b_mode); } else { rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00); } } static bool _rtl92ce_phy_set_rf_power_state(struct ieee80211_hw *hw, enum rf_pwrstate rfpwr_state) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); bool bresult = true; u8 i, queue_id; struct rtl8192_tx_ring *ring = NULL; switch (rfpwr_state) { case ERFON:{ if ((ppsc->rfpwr_state == ERFOFF) && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) { bool rtstatus; u32 initializecount = 0; do { initializecount++; rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG, "IPS Set eRf nic enable\n"); rtstatus = rtl_ps_enable_nic(hw); } while (!rtstatus && (initializecount < 10)); RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); } else { rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG, "Set ERFON slept:%d ms\n", jiffies_to_msecs(jiffies - ppsc->last_sleep_jiffies)); ppsc->last_awake_jiffies = jiffies; rtl92ce_phy_set_rf_on(hw); } if (mac->link_state == MAC80211_LINKED) { rtlpriv->cfg->ops->led_control(hw, LED_CTL_LINK); } else { rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK); } break; } case ERFOFF:{ if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) { rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG, "IPS Set eRf nic disable\n"); rtl_ps_disable_nic(hw); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); } else { if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) { rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK); } else { rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); } } break; } case ERFSLEEP:{ if (ppsc->rfpwr_state == ERFOFF) break; for (queue_id = 0, i = 0; queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) { ring = &pcipriv->dev.tx_ring[queue_id]; if (queue_id == BEACON_QUEUE || skb_queue_len(&ring->queue) == 0) { queue_id++; continue; } else { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n", i + 1, queue_id, skb_queue_len(&ring->queue)); udelay(10); i++; } if (i >= MAX_DOZE_WAITING_TIMES_9x) { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n", MAX_DOZE_WAITING_TIMES_9x, queue_id, skb_queue_len(&ring->queue)); break; } } rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG, "Set ERFSLEEP awaked:%d ms\n", jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies)); ppsc->last_sleep_jiffies = jiffies; _rtl92c_phy_set_rf_sleep(hw); break; } default: pr_err("switch case %#x not processed\n", rfpwr_state); bresult = false; break; } if (bresult) ppsc->rfpwr_state = rfpwr_state; return bresult; } bool rtl92c_phy_set_rf_power_state(struct ieee80211_hw *hw, enum rf_pwrstate rfpwr_state) { struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); bool bresult = false; if (rfpwr_state == ppsc->rfpwr_state) return bresult; bresult = _rtl92ce_phy_set_rf_power_state(hw, rfpwr_state); return bresult; }