/* * ti_hdmi_4xxx_ip.c * * HDMI TI81xx, TI38xx, TI OMAP4 etc IP driver Library * Copyright (C) 2010-2011 Texas Instruments Incorporated - http://www.ti.com/ * Authors: Yong Zhi * Mythri pk * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include "ti_hdmi_4xxx_ip.h" #include "dss.h" static inline void hdmi_write_reg(void __iomem *base_addr, const u16 idx, u32 val) { __raw_writel(val, base_addr + idx); } static inline u32 hdmi_read_reg(void __iomem *base_addr, const u16 idx) { return __raw_readl(base_addr + idx); } static inline void __iomem *hdmi_wp_base(struct hdmi_ip_data *ip_data) { return ip_data->base_wp; } static inline void __iomem *hdmi_phy_base(struct hdmi_ip_data *ip_data) { return ip_data->base_wp + ip_data->phy_offset; } static inline void __iomem *hdmi_pll_base(struct hdmi_ip_data *ip_data) { return ip_data->base_wp + ip_data->pll_offset; } static inline void __iomem *hdmi_av_base(struct hdmi_ip_data *ip_data) { return ip_data->base_wp + ip_data->core_av_offset; } static inline void __iomem *hdmi_core_sys_base(struct hdmi_ip_data *ip_data) { return ip_data->base_wp + ip_data->core_sys_offset; } static inline int hdmi_wait_for_bit_change(void __iomem *base_addr, const u16 idx, int b2, int b1, u32 val) { u32 t = 0; while (val != REG_GET(base_addr, idx, b2, b1)) { udelay(1); if (t++ > 10000) return !val; } return val; } static int hdmi_pll_init(struct hdmi_ip_data *ip_data) { u32 r; void __iomem *pll_base = hdmi_pll_base(ip_data); struct hdmi_pll_info *fmt = &ip_data->pll_data; /* PLL start always use manual mode */ REG_FLD_MOD(pll_base, PLLCTRL_PLL_CONTROL, 0x0, 0, 0); r = hdmi_read_reg(pll_base, PLLCTRL_CFG1); r = FLD_MOD(r, fmt->regm, 20, 9); /* CFG1_PLL_REGM */ r = FLD_MOD(r, fmt->regn - 1, 8, 1); /* CFG1_PLL_REGN */ hdmi_write_reg(pll_base, PLLCTRL_CFG1, r); r = hdmi_read_reg(pll_base, PLLCTRL_CFG2); r = FLD_MOD(r, 0x0, 12, 12); /* PLL_HIGHFREQ divide by 2 */ r = FLD_MOD(r, 0x1, 13, 13); /* PLL_REFEN */ r = FLD_MOD(r, 0x0, 14, 14); /* PHY_CLKINEN de-assert during locking */ r = FLD_MOD(r, fmt->refsel, 22, 21); /* REFSEL */ if (fmt->dcofreq) { /* divider programming for frequency beyond 1000Mhz */ REG_FLD_MOD(pll_base, PLLCTRL_CFG3, fmt->regsd, 17, 10); r = FLD_MOD(r, 0x4, 3, 1); /* 1000MHz and 2000MHz */ } else { r = FLD_MOD(r, 0x2, 3, 1); /* 500MHz and 1000MHz */ } hdmi_write_reg(pll_base, PLLCTRL_CFG2, r); r = hdmi_read_reg(pll_base, PLLCTRL_CFG4); r = FLD_MOD(r, fmt->regm2, 24, 18); r = FLD_MOD(r, fmt->regmf, 17, 0); hdmi_write_reg(pll_base, PLLCTRL_CFG4, r); /* go now */ REG_FLD_MOD(pll_base, PLLCTRL_PLL_GO, 0x1, 0, 0); /* wait for bit change */ if (hdmi_wait_for_bit_change(pll_base, PLLCTRL_PLL_GO, 0, 0, 1) != 1) { pr_err("PLL GO bit not set\n"); return -ETIMEDOUT; } /* Wait till the lock bit is set in PLL status */ if (hdmi_wait_for_bit_change(pll_base, PLLCTRL_PLL_STATUS, 1, 1, 1) != 1) { pr_err("cannot lock PLL\n"); pr_err("CFG1 0x%x\n", hdmi_read_reg(pll_base, PLLCTRL_CFG1)); pr_err("CFG2 0x%x\n", hdmi_read_reg(pll_base, PLLCTRL_CFG2)); pr_err("CFG4 0x%x\n", hdmi_read_reg(pll_base, PLLCTRL_CFG4)); return -ETIMEDOUT; } pr_debug("PLL locked!\n"); return 0; } /* PHY_PWR_CMD */ static int hdmi_set_phy_pwr(struct hdmi_ip_data *ip_data, enum hdmi_phy_pwr val) { /* Command for power control of HDMI PHY */ REG_FLD_MOD(hdmi_wp_base(ip_data), HDMI_WP_PWR_CTRL, val, 7, 6); /* Status of the power control of HDMI PHY */ if (hdmi_wait_for_bit_change(hdmi_wp_base(ip_data), HDMI_WP_PWR_CTRL, 5, 4, val) != val) { pr_err("Failed to set PHY power mode to %d\n", val); return -ETIMEDOUT; } return 0; } /* PLL_PWR_CMD */ static int hdmi_set_pll_pwr(struct hdmi_ip_data *ip_data, enum hdmi_pll_pwr val) { /* Command for power control of HDMI PLL */ REG_FLD_MOD(hdmi_wp_base(ip_data), HDMI_WP_PWR_CTRL, val, 3, 2); /* wait till PHY_PWR_STATUS is set */ if (hdmi_wait_for_bit_change(hdmi_wp_base(ip_data), HDMI_WP_PWR_CTRL, 1, 0, val) != val) { pr_err("Failed to set PLL_PWR_STATUS\n"); return -ETIMEDOUT; } return 0; } static int hdmi_pll_reset(struct hdmi_ip_data *ip_data) { /* SYSRESET controlled by power FSM */ REG_FLD_MOD(hdmi_pll_base(ip_data), PLLCTRL_PLL_CONTROL, 0x0, 3, 3); /* READ 0x0 reset is in progress */ if (hdmi_wait_for_bit_change(hdmi_pll_base(ip_data), PLLCTRL_PLL_STATUS, 0, 0, 1) != 1) { pr_err("Failed to sysreset PLL\n"); return -ETIMEDOUT; } return 0; } int ti_hdmi_4xxx_pll_enable(struct hdmi_ip_data *ip_data) { u16 r = 0; r = hdmi_set_pll_pwr(ip_data, HDMI_PLLPWRCMD_ALLOFF); if (r) return r; r = hdmi_set_pll_pwr(ip_data, HDMI_PLLPWRCMD_BOTHON_ALLCLKS); if (r) return r; r = hdmi_pll_reset(ip_data); if (r) return r; r = hdmi_pll_init(ip_data); if (r) return r; return 0; } void ti_hdmi_4xxx_pll_disable(struct hdmi_ip_data *ip_data) { hdmi_set_pll_pwr(ip_data, HDMI_PLLPWRCMD_ALLOFF); } static int hdmi_check_hpd_state(struct hdmi_ip_data *ip_data) { unsigned long flags; bool hpd; int r; /* this should be in ti_hdmi_4xxx_ip private data */ static DEFINE_SPINLOCK(phy_tx_lock); spin_lock_irqsave(&phy_tx_lock, flags); hpd = gpio_get_value(ip_data->hpd_gpio); if (hpd == ip_data->phy_tx_enabled) { spin_unlock_irqrestore(&phy_tx_lock, flags); return 0; } if (hpd) r = hdmi_set_phy_pwr(ip_data, HDMI_PHYPWRCMD_TXON); else r = hdmi_set_phy_pwr(ip_data, HDMI_PHYPWRCMD_LDOON); if (r) { DSSERR("Failed to %s PHY TX power\n", hpd ? "enable" : "disable"); goto err; } ip_data->phy_tx_enabled = hpd; err: spin_unlock_irqrestore(&phy_tx_lock, flags); return r; } static irqreturn_t hpd_irq_handler(int irq, void *data) { struct hdmi_ip_data *ip_data = data; hdmi_check_hpd_state(ip_data); return IRQ_HANDLED; } int ti_hdmi_4xxx_phy_enable(struct hdmi_ip_data *ip_data) { u16 r = 0; void __iomem *phy_base = hdmi_phy_base(ip_data); r = hdmi_set_phy_pwr(ip_data, HDMI_PHYPWRCMD_LDOON); if (r) return r; /* * Read address 0 in order to get the SCP reset done completed * Dummy access performed to make sure reset is done */ hdmi_read_reg(phy_base, HDMI_TXPHY_TX_CTRL); /* * Write to phy address 0 to configure the clock * use HFBITCLK write HDMI_TXPHY_TX_CONTROL_FREQOUT field */ REG_FLD_MOD(phy_base, HDMI_TXPHY_TX_CTRL, 0x1, 31, 30); /* Write to phy address 1 to start HDMI line (TXVALID and TMDSCLKEN) */ hdmi_write_reg(phy_base, HDMI_TXPHY_DIGITAL_CTRL, 0xF0000000); /* Setup max LDO voltage */ REG_FLD_MOD(phy_base, HDMI_TXPHY_POWER_CTRL, 0xB, 3, 0); /* Write to phy address 3 to change the polarity control */ REG_FLD_MOD(phy_base, HDMI_TXPHY_PAD_CFG_CTRL, 0x1, 27, 27); r = request_threaded_irq(gpio_to_irq(ip_data->hpd_gpio), NULL, hpd_irq_handler, IRQF_DISABLED | IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "hpd", ip_data); if (r) { DSSERR("HPD IRQ request failed\n"); hdmi_set_phy_pwr(ip_data, HDMI_PHYPWRCMD_OFF); return r; } r = hdmi_check_hpd_state(ip_data); if (r) { free_irq(gpio_to_irq(ip_data->hpd_gpio), ip_data); hdmi_set_phy_pwr(ip_data, HDMI_PHYPWRCMD_OFF); return r; } return 0; } void ti_hdmi_4xxx_phy_disable(struct hdmi_ip_data *ip_data) { free_irq(gpio_to_irq(ip_data->hpd_gpio), ip_data); hdmi_set_phy_pwr(ip_data, HDMI_PHYPWRCMD_OFF); ip_data->phy_tx_enabled = false; } static int hdmi_core_ddc_init(struct hdmi_ip_data *ip_data) { void __iomem *base = hdmi_core_sys_base(ip_data); /* Turn on CLK for DDC */ REG_FLD_MOD(base, HDMI_CORE_AV_DPD, 0x7, 2, 0); /* IN_PROG */ if (REG_GET(base, HDMI_CORE_DDC_STATUS, 4, 4) == 1) { /* Abort transaction */ REG_FLD_MOD(base, HDMI_CORE_DDC_CMD, 0xf, 3, 0); /* IN_PROG */ if (hdmi_wait_for_bit_change(base, HDMI_CORE_DDC_STATUS, 4, 4, 0) != 0) { DSSERR("Timeout aborting DDC transaction\n"); return -ETIMEDOUT; } } /* Clk SCL Devices */ REG_FLD_MOD(base, HDMI_CORE_DDC_CMD, 0xA, 3, 0); /* HDMI_CORE_DDC_STATUS_IN_PROG */ if (hdmi_wait_for_bit_change(base, HDMI_CORE_DDC_STATUS, 4, 4, 0) != 0) { DSSERR("Timeout starting SCL clock\n"); return -ETIMEDOUT; } /* Clear FIFO */ REG_FLD_MOD(base, HDMI_CORE_DDC_CMD, 0x9, 3, 0); /* HDMI_CORE_DDC_STATUS_IN_PROG */ if (hdmi_wait_for_bit_change(base, HDMI_CORE_DDC_STATUS, 4, 4, 0) != 0) { DSSERR("Timeout clearing DDC fifo\n"); return -ETIMEDOUT; } return 0; } static int hdmi_core_ddc_edid(struct hdmi_ip_data *ip_data, u8 *pedid, int ext) { void __iomem *base = hdmi_core_sys_base(ip_data); u32 i; char checksum; u32 offset = 0; /* HDMI_CORE_DDC_STATUS_IN_PROG */ if (hdmi_wait_for_bit_change(base, HDMI_CORE_DDC_STATUS, 4, 4, 0) != 0) { DSSERR("Timeout waiting DDC to be ready\n"); return -ETIMEDOUT; } if (ext % 2 != 0) offset = 0x80; /* Load Segment Address Register */ REG_FLD_MOD(base, HDMI_CORE_DDC_SEGM, ext / 2, 7, 0); /* Load Slave Address Register */ REG_FLD_MOD(base, HDMI_CORE_DDC_ADDR, 0xA0 >> 1, 7, 1); /* Load Offset Address Register */ REG_FLD_MOD(base, HDMI_CORE_DDC_OFFSET, offset, 7, 0); /* Load Byte Count */ REG_FLD_MOD(base, HDMI_CORE_DDC_COUNT1, 0x80, 7, 0); REG_FLD_MOD(base, HDMI_CORE_DDC_COUNT2, 0x0, 1, 0); /* Set DDC_CMD */ if (ext) REG_FLD_MOD(base, HDMI_CORE_DDC_CMD, 0x4, 3, 0); else REG_FLD_MOD(base, HDMI_CORE_DDC_CMD, 0x2, 3, 0); /* HDMI_CORE_DDC_STATUS_BUS_LOW */ if (REG_GET(base, HDMI_CORE_DDC_STATUS, 6, 6) == 1) { pr_err("I2C Bus Low?\n"); return -EIO; } /* HDMI_CORE_DDC_STATUS_NO_ACK */ if (REG_GET(base, HDMI_CORE_DDC_STATUS, 5, 5) == 1) { pr_err("I2C No Ack\n"); return -EIO; } for (i = 0; i < 0x80; ++i) { int t; /* IN_PROG */ if (REG_GET(base, HDMI_CORE_DDC_STATUS, 4, 4) == 0) { DSSERR("operation stopped when reading edid\n"); return -EIO; } t = 0; /* FIFO_EMPTY */ while (REG_GET(base, HDMI_CORE_DDC_STATUS, 2, 2) == 1) { if (t++ > 10000) { DSSERR("timeout reading edid\n"); return -ETIMEDOUT; } udelay(1); } pedid[i] = REG_GET(base, HDMI_CORE_DDC_DATA, 7, 0); } checksum = 0; for (i = 0; i < 0x80; ++i) checksum += pedid[i]; if (checksum != 0) { pr_err("E-EDID checksum failed!!\n"); return -EIO; } return 0; } int ti_hdmi_4xxx_read_edid(struct hdmi_ip_data *ip_data, u8 *edid, int len) { int r, l; if (len < 128) return -EINVAL; r = hdmi_core_ddc_init(ip_data); if (r) return r; r = hdmi_core_ddc_edid(ip_data, edid, 0); if (r) return r; l = 128; if (len >= 128 * 2 && edid[0x7e] > 0) { r = hdmi_core_ddc_edid(ip_data, edid + 0x80, 1); if (r) return r; l += 128; } return l; } bool ti_hdmi_4xxx_detect(struct hdmi_ip_data *ip_data) { return gpio_get_value(ip_data->hpd_gpio); } static void hdmi_core_init(struct hdmi_core_video_config *video_cfg, struct hdmi_core_infoframe_avi *avi_cfg, struct hdmi_core_packet_enable_repeat *repeat_cfg) { pr_debug("Enter hdmi_core_init\n"); /* video core */ video_cfg->ip_bus_width = HDMI_INPUT_8BIT; video_cfg->op_dither_truc = HDMI_OUTPUTTRUNCATION_8BIT; video_cfg->deep_color_pkt = HDMI_DEEPCOLORPACKECTDISABLE; video_cfg->pkt_mode = HDMI_PACKETMODERESERVEDVALUE; video_cfg->hdmi_dvi = HDMI_DVI; video_cfg->tclk_sel_clkmult = HDMI_FPLL10IDCK; /* info frame */ avi_cfg->db1_format = 0; avi_cfg->db1_active_info = 0; avi_cfg->db1_bar_info_dv = 0; avi_cfg->db1_scan_info = 0; avi_cfg->db2_colorimetry = 0; avi_cfg->db2_aspect_ratio = 0; avi_cfg->db2_active_fmt_ar = 0; avi_cfg->db3_itc = 0; avi_cfg->db3_ec = 0; avi_cfg->db3_q_range = 0; avi_cfg->db3_nup_scaling = 0; avi_cfg->db4_videocode = 0; avi_cfg->db5_pixel_repeat = 0; avi_cfg->db6_7_line_eoftop = 0 ; avi_cfg->db8_9_line_sofbottom = 0; avi_cfg->db10_11_pixel_eofleft = 0; avi_cfg->db12_13_pixel_sofright = 0; /* packet enable and repeat */ repeat_cfg->audio_pkt = 0; repeat_cfg->audio_pkt_repeat = 0; repeat_cfg->avi_infoframe = 0; repeat_cfg->avi_infoframe_repeat = 0; repeat_cfg->gen_cntrl_pkt = 0; repeat_cfg->gen_cntrl_pkt_repeat = 0; repeat_cfg->generic_pkt = 0; repeat_cfg->generic_pkt_repeat = 0; } static void hdmi_core_powerdown_disable(struct hdmi_ip_data *ip_data) { pr_debug("Enter hdmi_core_powerdown_disable\n"); REG_FLD_MOD(hdmi_core_sys_base(ip_data), HDMI_CORE_CTRL1, 0x0, 0, 0); } static void hdmi_core_swreset_release(struct hdmi_ip_data *ip_data) { pr_debug("Enter hdmi_core_swreset_release\n"); REG_FLD_MOD(hdmi_core_sys_base(ip_data), HDMI_CORE_SYS_SRST, 0x0, 0, 0); } static void hdmi_core_swreset_assert(struct hdmi_ip_data *ip_data) { pr_debug("Enter hdmi_core_swreset_assert\n"); REG_FLD_MOD(hdmi_core_sys_base(ip_data), HDMI_CORE_SYS_SRST, 0x1, 0, 0); } /* HDMI_CORE_VIDEO_CONFIG */ static void hdmi_core_video_config(struct hdmi_ip_data *ip_data, struct hdmi_core_video_config *cfg) { u32 r = 0; void __iomem *core_sys_base = hdmi_core_sys_base(ip_data); /* sys_ctrl1 default configuration not tunable */ r = hdmi_read_reg(core_sys_base, HDMI_CORE_CTRL1); r = FLD_MOD(r, HDMI_CORE_CTRL1_VEN_FOLLOWVSYNC, 5, 5); r = FLD_MOD(r, HDMI_CORE_CTRL1_HEN_FOLLOWHSYNC, 4, 4); r = FLD_MOD(r, HDMI_CORE_CTRL1_BSEL_24BITBUS, 2, 2); r = FLD_MOD(r, HDMI_CORE_CTRL1_EDGE_RISINGEDGE, 1, 1); hdmi_write_reg(core_sys_base, HDMI_CORE_CTRL1, r); REG_FLD_MOD(core_sys_base, HDMI_CORE_SYS_VID_ACEN, cfg->ip_bus_width, 7, 6); /* Vid_Mode */ r = hdmi_read_reg(core_sys_base, HDMI_CORE_SYS_VID_MODE); /* dither truncation configuration */ if (cfg->op_dither_truc > HDMI_OUTPUTTRUNCATION_12BIT) { r = FLD_MOD(r, cfg->op_dither_truc - 3, 7, 6); r = FLD_MOD(r, 1, 5, 5); } else { r = FLD_MOD(r, cfg->op_dither_truc, 7, 6); r = FLD_MOD(r, 0, 5, 5); } hdmi_write_reg(core_sys_base, HDMI_CORE_SYS_VID_MODE, r); /* HDMI_Ctrl */ r = hdmi_read_reg(hdmi_av_base(ip_data), HDMI_CORE_AV_HDMI_CTRL); r = FLD_MOD(r, cfg->deep_color_pkt, 6, 6); r = FLD_MOD(r, cfg->pkt_mode, 5, 3); r = FLD_MOD(r, cfg->hdmi_dvi, 0, 0); hdmi_write_reg(hdmi_av_base(ip_data), HDMI_CORE_AV_HDMI_CTRL, r); /* TMDS_CTRL */ REG_FLD_MOD(core_sys_base, HDMI_CORE_SYS_TMDS_CTRL, cfg->tclk_sel_clkmult, 6, 5); } static void hdmi_core_aux_infoframe_avi_config(struct hdmi_ip_data *ip_data) { u32 val; char sum = 0, checksum = 0; void __iomem *av_base = hdmi_av_base(ip_data); struct hdmi_core_infoframe_avi info_avi = ip_data->avi_cfg; sum += 0x82 + 0x002 + 0x00D; hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_TYPE, 0x082); hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_VERS, 0x002); hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_LEN, 0x00D); val = (info_avi.db1_format << 5) | (info_avi.db1_active_info << 4) | (info_avi.db1_bar_info_dv << 2) | (info_avi.db1_scan_info); hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(0), val); sum += val; val = (info_avi.db2_colorimetry << 6) | (info_avi.db2_aspect_ratio << 4) | (info_avi.db2_active_fmt_ar); hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(1), val); sum += val; val = (info_avi.db3_itc << 7) | (info_avi.db3_ec << 4) | (info_avi.db3_q_range << 2) | (info_avi.db3_nup_scaling); hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(2), val); sum += val; hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(3), info_avi.db4_videocode); sum += info_avi.db4_videocode; val = info_avi.db5_pixel_repeat; hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(4), val); sum += val; val = info_avi.db6_7_line_eoftop & 0x00FF; hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(5), val); sum += val; val = ((info_avi.db6_7_line_eoftop >> 8) & 0x00FF); hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(6), val); sum += val; val = info_avi.db8_9_line_sofbottom & 0x00FF; hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(7), val); sum += val; val = ((info_avi.db8_9_line_sofbottom >> 8) & 0x00FF); hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(8), val); sum += val; val = info_avi.db10_11_pixel_eofleft & 0x00FF; hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(9), val); sum += val; val = ((info_avi.db10_11_pixel_eofleft >> 8) & 0x00FF); hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(10), val); sum += val; val = info_avi.db12_13_pixel_sofright & 0x00FF; hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(11), val); sum += val; val = ((info_avi.db12_13_pixel_sofright >> 8) & 0x00FF); hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_DBYTE(12), val); sum += val; checksum = 0x100 - sum; hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_CHSUM, checksum); } static void hdmi_core_av_packet_config(struct hdmi_ip_data *ip_data, struct hdmi_core_packet_enable_repeat repeat_cfg) { /* enable/repeat the infoframe */ hdmi_write_reg(hdmi_av_base(ip_data), HDMI_CORE_AV_PB_CTRL1, (repeat_cfg.audio_pkt << 5) | (repeat_cfg.audio_pkt_repeat << 4) | (repeat_cfg.avi_infoframe << 1) | (repeat_cfg.avi_infoframe_repeat)); /* enable/repeat the packet */ hdmi_write_reg(hdmi_av_base(ip_data), HDMI_CORE_AV_PB_CTRL2, (repeat_cfg.gen_cntrl_pkt << 3) | (repeat_cfg.gen_cntrl_pkt_repeat << 2) | (repeat_cfg.generic_pkt << 1) | (repeat_cfg.generic_pkt_repeat)); } static void hdmi_wp_init(struct omap_video_timings *timings, struct hdmi_video_format *video_fmt) { pr_debug("Enter hdmi_wp_init\n"); timings->hbp = 0; timings->hfp = 0; timings->hsw = 0; timings->vbp = 0; timings->vfp = 0; timings->vsw = 0; video_fmt->packing_mode = HDMI_PACK_10b_RGB_YUV444; video_fmt->y_res = 0; video_fmt->x_res = 0; } void ti_hdmi_4xxx_wp_video_start(struct hdmi_ip_data *ip_data, bool start) { REG_FLD_MOD(hdmi_wp_base(ip_data), HDMI_WP_VIDEO_CFG, start, 31, 31); } static void hdmi_wp_video_init_format(struct hdmi_video_format *video_fmt, struct omap_video_timings *timings, struct hdmi_config *param) { pr_debug("Enter hdmi_wp_video_init_format\n"); video_fmt->y_res = param->timings.y_res; video_fmt->x_res = param->timings.x_res; timings->hbp = param->timings.hbp; timings->hfp = param->timings.hfp; timings->hsw = param->timings.hsw; timings->vbp = param->timings.vbp; timings->vfp = param->timings.vfp; timings->vsw = param->timings.vsw; } static void hdmi_wp_video_config_format(struct hdmi_ip_data *ip_data, struct hdmi_video_format *video_fmt) { u32 l = 0; REG_FLD_MOD(hdmi_wp_base(ip_data), HDMI_WP_VIDEO_CFG, video_fmt->packing_mode, 10, 8); l |= FLD_VAL(video_fmt->y_res, 31, 16); l |= FLD_VAL(video_fmt->x_res, 15, 0); hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_VIDEO_SIZE, l); } static void hdmi_wp_video_config_interface(struct hdmi_ip_data *ip_data) { u32 r; pr_debug("Enter hdmi_wp_video_config_interface\n"); r = hdmi_read_reg(hdmi_wp_base(ip_data), HDMI_WP_VIDEO_CFG); r = FLD_MOD(r, ip_data->cfg.timings.vsync_pol, 7, 7); r = FLD_MOD(r, ip_data->cfg.timings.hsync_pol, 6, 6); r = FLD_MOD(r, ip_data->cfg.timings.interlace, 3, 3); r = FLD_MOD(r, 1, 1, 0); /* HDMI_TIMING_MASTER_24BIT */ hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_VIDEO_CFG, r); } static void hdmi_wp_video_config_timing(struct hdmi_ip_data *ip_data, struct omap_video_timings *timings) { u32 timing_h = 0; u32 timing_v = 0; pr_debug("Enter hdmi_wp_video_config_timing\n"); timing_h |= FLD_VAL(timings->hbp, 31, 20); timing_h |= FLD_VAL(timings->hfp, 19, 8); timing_h |= FLD_VAL(timings->hsw, 7, 0); hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_VIDEO_TIMING_H, timing_h); timing_v |= FLD_VAL(timings->vbp, 31, 20); timing_v |= FLD_VAL(timings->vfp, 19, 8); timing_v |= FLD_VAL(timings->vsw, 7, 0); hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_VIDEO_TIMING_V, timing_v); } void ti_hdmi_4xxx_basic_configure(struct hdmi_ip_data *ip_data) { /* HDMI */ struct omap_video_timings video_timing; struct hdmi_video_format video_format; /* HDMI core */ struct hdmi_core_infoframe_avi avi_cfg = ip_data->avi_cfg; struct hdmi_core_video_config v_core_cfg; struct hdmi_core_packet_enable_repeat repeat_cfg; struct hdmi_config *cfg = &ip_data->cfg; hdmi_wp_init(&video_timing, &video_format); hdmi_core_init(&v_core_cfg, &avi_cfg, &repeat_cfg); hdmi_wp_video_init_format(&video_format, &video_timing, cfg); hdmi_wp_video_config_timing(ip_data, &video_timing); /* video config */ video_format.packing_mode = HDMI_PACK_24b_RGB_YUV444_YUV422; hdmi_wp_video_config_format(ip_data, &video_format); hdmi_wp_video_config_interface(ip_data); /* * configure core video part * set software reset in the core */ hdmi_core_swreset_assert(ip_data); /* power down off */ hdmi_core_powerdown_disable(ip_data); v_core_cfg.pkt_mode = HDMI_PACKETMODE24BITPERPIXEL; v_core_cfg.hdmi_dvi = cfg->cm.mode; hdmi_core_video_config(ip_data, &v_core_cfg); /* release software reset in the core */ hdmi_core_swreset_release(ip_data); /* * configure packet * info frame video see doc CEA861-D page 65 */ avi_cfg.db1_format = HDMI_INFOFRAME_AVI_DB1Y_RGB; avi_cfg.db1_active_info = HDMI_INFOFRAME_AVI_DB1A_ACTIVE_FORMAT_OFF; avi_cfg.db1_bar_info_dv = HDMI_INFOFRAME_AVI_DB1B_NO; avi_cfg.db1_scan_info = HDMI_INFOFRAME_AVI_DB1S_0; avi_cfg.db2_colorimetry = HDMI_INFOFRAME_AVI_DB2C_NO; avi_cfg.db2_aspect_ratio = HDMI_INFOFRAME_AVI_DB2M_NO; avi_cfg.db2_active_fmt_ar = HDMI_INFOFRAME_AVI_DB2R_SAME; avi_cfg.db3_itc = HDMI_INFOFRAME_AVI_DB3ITC_NO; avi_cfg.db3_ec = HDMI_INFOFRAME_AVI_DB3EC_XVYUV601; avi_cfg.db3_q_range = HDMI_INFOFRAME_AVI_DB3Q_DEFAULT; avi_cfg.db3_nup_scaling = HDMI_INFOFRAME_AVI_DB3SC_NO; avi_cfg.db4_videocode = cfg->cm.code; avi_cfg.db5_pixel_repeat = HDMI_INFOFRAME_AVI_DB5PR_NO; avi_cfg.db6_7_line_eoftop = 0; avi_cfg.db8_9_line_sofbottom = 0; avi_cfg.db10_11_pixel_eofleft = 0; avi_cfg.db12_13_pixel_sofright = 0; hdmi_core_aux_infoframe_avi_config(ip_data); /* enable/repeat the infoframe */ repeat_cfg.avi_infoframe = HDMI_PACKETENABLE; repeat_cfg.avi_infoframe_repeat = HDMI_PACKETREPEATON; /* wakeup */ repeat_cfg.audio_pkt = HDMI_PACKETENABLE; repeat_cfg.audio_pkt_repeat = HDMI_PACKETREPEATON; hdmi_core_av_packet_config(ip_data, repeat_cfg); } void ti_hdmi_4xxx_wp_dump(struct hdmi_ip_data *ip_data, struct seq_file *s) { #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r,\ hdmi_read_reg(hdmi_wp_base(ip_data), r)) DUMPREG(HDMI_WP_REVISION); DUMPREG(HDMI_WP_SYSCONFIG); DUMPREG(HDMI_WP_IRQSTATUS_RAW); DUMPREG(HDMI_WP_IRQSTATUS); DUMPREG(HDMI_WP_PWR_CTRL); DUMPREG(HDMI_WP_IRQENABLE_SET); DUMPREG(HDMI_WP_VIDEO_CFG); DUMPREG(HDMI_WP_VIDEO_SIZE); DUMPREG(HDMI_WP_VIDEO_TIMING_H); DUMPREG(HDMI_WP_VIDEO_TIMING_V); DUMPREG(HDMI_WP_WP_CLK); DUMPREG(HDMI_WP_AUDIO_CFG); DUMPREG(HDMI_WP_AUDIO_CFG2); DUMPREG(HDMI_WP_AUDIO_CTRL); DUMPREG(HDMI_WP_AUDIO_DATA); } void ti_hdmi_4xxx_pll_dump(struct hdmi_ip_data *ip_data, struct seq_file *s) { #define DUMPPLL(r) seq_printf(s, "%-35s %08x\n", #r,\ hdmi_read_reg(hdmi_pll_base(ip_data), r)) DUMPPLL(PLLCTRL_PLL_CONTROL); DUMPPLL(PLLCTRL_PLL_STATUS); DUMPPLL(PLLCTRL_PLL_GO); DUMPPLL(PLLCTRL_CFG1); DUMPPLL(PLLCTRL_CFG2); DUMPPLL(PLLCTRL_CFG3); DUMPPLL(PLLCTRL_CFG4); } void ti_hdmi_4xxx_core_dump(struct hdmi_ip_data *ip_data, struct seq_file *s) { int i; #define CORE_REG(i, name) name(i) #define DUMPCORE(r) seq_printf(s, "%-35s %08x\n", #r,\ hdmi_read_reg(hdmi_pll_base(ip_data), r)) #define DUMPCOREAV(i, r) seq_printf(s, "%s[%d]%*s %08x\n", #r, i, \ (i < 10) ? 32 - strlen(#r) : 31 - strlen(#r), " ", \ hdmi_read_reg(hdmi_pll_base(ip_data), CORE_REG(i, r))) DUMPCORE(HDMI_CORE_SYS_VND_IDL); DUMPCORE(HDMI_CORE_SYS_DEV_IDL); DUMPCORE(HDMI_CORE_SYS_DEV_IDH); DUMPCORE(HDMI_CORE_SYS_DEV_REV); DUMPCORE(HDMI_CORE_SYS_SRST); DUMPCORE(HDMI_CORE_CTRL1); DUMPCORE(HDMI_CORE_SYS_SYS_STAT); DUMPCORE(HDMI_CORE_SYS_VID_ACEN); DUMPCORE(HDMI_CORE_SYS_VID_MODE); DUMPCORE(HDMI_CORE_SYS_INTR_STATE); DUMPCORE(HDMI_CORE_SYS_INTR1); DUMPCORE(HDMI_CORE_SYS_INTR2); DUMPCORE(HDMI_CORE_SYS_INTR3); DUMPCORE(HDMI_CORE_SYS_INTR4); DUMPCORE(HDMI_CORE_SYS_UMASK1); DUMPCORE(HDMI_CORE_SYS_TMDS_CTRL); DUMPCORE(HDMI_CORE_SYS_DE_DLY); DUMPCORE(HDMI_CORE_SYS_DE_CTRL); DUMPCORE(HDMI_CORE_SYS_DE_TOP); DUMPCORE(HDMI_CORE_SYS_DE_CNTL); DUMPCORE(HDMI_CORE_SYS_DE_CNTH); DUMPCORE(HDMI_CORE_SYS_DE_LINL); DUMPCORE(HDMI_CORE_SYS_DE_LINH_1); DUMPCORE(HDMI_CORE_DDC_CMD); DUMPCORE(HDMI_CORE_DDC_STATUS); DUMPCORE(HDMI_CORE_DDC_ADDR); DUMPCORE(HDMI_CORE_DDC_OFFSET); DUMPCORE(HDMI_CORE_DDC_COUNT1); DUMPCORE(HDMI_CORE_DDC_COUNT2); DUMPCORE(HDMI_CORE_DDC_DATA); DUMPCORE(HDMI_CORE_DDC_SEGM); DUMPCORE(HDMI_CORE_AV_HDMI_CTRL); DUMPCORE(HDMI_CORE_AV_DPD); DUMPCORE(HDMI_CORE_AV_PB_CTRL1); DUMPCORE(HDMI_CORE_AV_PB_CTRL2); DUMPCORE(HDMI_CORE_AV_AVI_TYPE); DUMPCORE(HDMI_CORE_AV_AVI_VERS); DUMPCORE(HDMI_CORE_AV_AVI_LEN); DUMPCORE(HDMI_CORE_AV_AVI_CHSUM); for (i = 0; i < HDMI_CORE_AV_AVI_DBYTE_NELEMS; i++) DUMPCOREAV(i, HDMI_CORE_AV_AVI_DBYTE); for (i = 0; i < HDMI_CORE_AV_SPD_DBYTE_NELEMS; i++) DUMPCOREAV(i, HDMI_CORE_AV_SPD_DBYTE); for (i = 0; i < HDMI_CORE_AV_AUD_DBYTE_NELEMS; i++) DUMPCOREAV(i, HDMI_CORE_AV_AUD_DBYTE); for (i = 0; i < HDMI_CORE_AV_MPEG_DBYTE_NELEMS; i++) DUMPCOREAV(i, HDMI_CORE_AV_MPEG_DBYTE); for (i = 0; i < HDMI_CORE_AV_GEN_DBYTE_NELEMS; i++) DUMPCOREAV(i, HDMI_CORE_AV_GEN_DBYTE); for (i = 0; i < HDMI_CORE_AV_GEN2_DBYTE_NELEMS; i++) DUMPCOREAV(i, HDMI_CORE_AV_GEN2_DBYTE); DUMPCORE(HDMI_CORE_AV_ACR_CTRL); DUMPCORE(HDMI_CORE_AV_FREQ_SVAL); DUMPCORE(HDMI_CORE_AV_N_SVAL1); DUMPCORE(HDMI_CORE_AV_N_SVAL2); DUMPCORE(HDMI_CORE_AV_N_SVAL3); DUMPCORE(HDMI_CORE_AV_CTS_SVAL1); DUMPCORE(HDMI_CORE_AV_CTS_SVAL2); DUMPCORE(HDMI_CORE_AV_CTS_SVAL3); DUMPCORE(HDMI_CORE_AV_CTS_HVAL1); DUMPCORE(HDMI_CORE_AV_CTS_HVAL2); DUMPCORE(HDMI_CORE_AV_CTS_HVAL3); DUMPCORE(HDMI_CORE_AV_AUD_MODE); DUMPCORE(HDMI_CORE_AV_SPDIF_CTRL); DUMPCORE(HDMI_CORE_AV_HW_SPDIF_FS); DUMPCORE(HDMI_CORE_AV_SWAP_I2S); DUMPCORE(HDMI_CORE_AV_SPDIF_ERTH); DUMPCORE(HDMI_CORE_AV_I2S_IN_MAP); DUMPCORE(HDMI_CORE_AV_I2S_IN_CTRL); DUMPCORE(HDMI_CORE_AV_I2S_CHST0); DUMPCORE(HDMI_CORE_AV_I2S_CHST1); DUMPCORE(HDMI_CORE_AV_I2S_CHST2); DUMPCORE(HDMI_CORE_AV_I2S_CHST4); DUMPCORE(HDMI_CORE_AV_I2S_CHST5); DUMPCORE(HDMI_CORE_AV_ASRC); DUMPCORE(HDMI_CORE_AV_I2S_IN_LEN); DUMPCORE(HDMI_CORE_AV_HDMI_CTRL); DUMPCORE(HDMI_CORE_AV_AUDO_TXSTAT); DUMPCORE(HDMI_CORE_AV_AUD_PAR_BUSCLK_1); DUMPCORE(HDMI_CORE_AV_AUD_PAR_BUSCLK_2); DUMPCORE(HDMI_CORE_AV_AUD_PAR_BUSCLK_3); DUMPCORE(HDMI_CORE_AV_TEST_TXCTRL); DUMPCORE(HDMI_CORE_AV_DPD); DUMPCORE(HDMI_CORE_AV_PB_CTRL1); DUMPCORE(HDMI_CORE_AV_PB_CTRL2); DUMPCORE(HDMI_CORE_AV_AVI_TYPE); DUMPCORE(HDMI_CORE_AV_AVI_VERS); DUMPCORE(HDMI_CORE_AV_AVI_LEN); DUMPCORE(HDMI_CORE_AV_AVI_CHSUM); DUMPCORE(HDMI_CORE_AV_SPD_TYPE); DUMPCORE(HDMI_CORE_AV_SPD_VERS); DUMPCORE(HDMI_CORE_AV_SPD_LEN); DUMPCORE(HDMI_CORE_AV_SPD_CHSUM); DUMPCORE(HDMI_CORE_AV_AUDIO_TYPE); DUMPCORE(HDMI_CORE_AV_AUDIO_VERS); DUMPCORE(HDMI_CORE_AV_AUDIO_LEN); DUMPCORE(HDMI_CORE_AV_AUDIO_CHSUM); DUMPCORE(HDMI_CORE_AV_MPEG_TYPE); DUMPCORE(HDMI_CORE_AV_MPEG_VERS); DUMPCORE(HDMI_CORE_AV_MPEG_LEN); DUMPCORE(HDMI_CORE_AV_MPEG_CHSUM); DUMPCORE(HDMI_CORE_AV_CP_BYTE1); DUMPCORE(HDMI_CORE_AV_CEC_ADDR_ID); } void ti_hdmi_4xxx_phy_dump(struct hdmi_ip_data *ip_data, struct seq_file *s) { #define DUMPPHY(r) seq_printf(s, "%-35s %08x\n", #r,\ hdmi_read_reg(hdmi_phy_base(ip_data), r)) DUMPPHY(HDMI_TXPHY_TX_CTRL); DUMPPHY(HDMI_TXPHY_DIGITAL_CTRL); DUMPPHY(HDMI_TXPHY_POWER_CTRL); DUMPPHY(HDMI_TXPHY_PAD_CFG_CTRL); } #if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \ defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE) void hdmi_wp_audio_config_format(struct hdmi_ip_data *ip_data, struct hdmi_audio_format *aud_fmt) { u32 r; DSSDBG("Enter hdmi_wp_audio_config_format\n"); r = hdmi_read_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG); r = FLD_MOD(r, aud_fmt->stereo_channels, 26, 24); r = FLD_MOD(r, aud_fmt->active_chnnls_msk, 23, 16); r = FLD_MOD(r, aud_fmt->en_sig_blk_strt_end, 5, 5); r = FLD_MOD(r, aud_fmt->type, 4, 4); r = FLD_MOD(r, aud_fmt->justification, 3, 3); r = FLD_MOD(r, aud_fmt->sample_order, 2, 2); r = FLD_MOD(r, aud_fmt->samples_per_word, 1, 1); r = FLD_MOD(r, aud_fmt->sample_size, 0, 0); hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG, r); } void hdmi_wp_audio_config_dma(struct hdmi_ip_data *ip_data, struct hdmi_audio_dma *aud_dma) { u32 r; DSSDBG("Enter hdmi_wp_audio_config_dma\n"); r = hdmi_read_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG2); r = FLD_MOD(r, aud_dma->transfer_size, 15, 8); r = FLD_MOD(r, aud_dma->block_size, 7, 0); hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG2, r); r = hdmi_read_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CTRL); r = FLD_MOD(r, aud_dma->mode, 9, 9); r = FLD_MOD(r, aud_dma->fifo_threshold, 8, 0); hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CTRL, r); } void hdmi_core_audio_config(struct hdmi_ip_data *ip_data, struct hdmi_core_audio_config *cfg) { u32 r; void __iomem *av_base = hdmi_av_base(ip_data); /* * Parameters for generation of Audio Clock Recovery packets */ REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL1, cfg->n, 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL2, cfg->n >> 8, 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL3, cfg->n >> 16, 7, 0); if (cfg->cts_mode == HDMI_AUDIO_CTS_MODE_SW) { REG_FLD_MOD(av_base, HDMI_CORE_AV_CTS_SVAL1, cfg->cts, 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_CTS_SVAL2, cfg->cts >> 8, 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_CTS_SVAL3, cfg->cts >> 16, 7, 0); } else { REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_1, cfg->aud_par_busclk, 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_2, (cfg->aud_par_busclk >> 8), 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_3, (cfg->aud_par_busclk >> 16), 7, 0); } /* Set ACR clock divisor */ REG_FLD_MOD(av_base, HDMI_CORE_AV_FREQ_SVAL, cfg->mclk_mode, 2, 0); r = hdmi_read_reg(av_base, HDMI_CORE_AV_ACR_CTRL); /* * Use TMDS clock for ACR packets. For devices that use * the MCLK, this is the first part of the MCLK initialization. */ r = FLD_MOD(r, 0, 2, 2); r = FLD_MOD(r, cfg->en_acr_pkt, 1, 1); r = FLD_MOD(r, cfg->cts_mode, 0, 0); hdmi_write_reg(av_base, HDMI_CORE_AV_ACR_CTRL, r); /* For devices using MCLK, this completes its initialization. */ if (cfg->use_mclk) REG_FLD_MOD(av_base, HDMI_CORE_AV_ACR_CTRL, 1, 2, 2); /* Override of SPDIF sample frequency with value in I2S_CHST4 */ REG_FLD_MOD(av_base, HDMI_CORE_AV_SPDIF_CTRL, cfg->fs_override, 1, 1); /* I2S parameters */ REG_FLD_MOD(av_base, HDMI_CORE_AV_I2S_CHST4, cfg->freq_sample, 3, 0); r = hdmi_read_reg(av_base, HDMI_CORE_AV_I2S_IN_CTRL); r = FLD_MOD(r, cfg->i2s_cfg.en_high_bitrate_aud, 7, 7); r = FLD_MOD(r, cfg->i2s_cfg.sck_edge_mode, 6, 6); r = FLD_MOD(r, cfg->i2s_cfg.cbit_order, 5, 5); r = FLD_MOD(r, cfg->i2s_cfg.vbit, 4, 4); r = FLD_MOD(r, cfg->i2s_cfg.ws_polarity, 3, 3); r = FLD_MOD(r, cfg->i2s_cfg.justification, 2, 2); r = FLD_MOD(r, cfg->i2s_cfg.direction, 1, 1); r = FLD_MOD(r, cfg->i2s_cfg.shift, 0, 0); hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_IN_CTRL, r); r = hdmi_read_reg(av_base, HDMI_CORE_AV_I2S_CHST5); r = FLD_MOD(r, cfg->freq_sample, 7, 4); r = FLD_MOD(r, cfg->i2s_cfg.word_length, 3, 1); r = FLD_MOD(r, cfg->i2s_cfg.word_max_length, 0, 0); hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_CHST5, r); REG_FLD_MOD(av_base, HDMI_CORE_AV_I2S_IN_LEN, cfg->i2s_cfg.in_length_bits, 3, 0); /* Audio channels and mode parameters */ REG_FLD_MOD(av_base, HDMI_CORE_AV_HDMI_CTRL, cfg->layout, 2, 1); r = hdmi_read_reg(av_base, HDMI_CORE_AV_AUD_MODE); r = FLD_MOD(r, cfg->i2s_cfg.active_sds, 7, 4); r = FLD_MOD(r, cfg->en_dsd_audio, 3, 3); r = FLD_MOD(r, cfg->en_parallel_aud_input, 2, 2); r = FLD_MOD(r, cfg->en_spdif, 1, 1); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_MODE, r); } void hdmi_core_audio_infoframe_config(struct hdmi_ip_data *ip_data, struct hdmi_core_infoframe_audio *info_aud) { u8 val; u8 sum = 0, checksum = 0; void __iomem *av_base = hdmi_av_base(ip_data); /* * Set audio info frame type, version and length as * described in HDMI 1.4a Section 8.2.2 specification. * Checksum calculation is defined in Section 5.3.5. */ hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_TYPE, 0x84); hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_VERS, 0x01); hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_LEN, 0x0a); sum += 0x84 + 0x001 + 0x00a; val = (info_aud->db1_coding_type << 4) | (info_aud->db1_channel_count - 1); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(0), val); sum += val; val = (info_aud->db2_sample_freq << 2) | info_aud->db2_sample_size; hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(1), val); sum += val; hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(2), 0x00); val = info_aud->db4_channel_alloc; hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(3), val); sum += val; val = (info_aud->db5_downmix_inh << 7) | (info_aud->db5_lsv << 3); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(4), val); sum += val; hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(5), 0x00); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(6), 0x00); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(7), 0x00); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(8), 0x00); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(9), 0x00); checksum = 0x100 - sum; hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_CHSUM, checksum); /* * TODO: Add MPEG and SPD enable and repeat cfg when EDID parsing * is available. */ } int hdmi_config_audio_acr(struct hdmi_ip_data *ip_data, u32 sample_freq, u32 *n, u32 *cts) { u32 r; u32 deep_color = 0; u32 pclk = ip_data->cfg.timings.pixel_clock; if (n == NULL || cts == NULL) return -EINVAL; /* * Obtain current deep color configuration. This needed * to calculate the TMDS clock based on the pixel clock. */ r = REG_GET(hdmi_wp_base(ip_data), HDMI_WP_VIDEO_CFG, 1, 0); switch (r) { case 1: /* No deep color selected */ deep_color = 100; break; case 2: /* 10-bit deep color selected */ deep_color = 125; break; case 3: /* 12-bit deep color selected */ deep_color = 150; break; default: return -EINVAL; } switch (sample_freq) { case 32000: if ((deep_color == 125) && ((pclk == 54054) || (pclk == 74250))) *n = 8192; else *n = 4096; break; case 44100: *n = 6272; break; case 48000: if ((deep_color == 125) && ((pclk == 54054) || (pclk == 74250))) *n = 8192; else *n = 6144; break; default: *n = 0; return -EINVAL; } /* Calculate CTS. See HDMI 1.3a or 1.4a specifications */ *cts = pclk * (*n / 128) * deep_color / (sample_freq / 10); return 0; } void ti_hdmi_4xxx_wp_audio_enable(struct hdmi_ip_data *ip_data, bool enable) { REG_FLD_MOD(hdmi_av_base(ip_data), HDMI_CORE_AV_AUD_MODE, enable, 0, 0); REG_FLD_MOD(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CTRL, enable, 31, 31); REG_FLD_MOD(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CTRL, enable, 30, 30); } #endif