/* * Linux driver for VMware's vmxnet3 ethernet NIC. * * Copyright (C) 2008-2009, VMware, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; version 2 of the License and no later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Maintained by: Shreyas Bhatewara * */ #include #include #include "vmxnet3_int.h" char vmxnet3_driver_name[] = "vmxnet3"; #define VMXNET3_DRIVER_DESC "VMware vmxnet3 virtual NIC driver" /* * PCI Device ID Table * Last entry must be all 0s */ static DEFINE_PCI_DEVICE_TABLE(vmxnet3_pciid_table) = { {PCI_VDEVICE(VMWARE, PCI_DEVICE_ID_VMWARE_VMXNET3)}, {0} }; MODULE_DEVICE_TABLE(pci, vmxnet3_pciid_table); static atomic_t devices_found; #define VMXNET3_MAX_DEVICES 10 static int enable_mq = 1; static int irq_share_mode; static void vmxnet3_write_mac_addr(struct vmxnet3_adapter *adapter, u8 *mac); /* * Enable/Disable the given intr */ static void vmxnet3_enable_intr(struct vmxnet3_adapter *adapter, unsigned intr_idx) { VMXNET3_WRITE_BAR0_REG(adapter, VMXNET3_REG_IMR + intr_idx * 8, 0); } static void vmxnet3_disable_intr(struct vmxnet3_adapter *adapter, unsigned intr_idx) { VMXNET3_WRITE_BAR0_REG(adapter, VMXNET3_REG_IMR + intr_idx * 8, 1); } /* * Enable/Disable all intrs used by the device */ static void vmxnet3_enable_all_intrs(struct vmxnet3_adapter *adapter) { int i; for (i = 0; i < adapter->intr.num_intrs; i++) vmxnet3_enable_intr(adapter, i); adapter->shared->devRead.intrConf.intrCtrl &= cpu_to_le32(~VMXNET3_IC_DISABLE_ALL); } static void vmxnet3_disable_all_intrs(struct vmxnet3_adapter *adapter) { int i; adapter->shared->devRead.intrConf.intrCtrl |= cpu_to_le32(VMXNET3_IC_DISABLE_ALL); for (i = 0; i < adapter->intr.num_intrs; i++) vmxnet3_disable_intr(adapter, i); } static void vmxnet3_ack_events(struct vmxnet3_adapter *adapter, u32 events) { VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_ECR, events); } static bool vmxnet3_tq_stopped(struct vmxnet3_tx_queue *tq, struct vmxnet3_adapter *adapter) { return tq->stopped; } static void vmxnet3_tq_start(struct vmxnet3_tx_queue *tq, struct vmxnet3_adapter *adapter) { tq->stopped = false; netif_start_subqueue(adapter->netdev, tq - adapter->tx_queue); } static void vmxnet3_tq_wake(struct vmxnet3_tx_queue *tq, struct vmxnet3_adapter *adapter) { tq->stopped = false; netif_wake_subqueue(adapter->netdev, (tq - adapter->tx_queue)); } static void vmxnet3_tq_stop(struct vmxnet3_tx_queue *tq, struct vmxnet3_adapter *adapter) { tq->stopped = true; tq->num_stop++; netif_stop_subqueue(adapter->netdev, (tq - adapter->tx_queue)); } /* * Check the link state. This may start or stop the tx queue. */ static void vmxnet3_check_link(struct vmxnet3_adapter *adapter, bool affectTxQueue) { u32 ret; int i; unsigned long flags; spin_lock_irqsave(&adapter->cmd_lock, flags); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_GET_LINK); ret = VMXNET3_READ_BAR1_REG(adapter, VMXNET3_REG_CMD); spin_unlock_irqrestore(&adapter->cmd_lock, flags); adapter->link_speed = ret >> 16; if (ret & 1) { /* Link is up. */ printk(KERN_INFO "%s: NIC Link is Up %d Mbps\n", adapter->netdev->name, adapter->link_speed); if (!netif_carrier_ok(adapter->netdev)) netif_carrier_on(adapter->netdev); if (affectTxQueue) { for (i = 0; i < adapter->num_tx_queues; i++) vmxnet3_tq_start(&adapter->tx_queue[i], adapter); } } else { printk(KERN_INFO "%s: NIC Link is Down\n", adapter->netdev->name); if (netif_carrier_ok(adapter->netdev)) netif_carrier_off(adapter->netdev); if (affectTxQueue) { for (i = 0; i < adapter->num_tx_queues; i++) vmxnet3_tq_stop(&adapter->tx_queue[i], adapter); } } } static void vmxnet3_process_events(struct vmxnet3_adapter *adapter) { int i; unsigned long flags; u32 events = le32_to_cpu(adapter->shared->ecr); if (!events) return; vmxnet3_ack_events(adapter, events); /* Check if link state has changed */ if (events & VMXNET3_ECR_LINK) vmxnet3_check_link(adapter, true); /* Check if there is an error on xmit/recv queues */ if (events & (VMXNET3_ECR_TQERR | VMXNET3_ECR_RQERR)) { spin_lock_irqsave(&adapter->cmd_lock, flags); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_GET_QUEUE_STATUS); spin_unlock_irqrestore(&adapter->cmd_lock, flags); for (i = 0; i < adapter->num_tx_queues; i++) if (adapter->tqd_start[i].status.stopped) dev_err(&adapter->netdev->dev, "%s: tq[%d] error 0x%x\n", adapter->netdev->name, i, le32_to_cpu( adapter->tqd_start[i].status.error)); for (i = 0; i < adapter->num_rx_queues; i++) if (adapter->rqd_start[i].status.stopped) dev_err(&adapter->netdev->dev, "%s: rq[%d] error 0x%x\n", adapter->netdev->name, i, adapter->rqd_start[i].status.error); schedule_work(&adapter->work); } } #ifdef __BIG_ENDIAN_BITFIELD /* * The device expects the bitfields in shared structures to be written in * little endian. When CPU is big endian, the following routines are used to * correctly read and write into ABI. * The general technique used here is : double word bitfields are defined in * opposite order for big endian architecture. Then before reading them in * driver the complete double word is translated using le32_to_cpu. Similarly * After the driver writes into bitfields, cpu_to_le32 is used to translate the * double words into required format. * In order to avoid touching bits in shared structure more than once, temporary * descriptors are used. These are passed as srcDesc to following functions. */ static void vmxnet3_RxDescToCPU(const struct Vmxnet3_RxDesc *srcDesc, struct Vmxnet3_RxDesc *dstDesc) { u32 *src = (u32 *)srcDesc + 2; u32 *dst = (u32 *)dstDesc + 2; dstDesc->addr = le64_to_cpu(srcDesc->addr); *dst = le32_to_cpu(*src); dstDesc->ext1 = le32_to_cpu(srcDesc->ext1); } static void vmxnet3_TxDescToLe(const struct Vmxnet3_TxDesc *srcDesc, struct Vmxnet3_TxDesc *dstDesc) { int i; u32 *src = (u32 *)(srcDesc + 1); u32 *dst = (u32 *)(dstDesc + 1); /* Working backwards so that the gen bit is set at the end. */ for (i = 2; i > 0; i--) { src--; dst--; *dst = cpu_to_le32(*src); } } static void vmxnet3_RxCompToCPU(const struct Vmxnet3_RxCompDesc *srcDesc, struct Vmxnet3_RxCompDesc *dstDesc) { int i = 0; u32 *src = (u32 *)srcDesc; u32 *dst = (u32 *)dstDesc; for (i = 0; i < sizeof(struct Vmxnet3_RxCompDesc) / sizeof(u32); i++) { *dst = le32_to_cpu(*src); src++; dst++; } } /* Used to read bitfield values from double words. */ static u32 get_bitfield32(const __le32 *bitfield, u32 pos, u32 size) { u32 temp = le32_to_cpu(*bitfield); u32 mask = ((1 << size) - 1) << pos; temp &= mask; temp >>= pos; return temp; } #endif /* __BIG_ENDIAN_BITFIELD */ #ifdef __BIG_ENDIAN_BITFIELD # define VMXNET3_TXDESC_GET_GEN(txdesc) get_bitfield32(((const __le32 *) \ txdesc) + VMXNET3_TXD_GEN_DWORD_SHIFT, \ VMXNET3_TXD_GEN_SHIFT, VMXNET3_TXD_GEN_SIZE) # define VMXNET3_TXDESC_GET_EOP(txdesc) get_bitfield32(((const __le32 *) \ txdesc) + VMXNET3_TXD_EOP_DWORD_SHIFT, \ VMXNET3_TXD_EOP_SHIFT, VMXNET3_TXD_EOP_SIZE) # define VMXNET3_TCD_GET_GEN(tcd) get_bitfield32(((const __le32 *)tcd) + \ VMXNET3_TCD_GEN_DWORD_SHIFT, VMXNET3_TCD_GEN_SHIFT, \ VMXNET3_TCD_GEN_SIZE) # define VMXNET3_TCD_GET_TXIDX(tcd) get_bitfield32((const __le32 *)tcd, \ VMXNET3_TCD_TXIDX_SHIFT, VMXNET3_TCD_TXIDX_SIZE) # define vmxnet3_getRxComp(dstrcd, rcd, tmp) do { \ (dstrcd) = (tmp); \ vmxnet3_RxCompToCPU((rcd), (tmp)); \ } while (0) # define vmxnet3_getRxDesc(dstrxd, rxd, tmp) do { \ (dstrxd) = (tmp); \ vmxnet3_RxDescToCPU((rxd), (tmp)); \ } while (0) #else # define VMXNET3_TXDESC_GET_GEN(txdesc) ((txdesc)->gen) # define VMXNET3_TXDESC_GET_EOP(txdesc) ((txdesc)->eop) # define VMXNET3_TCD_GET_GEN(tcd) ((tcd)->gen) # define VMXNET3_TCD_GET_TXIDX(tcd) ((tcd)->txdIdx) # define vmxnet3_getRxComp(dstrcd, rcd, tmp) (dstrcd) = (rcd) # define vmxnet3_getRxDesc(dstrxd, rxd, tmp) (dstrxd) = (rxd) #endif /* __BIG_ENDIAN_BITFIELD */ static void vmxnet3_unmap_tx_buf(struct vmxnet3_tx_buf_info *tbi, struct pci_dev *pdev) { if (tbi->map_type == VMXNET3_MAP_SINGLE) pci_unmap_single(pdev, tbi->dma_addr, tbi->len, PCI_DMA_TODEVICE); else if (tbi->map_type == VMXNET3_MAP_PAGE) pci_unmap_page(pdev, tbi->dma_addr, tbi->len, PCI_DMA_TODEVICE); else BUG_ON(tbi->map_type != VMXNET3_MAP_NONE); tbi->map_type = VMXNET3_MAP_NONE; /* to help debugging */ } static int vmxnet3_unmap_pkt(u32 eop_idx, struct vmxnet3_tx_queue *tq, struct pci_dev *pdev, struct vmxnet3_adapter *adapter) { struct sk_buff *skb; int entries = 0; /* no out of order completion */ BUG_ON(tq->buf_info[eop_idx].sop_idx != tq->tx_ring.next2comp); BUG_ON(VMXNET3_TXDESC_GET_EOP(&(tq->tx_ring.base[eop_idx].txd)) != 1); skb = tq->buf_info[eop_idx].skb; BUG_ON(skb == NULL); tq->buf_info[eop_idx].skb = NULL; VMXNET3_INC_RING_IDX_ONLY(eop_idx, tq->tx_ring.size); while (tq->tx_ring.next2comp != eop_idx) { vmxnet3_unmap_tx_buf(tq->buf_info + tq->tx_ring.next2comp, pdev); /* update next2comp w/o tx_lock. Since we are marking more, * instead of less, tx ring entries avail, the worst case is * that the tx routine incorrectly re-queues a pkt due to * insufficient tx ring entries. */ vmxnet3_cmd_ring_adv_next2comp(&tq->tx_ring); entries++; } dev_kfree_skb_any(skb); return entries; } static int vmxnet3_tq_tx_complete(struct vmxnet3_tx_queue *tq, struct vmxnet3_adapter *adapter) { int completed = 0; union Vmxnet3_GenericDesc *gdesc; gdesc = tq->comp_ring.base + tq->comp_ring.next2proc; while (VMXNET3_TCD_GET_GEN(&gdesc->tcd) == tq->comp_ring.gen) { completed += vmxnet3_unmap_pkt(VMXNET3_TCD_GET_TXIDX( &gdesc->tcd), tq, adapter->pdev, adapter); vmxnet3_comp_ring_adv_next2proc(&tq->comp_ring); gdesc = tq->comp_ring.base + tq->comp_ring.next2proc; } if (completed) { spin_lock(&tq->tx_lock); if (unlikely(vmxnet3_tq_stopped(tq, adapter) && vmxnet3_cmd_ring_desc_avail(&tq->tx_ring) > VMXNET3_WAKE_QUEUE_THRESHOLD(tq) && netif_carrier_ok(adapter->netdev))) { vmxnet3_tq_wake(tq, adapter); } spin_unlock(&tq->tx_lock); } return completed; } static void vmxnet3_tq_cleanup(struct vmxnet3_tx_queue *tq, struct vmxnet3_adapter *adapter) { int i; while (tq->tx_ring.next2comp != tq->tx_ring.next2fill) { struct vmxnet3_tx_buf_info *tbi; tbi = tq->buf_info + tq->tx_ring.next2comp; vmxnet3_unmap_tx_buf(tbi, adapter->pdev); if (tbi->skb) { dev_kfree_skb_any(tbi->skb); tbi->skb = NULL; } vmxnet3_cmd_ring_adv_next2comp(&tq->tx_ring); } /* sanity check, verify all buffers are indeed unmapped and freed */ for (i = 0; i < tq->tx_ring.size; i++) { BUG_ON(tq->buf_info[i].skb != NULL || tq->buf_info[i].map_type != VMXNET3_MAP_NONE); } tq->tx_ring.gen = VMXNET3_INIT_GEN; tq->tx_ring.next2fill = tq->tx_ring.next2comp = 0; tq->comp_ring.gen = VMXNET3_INIT_GEN; tq->comp_ring.next2proc = 0; } static void vmxnet3_tq_destroy(struct vmxnet3_tx_queue *tq, struct vmxnet3_adapter *adapter) { if (tq->tx_ring.base) { pci_free_consistent(adapter->pdev, tq->tx_ring.size * sizeof(struct Vmxnet3_TxDesc), tq->tx_ring.base, tq->tx_ring.basePA); tq->tx_ring.base = NULL; } if (tq->data_ring.base) { pci_free_consistent(adapter->pdev, tq->data_ring.size * sizeof(struct Vmxnet3_TxDataDesc), tq->data_ring.base, tq->data_ring.basePA); tq->data_ring.base = NULL; } if (tq->comp_ring.base) { pci_free_consistent(adapter->pdev, tq->comp_ring.size * sizeof(struct Vmxnet3_TxCompDesc), tq->comp_ring.base, tq->comp_ring.basePA); tq->comp_ring.base = NULL; } kfree(tq->buf_info); tq->buf_info = NULL; } /* Destroy all tx queues */ void vmxnet3_tq_destroy_all(struct vmxnet3_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) vmxnet3_tq_destroy(&adapter->tx_queue[i], adapter); } static void vmxnet3_tq_init(struct vmxnet3_tx_queue *tq, struct vmxnet3_adapter *adapter) { int i; /* reset the tx ring contents to 0 and reset the tx ring states */ memset(tq->tx_ring.base, 0, tq->tx_ring.size * sizeof(struct Vmxnet3_TxDesc)); tq->tx_ring.next2fill = tq->tx_ring.next2comp = 0; tq->tx_ring.gen = VMXNET3_INIT_GEN; memset(tq->data_ring.base, 0, tq->data_ring.size * sizeof(struct Vmxnet3_TxDataDesc)); /* reset the tx comp ring contents to 0 and reset comp ring states */ memset(tq->comp_ring.base, 0, tq->comp_ring.size * sizeof(struct Vmxnet3_TxCompDesc)); tq->comp_ring.next2proc = 0; tq->comp_ring.gen = VMXNET3_INIT_GEN; /* reset the bookkeeping data */ memset(tq->buf_info, 0, sizeof(tq->buf_info[0]) * tq->tx_ring.size); for (i = 0; i < tq->tx_ring.size; i++) tq->buf_info[i].map_type = VMXNET3_MAP_NONE; /* stats are not reset */ } static int vmxnet3_tq_create(struct vmxnet3_tx_queue *tq, struct vmxnet3_adapter *adapter) { BUG_ON(tq->tx_ring.base || tq->data_ring.base || tq->comp_ring.base || tq->buf_info); tq->tx_ring.base = pci_alloc_consistent(adapter->pdev, tq->tx_ring.size * sizeof(struct Vmxnet3_TxDesc), &tq->tx_ring.basePA); if (!tq->tx_ring.base) { printk(KERN_ERR "%s: failed to allocate tx ring\n", adapter->netdev->name); goto err; } tq->data_ring.base = pci_alloc_consistent(adapter->pdev, tq->data_ring.size * sizeof(struct Vmxnet3_TxDataDesc), &tq->data_ring.basePA); if (!tq->data_ring.base) { printk(KERN_ERR "%s: failed to allocate data ring\n", adapter->netdev->name); goto err; } tq->comp_ring.base = pci_alloc_consistent(adapter->pdev, tq->comp_ring.size * sizeof(struct Vmxnet3_TxCompDesc), &tq->comp_ring.basePA); if (!tq->comp_ring.base) { printk(KERN_ERR "%s: failed to allocate tx comp ring\n", adapter->netdev->name); goto err; } tq->buf_info = kcalloc(tq->tx_ring.size, sizeof(tq->buf_info[0]), GFP_KERNEL); if (!tq->buf_info) goto err; return 0; err: vmxnet3_tq_destroy(tq, adapter); return -ENOMEM; } static void vmxnet3_tq_cleanup_all(struct vmxnet3_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) vmxnet3_tq_cleanup(&adapter->tx_queue[i], adapter); } /* * starting from ring->next2fill, allocate rx buffers for the given ring * of the rx queue and update the rx desc. stop after @num_to_alloc buffers * are allocated or allocation fails */ static int vmxnet3_rq_alloc_rx_buf(struct vmxnet3_rx_queue *rq, u32 ring_idx, int num_to_alloc, struct vmxnet3_adapter *adapter) { int num_allocated = 0; struct vmxnet3_rx_buf_info *rbi_base = rq->buf_info[ring_idx]; struct vmxnet3_cmd_ring *ring = &rq->rx_ring[ring_idx]; u32 val; while (num_allocated <= num_to_alloc) { struct vmxnet3_rx_buf_info *rbi; union Vmxnet3_GenericDesc *gd; rbi = rbi_base + ring->next2fill; gd = ring->base + ring->next2fill; if (rbi->buf_type == VMXNET3_RX_BUF_SKB) { if (rbi->skb == NULL) { rbi->skb = dev_alloc_skb(rbi->len + NET_IP_ALIGN); if (unlikely(rbi->skb == NULL)) { rq->stats.rx_buf_alloc_failure++; break; } rbi->skb->dev = adapter->netdev; skb_reserve(rbi->skb, NET_IP_ALIGN); rbi->dma_addr = pci_map_single(adapter->pdev, rbi->skb->data, rbi->len, PCI_DMA_FROMDEVICE); } else { /* rx buffer skipped by the device */ } val = VMXNET3_RXD_BTYPE_HEAD << VMXNET3_RXD_BTYPE_SHIFT; } else { BUG_ON(rbi->buf_type != VMXNET3_RX_BUF_PAGE || rbi->len != PAGE_SIZE); if (rbi->page == NULL) { rbi->page = alloc_page(GFP_ATOMIC); if (unlikely(rbi->page == NULL)) { rq->stats.rx_buf_alloc_failure++; break; } rbi->dma_addr = pci_map_page(adapter->pdev, rbi->page, 0, PAGE_SIZE, PCI_DMA_FROMDEVICE); } else { /* rx buffers skipped by the device */ } val = VMXNET3_RXD_BTYPE_BODY << VMXNET3_RXD_BTYPE_SHIFT; } BUG_ON(rbi->dma_addr == 0); gd->rxd.addr = cpu_to_le64(rbi->dma_addr); gd->dword[2] = cpu_to_le32((!ring->gen << VMXNET3_RXD_GEN_SHIFT) | val | rbi->len); /* Fill the last buffer but dont mark it ready, or else the * device will think that the queue is full */ if (num_allocated == num_to_alloc) break; gd->dword[2] |= cpu_to_le32(ring->gen << VMXNET3_RXD_GEN_SHIFT); num_allocated++; vmxnet3_cmd_ring_adv_next2fill(ring); } rq->uncommitted[ring_idx] += num_allocated; dev_dbg(&adapter->netdev->dev, "alloc_rx_buf: %d allocated, next2fill %u, next2comp " "%u, uncommitted %u\n", num_allocated, ring->next2fill, ring->next2comp, rq->uncommitted[ring_idx]); /* so that the device can distinguish a full ring and an empty ring */ BUG_ON(num_allocated != 0 && ring->next2fill == ring->next2comp); return num_allocated; } static void vmxnet3_append_frag(struct sk_buff *skb, struct Vmxnet3_RxCompDesc *rcd, struct vmxnet3_rx_buf_info *rbi) { struct skb_frag_struct *frag = skb_shinfo(skb)->frags + skb_shinfo(skb)->nr_frags; BUG_ON(skb_shinfo(skb)->nr_frags >= MAX_SKB_FRAGS); __skb_frag_set_page(frag, rbi->page); frag->page_offset = 0; skb_frag_size_set(frag, rcd->len); skb->data_len += rcd->len; skb->truesize += PAGE_SIZE; skb_shinfo(skb)->nr_frags++; } static void vmxnet3_map_pkt(struct sk_buff *skb, struct vmxnet3_tx_ctx *ctx, struct vmxnet3_tx_queue *tq, struct pci_dev *pdev, struct vmxnet3_adapter *adapter) { u32 dw2, len; unsigned long buf_offset; int i; union Vmxnet3_GenericDesc *gdesc; struct vmxnet3_tx_buf_info *tbi = NULL; BUG_ON(ctx->copy_size > skb_headlen(skb)); /* use the previous gen bit for the SOP desc */ dw2 = (tq->tx_ring.gen ^ 0x1) << VMXNET3_TXD_GEN_SHIFT; ctx->sop_txd = tq->tx_ring.base + tq->tx_ring.next2fill; gdesc = ctx->sop_txd; /* both loops below can be skipped */ /* no need to map the buffer if headers are copied */ if (ctx->copy_size) { ctx->sop_txd->txd.addr = cpu_to_le64(tq->data_ring.basePA + tq->tx_ring.next2fill * sizeof(struct Vmxnet3_TxDataDesc)); ctx->sop_txd->dword[2] = cpu_to_le32(dw2 | ctx->copy_size); ctx->sop_txd->dword[3] = 0; tbi = tq->buf_info + tq->tx_ring.next2fill; tbi->map_type = VMXNET3_MAP_NONE; dev_dbg(&adapter->netdev->dev, "txd[%u]: 0x%Lx 0x%x 0x%x\n", tq->tx_ring.next2fill, le64_to_cpu(ctx->sop_txd->txd.addr), ctx->sop_txd->dword[2], ctx->sop_txd->dword[3]); vmxnet3_cmd_ring_adv_next2fill(&tq->tx_ring); /* use the right gen for non-SOP desc */ dw2 = tq->tx_ring.gen << VMXNET3_TXD_GEN_SHIFT; } /* linear part can use multiple tx desc if it's big */ len = skb_headlen(skb) - ctx->copy_size; buf_offset = ctx->copy_size; while (len) { u32 buf_size; if (len < VMXNET3_MAX_TX_BUF_SIZE) { buf_size = len; dw2 |= len; } else { buf_size = VMXNET3_MAX_TX_BUF_SIZE; /* spec says that for TxDesc.len, 0 == 2^14 */ } tbi = tq->buf_info + tq->tx_ring.next2fill; tbi->map_type = VMXNET3_MAP_SINGLE; tbi->dma_addr = pci_map_single(adapter->pdev, skb->data + buf_offset, buf_size, PCI_DMA_TODEVICE); tbi->len = buf_size; gdesc = tq->tx_ring.base + tq->tx_ring.next2fill; BUG_ON(gdesc->txd.gen == tq->tx_ring.gen); gdesc->txd.addr = cpu_to_le64(tbi->dma_addr); gdesc->dword[2] = cpu_to_le32(dw2); gdesc->dword[3] = 0; dev_dbg(&adapter->netdev->dev, "txd[%u]: 0x%Lx 0x%x 0x%x\n", tq->tx_ring.next2fill, le64_to_cpu(gdesc->txd.addr), le32_to_cpu(gdesc->dword[2]), gdesc->dword[3]); vmxnet3_cmd_ring_adv_next2fill(&tq->tx_ring); dw2 = tq->tx_ring.gen << VMXNET3_TXD_GEN_SHIFT; len -= buf_size; buf_offset += buf_size; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i]; tbi = tq->buf_info + tq->tx_ring.next2fill; tbi->map_type = VMXNET3_MAP_PAGE; tbi->dma_addr = skb_frag_dma_map(&adapter->pdev->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); tbi->len = skb_frag_size(frag); gdesc = tq->tx_ring.base + tq->tx_ring.next2fill; BUG_ON(gdesc->txd.gen == tq->tx_ring.gen); gdesc->txd.addr = cpu_to_le64(tbi->dma_addr); gdesc->dword[2] = cpu_to_le32(dw2 | skb_frag_size(frag)); gdesc->dword[3] = 0; dev_dbg(&adapter->netdev->dev, "txd[%u]: 0x%llu %u %u\n", tq->tx_ring.next2fill, le64_to_cpu(gdesc->txd.addr), le32_to_cpu(gdesc->dword[2]), gdesc->dword[3]); vmxnet3_cmd_ring_adv_next2fill(&tq->tx_ring); dw2 = tq->tx_ring.gen << VMXNET3_TXD_GEN_SHIFT; } ctx->eop_txd = gdesc; /* set the last buf_info for the pkt */ tbi->skb = skb; tbi->sop_idx = ctx->sop_txd - tq->tx_ring.base; } /* Init all tx queues */ static void vmxnet3_tq_init_all(struct vmxnet3_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) vmxnet3_tq_init(&adapter->tx_queue[i], adapter); } /* * parse and copy relevant protocol headers: * For a tso pkt, relevant headers are L2/3/4 including options * For a pkt requesting csum offloading, they are L2/3 and may include L4 * if it's a TCP/UDP pkt * * Returns: * -1: error happens during parsing * 0: protocol headers parsed, but too big to be copied * 1: protocol headers parsed and copied * * Other effects: * 1. related *ctx fields are updated. * 2. ctx->copy_size is # of bytes copied * 3. the portion copied is guaranteed to be in the linear part * */ static int vmxnet3_parse_and_copy_hdr(struct sk_buff *skb, struct vmxnet3_tx_queue *tq, struct vmxnet3_tx_ctx *ctx, struct vmxnet3_adapter *adapter) { struct Vmxnet3_TxDataDesc *tdd; if (ctx->mss) { /* TSO */ ctx->eth_ip_hdr_size = skb_transport_offset(skb); ctx->l4_hdr_size = tcp_hdrlen(skb); ctx->copy_size = ctx->eth_ip_hdr_size + ctx->l4_hdr_size; } else { if (skb->ip_summed == CHECKSUM_PARTIAL) { ctx->eth_ip_hdr_size = skb_checksum_start_offset(skb); if (ctx->ipv4) { const struct iphdr *iph = ip_hdr(skb); if (iph->protocol == IPPROTO_TCP) ctx->l4_hdr_size = tcp_hdrlen(skb); else if (iph->protocol == IPPROTO_UDP) ctx->l4_hdr_size = sizeof(struct udphdr); else ctx->l4_hdr_size = 0; } else { /* for simplicity, don't copy L4 headers */ ctx->l4_hdr_size = 0; } ctx->copy_size = min(ctx->eth_ip_hdr_size + ctx->l4_hdr_size, skb->len); } else { ctx->eth_ip_hdr_size = 0; ctx->l4_hdr_size = 0; /* copy as much as allowed */ ctx->copy_size = min((unsigned int)VMXNET3_HDR_COPY_SIZE , skb_headlen(skb)); } /* make sure headers are accessible directly */ if (unlikely(!pskb_may_pull(skb, ctx->copy_size))) goto err; } if (unlikely(ctx->copy_size > VMXNET3_HDR_COPY_SIZE)) { tq->stats.oversized_hdr++; ctx->copy_size = 0; return 0; } tdd = tq->data_ring.base + tq->tx_ring.next2fill; memcpy(tdd->data, skb->data, ctx->copy_size); dev_dbg(&adapter->netdev->dev, "copy %u bytes to dataRing[%u]\n", ctx->copy_size, tq->tx_ring.next2fill); return 1; err: return -1; } static void vmxnet3_prepare_tso(struct sk_buff *skb, struct vmxnet3_tx_ctx *ctx) { struct tcphdr *tcph = tcp_hdr(skb); if (ctx->ipv4) { struct iphdr *iph = ip_hdr(skb); iph->check = 0; tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); } else { struct ipv6hdr *iph = ipv6_hdr(skb); tcph->check = ~csum_ipv6_magic(&iph->saddr, &iph->daddr, 0, IPPROTO_TCP, 0); } } /* * Transmits a pkt thru a given tq * Returns: * NETDEV_TX_OK: descriptors are setup successfully * NETDEV_TX_OK: error occurred, the pkt is dropped * NETDEV_TX_BUSY: tx ring is full, queue is stopped * * Side-effects: * 1. tx ring may be changed * 2. tq stats may be updated accordingly * 3. shared->txNumDeferred may be updated */ static int vmxnet3_tq_xmit(struct sk_buff *skb, struct vmxnet3_tx_queue *tq, struct vmxnet3_adapter *adapter, struct net_device *netdev) { int ret; u32 count; unsigned long flags; struct vmxnet3_tx_ctx ctx; union Vmxnet3_GenericDesc *gdesc; #ifdef __BIG_ENDIAN_BITFIELD /* Use temporary descriptor to avoid touching bits multiple times */ union Vmxnet3_GenericDesc tempTxDesc; #endif /* conservatively estimate # of descriptors to use */ count = VMXNET3_TXD_NEEDED(skb_headlen(skb)) + skb_shinfo(skb)->nr_frags + 1; ctx.ipv4 = (vlan_get_protocol(skb) == cpu_to_be16(ETH_P_IP)); ctx.mss = skb_shinfo(skb)->gso_size; if (ctx.mss) { if (skb_header_cloned(skb)) { if (unlikely(pskb_expand_head(skb, 0, 0, GFP_ATOMIC) != 0)) { tq->stats.drop_tso++; goto drop_pkt; } tq->stats.copy_skb_header++; } vmxnet3_prepare_tso(skb, &ctx); } else { if (unlikely(count > VMXNET3_MAX_TXD_PER_PKT)) { /* non-tso pkts must not use more than * VMXNET3_MAX_TXD_PER_PKT entries */ if (skb_linearize(skb) != 0) { tq->stats.drop_too_many_frags++; goto drop_pkt; } tq->stats.linearized++; /* recalculate the # of descriptors to use */ count = VMXNET3_TXD_NEEDED(skb_headlen(skb)) + 1; } } spin_lock_irqsave(&tq->tx_lock, flags); if (count > vmxnet3_cmd_ring_desc_avail(&tq->tx_ring)) { tq->stats.tx_ring_full++; dev_dbg(&adapter->netdev->dev, "tx queue stopped on %s, next2comp %u" " next2fill %u\n", adapter->netdev->name, tq->tx_ring.next2comp, tq->tx_ring.next2fill); vmxnet3_tq_stop(tq, adapter); spin_unlock_irqrestore(&tq->tx_lock, flags); return NETDEV_TX_BUSY; } ret = vmxnet3_parse_and_copy_hdr(skb, tq, &ctx, adapter); if (ret >= 0) { BUG_ON(ret <= 0 && ctx.copy_size != 0); /* hdrs parsed, check against other limits */ if (ctx.mss) { if (unlikely(ctx.eth_ip_hdr_size + ctx.l4_hdr_size > VMXNET3_MAX_TX_BUF_SIZE)) { goto hdr_too_big; } } else { if (skb->ip_summed == CHECKSUM_PARTIAL) { if (unlikely(ctx.eth_ip_hdr_size + skb->csum_offset > VMXNET3_MAX_CSUM_OFFSET)) { goto hdr_too_big; } } } } else { tq->stats.drop_hdr_inspect_err++; goto unlock_drop_pkt; } /* fill tx descs related to addr & len */ vmxnet3_map_pkt(skb, &ctx, tq, adapter->pdev, adapter); /* setup the EOP desc */ ctx.eop_txd->dword[3] = cpu_to_le32(VMXNET3_TXD_CQ | VMXNET3_TXD_EOP); /* setup the SOP desc */ #ifdef __BIG_ENDIAN_BITFIELD gdesc = &tempTxDesc; gdesc->dword[2] = ctx.sop_txd->dword[2]; gdesc->dword[3] = ctx.sop_txd->dword[3]; #else gdesc = ctx.sop_txd; #endif if (ctx.mss) { gdesc->txd.hlen = ctx.eth_ip_hdr_size + ctx.l4_hdr_size; gdesc->txd.om = VMXNET3_OM_TSO; gdesc->txd.msscof = ctx.mss; le32_add_cpu(&tq->shared->txNumDeferred, (skb->len - gdesc->txd.hlen + ctx.mss - 1) / ctx.mss); } else { if (skb->ip_summed == CHECKSUM_PARTIAL) { gdesc->txd.hlen = ctx.eth_ip_hdr_size; gdesc->txd.om = VMXNET3_OM_CSUM; gdesc->txd.msscof = ctx.eth_ip_hdr_size + skb->csum_offset; } else { gdesc->txd.om = 0; gdesc->txd.msscof = 0; } le32_add_cpu(&tq->shared->txNumDeferred, 1); } if (vlan_tx_tag_present(skb)) { gdesc->txd.ti = 1; gdesc->txd.tci = vlan_tx_tag_get(skb); } /* finally flips the GEN bit of the SOP desc. */ gdesc->dword[2] = cpu_to_le32(le32_to_cpu(gdesc->dword[2]) ^ VMXNET3_TXD_GEN); #ifdef __BIG_ENDIAN_BITFIELD /* Finished updating in bitfields of Tx Desc, so write them in original * place. */ vmxnet3_TxDescToLe((struct Vmxnet3_TxDesc *)gdesc, (struct Vmxnet3_TxDesc *)ctx.sop_txd); gdesc = ctx.sop_txd; #endif dev_dbg(&adapter->netdev->dev, "txd[%u]: SOP 0x%Lx 0x%x 0x%x\n", (u32)((union Vmxnet3_GenericDesc *)ctx.sop_txd - tq->tx_ring.base), le64_to_cpu(gdesc->txd.addr), le32_to_cpu(gdesc->dword[2]), le32_to_cpu(gdesc->dword[3])); spin_unlock_irqrestore(&tq->tx_lock, flags); if (le32_to_cpu(tq->shared->txNumDeferred) >= le32_to_cpu(tq->shared->txThreshold)) { tq->shared->txNumDeferred = 0; VMXNET3_WRITE_BAR0_REG(adapter, VMXNET3_REG_TXPROD + tq->qid * 8, tq->tx_ring.next2fill); } return NETDEV_TX_OK; hdr_too_big: tq->stats.drop_oversized_hdr++; unlock_drop_pkt: spin_unlock_irqrestore(&tq->tx_lock, flags); drop_pkt: tq->stats.drop_total++; dev_kfree_skb(skb); return NETDEV_TX_OK; } static netdev_tx_t vmxnet3_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct vmxnet3_adapter *adapter = netdev_priv(netdev); BUG_ON(skb->queue_mapping > adapter->num_tx_queues); return vmxnet3_tq_xmit(skb, &adapter->tx_queue[skb->queue_mapping], adapter, netdev); } static void vmxnet3_rx_csum(struct vmxnet3_adapter *adapter, struct sk_buff *skb, union Vmxnet3_GenericDesc *gdesc) { if (!gdesc->rcd.cnc && adapter->netdev->features & NETIF_F_RXCSUM) { /* typical case: TCP/UDP over IP and both csums are correct */ if ((le32_to_cpu(gdesc->dword[3]) & VMXNET3_RCD_CSUM_OK) == VMXNET3_RCD_CSUM_OK) { skb->ip_summed = CHECKSUM_UNNECESSARY; BUG_ON(!(gdesc->rcd.tcp || gdesc->rcd.udp)); BUG_ON(!(gdesc->rcd.v4 || gdesc->rcd.v6)); BUG_ON(gdesc->rcd.frg); } else { if (gdesc->rcd.csum) { skb->csum = htons(gdesc->rcd.csum); skb->ip_summed = CHECKSUM_PARTIAL; } else { skb_checksum_none_assert(skb); } } } else { skb_checksum_none_assert(skb); } } static void vmxnet3_rx_error(struct vmxnet3_rx_queue *rq, struct Vmxnet3_RxCompDesc *rcd, struct vmxnet3_rx_ctx *ctx, struct vmxnet3_adapter *adapter) { rq->stats.drop_err++; if (!rcd->fcs) rq->stats.drop_fcs++; rq->stats.drop_total++; /* * We do not unmap and chain the rx buffer to the skb. * We basically pretend this buffer is not used and will be recycled * by vmxnet3_rq_alloc_rx_buf() */ /* * ctx->skb may be NULL if this is the first and the only one * desc for the pkt */ if (ctx->skb) dev_kfree_skb_irq(ctx->skb); ctx->skb = NULL; } static int vmxnet3_rq_rx_complete(struct vmxnet3_rx_queue *rq, struct vmxnet3_adapter *adapter, int quota) { static const u32 rxprod_reg[2] = { VMXNET3_REG_RXPROD, VMXNET3_REG_RXPROD2 }; u32 num_rxd = 0; bool skip_page_frags = false; struct Vmxnet3_RxCompDesc *rcd; struct vmxnet3_rx_ctx *ctx = &rq->rx_ctx; #ifdef __BIG_ENDIAN_BITFIELD struct Vmxnet3_RxDesc rxCmdDesc; struct Vmxnet3_RxCompDesc rxComp; #endif vmxnet3_getRxComp(rcd, &rq->comp_ring.base[rq->comp_ring.next2proc].rcd, &rxComp); while (rcd->gen == rq->comp_ring.gen) { struct vmxnet3_rx_buf_info *rbi; struct sk_buff *skb, *new_skb = NULL; struct page *new_page = NULL; int num_to_alloc; struct Vmxnet3_RxDesc *rxd; u32 idx, ring_idx; struct vmxnet3_cmd_ring *ring = NULL; if (num_rxd >= quota) { /* we may stop even before we see the EOP desc of * the current pkt */ break; } num_rxd++; BUG_ON(rcd->rqID != rq->qid && rcd->rqID != rq->qid2); idx = rcd->rxdIdx; ring_idx = rcd->rqID < adapter->num_rx_queues ? 0 : 1; ring = rq->rx_ring + ring_idx; vmxnet3_getRxDesc(rxd, &rq->rx_ring[ring_idx].base[idx].rxd, &rxCmdDesc); rbi = rq->buf_info[ring_idx] + idx; BUG_ON(rxd->addr != rbi->dma_addr || rxd->len != rbi->len); if (unlikely(rcd->eop && rcd->err)) { vmxnet3_rx_error(rq, rcd, ctx, adapter); goto rcd_done; } if (rcd->sop) { /* first buf of the pkt */ BUG_ON(rxd->btype != VMXNET3_RXD_BTYPE_HEAD || rcd->rqID != rq->qid); BUG_ON(rbi->buf_type != VMXNET3_RX_BUF_SKB); BUG_ON(ctx->skb != NULL || rbi->skb == NULL); if (unlikely(rcd->len == 0)) { /* Pretend the rx buffer is skipped. */ BUG_ON(!(rcd->sop && rcd->eop)); dev_dbg(&adapter->netdev->dev, "rxRing[%u][%u] 0 length\n", ring_idx, idx); goto rcd_done; } skip_page_frags = false; ctx->skb = rbi->skb; new_skb = dev_alloc_skb(rbi->len + NET_IP_ALIGN); if (new_skb == NULL) { /* Skb allocation failed, do not handover this * skb to stack. Reuse it. Drop the existing pkt */ rq->stats.rx_buf_alloc_failure++; ctx->skb = NULL; rq->stats.drop_total++; skip_page_frags = true; goto rcd_done; } pci_unmap_single(adapter->pdev, rbi->dma_addr, rbi->len, PCI_DMA_FROMDEVICE); skb_put(ctx->skb, rcd->len); /* Immediate refill */ new_skb->dev = adapter->netdev; skb_reserve(new_skb, NET_IP_ALIGN); rbi->skb = new_skb; rbi->dma_addr = pci_map_single(adapter->pdev, rbi->skb->data, rbi->len, PCI_DMA_FROMDEVICE); rxd->addr = cpu_to_le64(rbi->dma_addr); rxd->len = rbi->len; } else { BUG_ON(ctx->skb == NULL && !skip_page_frags); /* non SOP buffer must be type 1 in most cases */ BUG_ON(rbi->buf_type != VMXNET3_RX_BUF_PAGE); BUG_ON(rxd->btype != VMXNET3_RXD_BTYPE_BODY); /* If an sop buffer was dropped, skip all * following non-sop fragments. They will be reused. */ if (skip_page_frags) goto rcd_done; new_page = alloc_page(GFP_ATOMIC); if (unlikely(new_page == NULL)) { /* Replacement page frag could not be allocated. * Reuse this page. Drop the pkt and free the * skb which contained this page as a frag. Skip * processing all the following non-sop frags. */ rq->stats.rx_buf_alloc_failure++; dev_kfree_skb(ctx->skb); ctx->skb = NULL; skip_page_frags = true; goto rcd_done; } if (rcd->len) { pci_unmap_page(adapter->pdev, rbi->dma_addr, rbi->len, PCI_DMA_FROMDEVICE); vmxnet3_append_frag(ctx->skb, rcd, rbi); } /* Immediate refill */ rbi->page = new_page; rbi->dma_addr = pci_map_page(adapter->pdev, rbi->page, 0, PAGE_SIZE, PCI_DMA_FROMDEVICE); rxd->addr = cpu_to_le64(rbi->dma_addr); rxd->len = rbi->len; } skb = ctx->skb; if (rcd->eop) { skb->len += skb->data_len; vmxnet3_rx_csum(adapter, skb, (union Vmxnet3_GenericDesc *)rcd); skb->protocol = eth_type_trans(skb, adapter->netdev); if (unlikely(rcd->ts)) __vlan_hwaccel_put_tag(skb, rcd->tci); if (adapter->netdev->features & NETIF_F_LRO) netif_receive_skb(skb); else napi_gro_receive(&rq->napi, skb); ctx->skb = NULL; } rcd_done: /* device may have skipped some rx descs */ ring->next2comp = idx; num_to_alloc = vmxnet3_cmd_ring_desc_avail(ring); ring = rq->rx_ring + ring_idx; while (num_to_alloc) { vmxnet3_getRxDesc(rxd, &ring->base[ring->next2fill].rxd, &rxCmdDesc); BUG_ON(!rxd->addr); /* Recv desc is ready to be used by the device */ rxd->gen = ring->gen; vmxnet3_cmd_ring_adv_next2fill(ring); num_to_alloc--; } /* if needed, update the register */ if (unlikely(rq->shared->updateRxProd)) { VMXNET3_WRITE_BAR0_REG(adapter, rxprod_reg[ring_idx] + rq->qid * 8, ring->next2fill); rq->uncommitted[ring_idx] = 0; } vmxnet3_comp_ring_adv_next2proc(&rq->comp_ring); vmxnet3_getRxComp(rcd, &rq->comp_ring.base[rq->comp_ring.next2proc].rcd, &rxComp); } return num_rxd; } static void vmxnet3_rq_cleanup(struct vmxnet3_rx_queue *rq, struct vmxnet3_adapter *adapter) { u32 i, ring_idx; struct Vmxnet3_RxDesc *rxd; for (ring_idx = 0; ring_idx < 2; ring_idx++) { for (i = 0; i < rq->rx_ring[ring_idx].size; i++) { #ifdef __BIG_ENDIAN_BITFIELD struct Vmxnet3_RxDesc rxDesc; #endif vmxnet3_getRxDesc(rxd, &rq->rx_ring[ring_idx].base[i].rxd, &rxDesc); if (rxd->btype == VMXNET3_RXD_BTYPE_HEAD && rq->buf_info[ring_idx][i].skb) { pci_unmap_single(adapter->pdev, rxd->addr, rxd->len, PCI_DMA_FROMDEVICE); dev_kfree_skb(rq->buf_info[ring_idx][i].skb); rq->buf_info[ring_idx][i].skb = NULL; } else if (rxd->btype == VMXNET3_RXD_BTYPE_BODY && rq->buf_info[ring_idx][i].page) { pci_unmap_page(adapter->pdev, rxd->addr, rxd->len, PCI_DMA_FROMDEVICE); put_page(rq->buf_info[ring_idx][i].page); rq->buf_info[ring_idx][i].page = NULL; } } rq->rx_ring[ring_idx].gen = VMXNET3_INIT_GEN; rq->rx_ring[ring_idx].next2fill = rq->rx_ring[ring_idx].next2comp = 0; rq->uncommitted[ring_idx] = 0; } rq->comp_ring.gen = VMXNET3_INIT_GEN; rq->comp_ring.next2proc = 0; } static void vmxnet3_rq_cleanup_all(struct vmxnet3_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) vmxnet3_rq_cleanup(&adapter->rx_queue[i], adapter); } void vmxnet3_rq_destroy(struct vmxnet3_rx_queue *rq, struct vmxnet3_adapter *adapter) { int i; int j; /* all rx buffers must have already been freed */ for (i = 0; i < 2; i++) { if (rq->buf_info[i]) { for (j = 0; j < rq->rx_ring[i].size; j++) BUG_ON(rq->buf_info[i][j].page != NULL); } } kfree(rq->buf_info[0]); for (i = 0; i < 2; i++) { if (rq->rx_ring[i].base) { pci_free_consistent(adapter->pdev, rq->rx_ring[i].size * sizeof(struct Vmxnet3_RxDesc), rq->rx_ring[i].base, rq->rx_ring[i].basePA); rq->rx_ring[i].base = NULL; } rq->buf_info[i] = NULL; } if (rq->comp_ring.base) { pci_free_consistent(adapter->pdev, rq->comp_ring.size * sizeof(struct Vmxnet3_RxCompDesc), rq->comp_ring.base, rq->comp_ring.basePA); rq->comp_ring.base = NULL; } } static int vmxnet3_rq_init(struct vmxnet3_rx_queue *rq, struct vmxnet3_adapter *adapter) { int i; /* initialize buf_info */ for (i = 0; i < rq->rx_ring[0].size; i++) { /* 1st buf for a pkt is skbuff */ if (i % adapter->rx_buf_per_pkt == 0) { rq->buf_info[0][i].buf_type = VMXNET3_RX_BUF_SKB; rq->buf_info[0][i].len = adapter->skb_buf_size; } else { /* subsequent bufs for a pkt is frag */ rq->buf_info[0][i].buf_type = VMXNET3_RX_BUF_PAGE; rq->buf_info[0][i].len = PAGE_SIZE; } } for (i = 0; i < rq->rx_ring[1].size; i++) { rq->buf_info[1][i].buf_type = VMXNET3_RX_BUF_PAGE; rq->buf_info[1][i].len = PAGE_SIZE; } /* reset internal state and allocate buffers for both rings */ for (i = 0; i < 2; i++) { rq->rx_ring[i].next2fill = rq->rx_ring[i].next2comp = 0; rq->uncommitted[i] = 0; memset(rq->rx_ring[i].base, 0, rq->rx_ring[i].size * sizeof(struct Vmxnet3_RxDesc)); rq->rx_ring[i].gen = VMXNET3_INIT_GEN; } if (vmxnet3_rq_alloc_rx_buf(rq, 0, rq->rx_ring[0].size - 1, adapter) == 0) { /* at least has 1 rx buffer for the 1st ring */ return -ENOMEM; } vmxnet3_rq_alloc_rx_buf(rq, 1, rq->rx_ring[1].size - 1, adapter); /* reset the comp ring */ rq->comp_ring.next2proc = 0; memset(rq->comp_ring.base, 0, rq->comp_ring.size * sizeof(struct Vmxnet3_RxCompDesc)); rq->comp_ring.gen = VMXNET3_INIT_GEN; /* reset rxctx */ rq->rx_ctx.skb = NULL; /* stats are not reset */ return 0; } static int vmxnet3_rq_init_all(struct vmxnet3_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_rx_queues; i++) { err = vmxnet3_rq_init(&adapter->rx_queue[i], adapter); if (unlikely(err)) { dev_err(&adapter->netdev->dev, "%s: failed to " "initialize rx queue%i\n", adapter->netdev->name, i); break; } } return err; } static int vmxnet3_rq_create(struct vmxnet3_rx_queue *rq, struct vmxnet3_adapter *adapter) { int i; size_t sz; struct vmxnet3_rx_buf_info *bi; for (i = 0; i < 2; i++) { sz = rq->rx_ring[i].size * sizeof(struct Vmxnet3_RxDesc); rq->rx_ring[i].base = pci_alloc_consistent(adapter->pdev, sz, &rq->rx_ring[i].basePA); if (!rq->rx_ring[i].base) { printk(KERN_ERR "%s: failed to allocate rx ring %d\n", adapter->netdev->name, i); goto err; } } sz = rq->comp_ring.size * sizeof(struct Vmxnet3_RxCompDesc); rq->comp_ring.base = pci_alloc_consistent(adapter->pdev, sz, &rq->comp_ring.basePA); if (!rq->comp_ring.base) { printk(KERN_ERR "%s: failed to allocate rx comp ring\n", adapter->netdev->name); goto err; } sz = sizeof(struct vmxnet3_rx_buf_info) * (rq->rx_ring[0].size + rq->rx_ring[1].size); bi = kzalloc(sz, GFP_KERNEL); if (!bi) goto err; rq->buf_info[0] = bi; rq->buf_info[1] = bi + rq->rx_ring[0].size; return 0; err: vmxnet3_rq_destroy(rq, adapter); return -ENOMEM; } static int vmxnet3_rq_create_all(struct vmxnet3_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_rx_queues; i++) { err = vmxnet3_rq_create(&adapter->rx_queue[i], adapter); if (unlikely(err)) { dev_err(&adapter->netdev->dev, "%s: failed to create rx queue%i\n", adapter->netdev->name, i); goto err_out; } } return err; err_out: vmxnet3_rq_destroy_all(adapter); return err; } /* Multiple queue aware polling function for tx and rx */ static int vmxnet3_do_poll(struct vmxnet3_adapter *adapter, int budget) { int rcd_done = 0, i; if (unlikely(adapter->shared->ecr)) vmxnet3_process_events(adapter); for (i = 0; i < adapter->num_tx_queues; i++) vmxnet3_tq_tx_complete(&adapter->tx_queue[i], adapter); for (i = 0; i < adapter->num_rx_queues; i++) rcd_done += vmxnet3_rq_rx_complete(&adapter->rx_queue[i], adapter, budget); return rcd_done; } static int vmxnet3_poll(struct napi_struct *napi, int budget) { struct vmxnet3_rx_queue *rx_queue = container_of(napi, struct vmxnet3_rx_queue, napi); int rxd_done; rxd_done = vmxnet3_do_poll(rx_queue->adapter, budget); if (rxd_done < budget) { napi_complete(napi); vmxnet3_enable_all_intrs(rx_queue->adapter); } return rxd_done; } /* * NAPI polling function for MSI-X mode with multiple Rx queues * Returns the # of the NAPI credit consumed (# of rx descriptors processed) */ static int vmxnet3_poll_rx_only(struct napi_struct *napi, int budget) { struct vmxnet3_rx_queue *rq = container_of(napi, struct vmxnet3_rx_queue, napi); struct vmxnet3_adapter *adapter = rq->adapter; int rxd_done; /* When sharing interrupt with corresponding tx queue, process * tx completions in that queue as well */ if (adapter->share_intr == VMXNET3_INTR_BUDDYSHARE) { struct vmxnet3_tx_queue *tq = &adapter->tx_queue[rq - adapter->rx_queue]; vmxnet3_tq_tx_complete(tq, adapter); } rxd_done = vmxnet3_rq_rx_complete(rq, adapter, budget); if (rxd_done < budget) { napi_complete(napi); vmxnet3_enable_intr(adapter, rq->comp_ring.intr_idx); } return rxd_done; } #ifdef CONFIG_PCI_MSI /* * Handle completion interrupts on tx queues * Returns whether or not the intr is handled */ static irqreturn_t vmxnet3_msix_tx(int irq, void *data) { struct vmxnet3_tx_queue *tq = data; struct vmxnet3_adapter *adapter = tq->adapter; if (adapter->intr.mask_mode == VMXNET3_IMM_ACTIVE) vmxnet3_disable_intr(adapter, tq->comp_ring.intr_idx); /* Handle the case where only one irq is allocate for all tx queues */ if (adapter->share_intr == VMXNET3_INTR_TXSHARE) { int i; for (i = 0; i < adapter->num_tx_queues; i++) { struct vmxnet3_tx_queue *txq = &adapter->tx_queue[i]; vmxnet3_tq_tx_complete(txq, adapter); } } else { vmxnet3_tq_tx_complete(tq, adapter); } vmxnet3_enable_intr(adapter, tq->comp_ring.intr_idx); return IRQ_HANDLED; } /* * Handle completion interrupts on rx queues. Returns whether or not the * intr is handled */ static irqreturn_t vmxnet3_msix_rx(int irq, void *data) { struct vmxnet3_rx_queue *rq = data; struct vmxnet3_adapter *adapter = rq->adapter; /* disable intr if needed */ if (adapter->intr.mask_mode == VMXNET3_IMM_ACTIVE) vmxnet3_disable_intr(adapter, rq->comp_ring.intr_idx); napi_schedule(&rq->napi); return IRQ_HANDLED; } /* *---------------------------------------------------------------------------- * * vmxnet3_msix_event -- * * vmxnet3 msix event intr handler * * Result: * whether or not the intr is handled * *---------------------------------------------------------------------------- */ static irqreturn_t vmxnet3_msix_event(int irq, void *data) { struct net_device *dev = data; struct vmxnet3_adapter *adapter = netdev_priv(dev); /* disable intr if needed */ if (adapter->intr.mask_mode == VMXNET3_IMM_ACTIVE) vmxnet3_disable_intr(adapter, adapter->intr.event_intr_idx); if (adapter->shared->ecr) vmxnet3_process_events(adapter); vmxnet3_enable_intr(adapter, adapter->intr.event_intr_idx); return IRQ_HANDLED; } #endif /* CONFIG_PCI_MSI */ /* Interrupt handler for vmxnet3 */ static irqreturn_t vmxnet3_intr(int irq, void *dev_id) { struct net_device *dev = dev_id; struct vmxnet3_adapter *adapter = netdev_priv(dev); if (adapter->intr.type == VMXNET3_IT_INTX) { u32 icr = VMXNET3_READ_BAR1_REG(adapter, VMXNET3_REG_ICR); if (unlikely(icr == 0)) /* not ours */ return IRQ_NONE; } /* disable intr if needed */ if (adapter->intr.mask_mode == VMXNET3_IMM_ACTIVE) vmxnet3_disable_all_intrs(adapter); napi_schedule(&adapter->rx_queue[0].napi); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /* netpoll callback. */ static void vmxnet3_netpoll(struct net_device *netdev) { struct vmxnet3_adapter *adapter = netdev_priv(netdev); switch (adapter->intr.type) { #ifdef CONFIG_PCI_MSI case VMXNET3_IT_MSIX: { int i; for (i = 0; i < adapter->num_rx_queues; i++) vmxnet3_msix_rx(0, &adapter->rx_queue[i]); break; } #endif case VMXNET3_IT_MSI: default: vmxnet3_intr(0, adapter->netdev); break; } } #endif /* CONFIG_NET_POLL_CONTROLLER */ static int vmxnet3_request_irqs(struct vmxnet3_adapter *adapter) { struct vmxnet3_intr *intr = &adapter->intr; int err = 0, i; int vector = 0; #ifdef CONFIG_PCI_MSI if (adapter->intr.type == VMXNET3_IT_MSIX) { for (i = 0; i < adapter->num_tx_queues; i++) { if (adapter->share_intr != VMXNET3_INTR_BUDDYSHARE) { sprintf(adapter->tx_queue[i].name, "%s-tx-%d", adapter->netdev->name, vector); err = request_irq( intr->msix_entries[vector].vector, vmxnet3_msix_tx, 0, adapter->tx_queue[i].name, &adapter->tx_queue[i]); } else { sprintf(adapter->tx_queue[i].name, "%s-rxtx-%d", adapter->netdev->name, vector); } if (err) { dev_err(&adapter->netdev->dev, "Failed to request irq for MSIX, %s, " "error %d\n", adapter->tx_queue[i].name, err); return err; } /* Handle the case where only 1 MSIx was allocated for * all tx queues */ if (adapter->share_intr == VMXNET3_INTR_TXSHARE) { for (; i < adapter->num_tx_queues; i++) adapter->tx_queue[i].comp_ring.intr_idx = vector; vector++; break; } else { adapter->tx_queue[i].comp_ring.intr_idx = vector++; } } if (adapter->share_intr == VMXNET3_INTR_BUDDYSHARE) vector = 0; for (i = 0; i < adapter->num_rx_queues; i++) { if (adapter->share_intr != VMXNET3_INTR_BUDDYSHARE) sprintf(adapter->rx_queue[i].name, "%s-rx-%d", adapter->netdev->name, vector); else sprintf(adapter->rx_queue[i].name, "%s-rxtx-%d", adapter->netdev->name, vector); err = request_irq(intr->msix_entries[vector].vector, vmxnet3_msix_rx, 0, adapter->rx_queue[i].name, &(adapter->rx_queue[i])); if (err) { printk(KERN_ERR "Failed to request irq for MSIX" ", %s, error %d\n", adapter->rx_queue[i].name, err); return err; } adapter->rx_queue[i].comp_ring.intr_idx = vector++; } sprintf(intr->event_msi_vector_name, "%s-event-%d", adapter->netdev->name, vector); err = request_irq(intr->msix_entries[vector].vector, vmxnet3_msix_event, 0, intr->event_msi_vector_name, adapter->netdev); intr->event_intr_idx = vector; } else if (intr->type == VMXNET3_IT_MSI) { adapter->num_rx_queues = 1; err = request_irq(adapter->pdev->irq, vmxnet3_intr, 0, adapter->netdev->name, adapter->netdev); } else { #endif adapter->num_rx_queues = 1; err = request_irq(adapter->pdev->irq, vmxnet3_intr, IRQF_SHARED, adapter->netdev->name, adapter->netdev); #ifdef CONFIG_PCI_MSI } #endif intr->num_intrs = vector + 1; if (err) { printk(KERN_ERR "Failed to request irq %s (intr type:%d), error" ":%d\n", adapter->netdev->name, intr->type, err); } else { /* Number of rx queues will not change after this */ for (i = 0; i < adapter->num_rx_queues; i++) { struct vmxnet3_rx_queue *rq = &adapter->rx_queue[i]; rq->qid = i; rq->qid2 = i + adapter->num_rx_queues; } /* init our intr settings */ for (i = 0; i < intr->num_intrs; i++) intr->mod_levels[i] = UPT1_IML_ADAPTIVE; if (adapter->intr.type != VMXNET3_IT_MSIX) { adapter->intr.event_intr_idx = 0; for (i = 0; i < adapter->num_tx_queues; i++) adapter->tx_queue[i].comp_ring.intr_idx = 0; adapter->rx_queue[0].comp_ring.intr_idx = 0; } printk(KERN_INFO "%s: intr type %u, mode %u, %u vectors " "allocated\n", adapter->netdev->name, intr->type, intr->mask_mode, intr->num_intrs); } return err; } static void vmxnet3_free_irqs(struct vmxnet3_adapter *adapter) { struct vmxnet3_intr *intr = &adapter->intr; BUG_ON(intr->type == VMXNET3_IT_AUTO || intr->num_intrs <= 0); switch (intr->type) { #ifdef CONFIG_PCI_MSI case VMXNET3_IT_MSIX: { int i, vector = 0; if (adapter->share_intr != VMXNET3_INTR_BUDDYSHARE) { for (i = 0; i < adapter->num_tx_queues; i++) { free_irq(intr->msix_entries[vector++].vector, &(adapter->tx_queue[i])); if (adapter->share_intr == VMXNET3_INTR_TXSHARE) break; } } for (i = 0; i < adapter->num_rx_queues; i++) { free_irq(intr->msix_entries[vector++].vector, &(adapter->rx_queue[i])); } free_irq(intr->msix_entries[vector].vector, adapter->netdev); BUG_ON(vector >= intr->num_intrs); break; } #endif case VMXNET3_IT_MSI: free_irq(adapter->pdev->irq, adapter->netdev); break; case VMXNET3_IT_INTX: free_irq(adapter->pdev->irq, adapter->netdev); break; default: BUG_ON(true); } } static void vmxnet3_restore_vlan(struct vmxnet3_adapter *adapter) { u32 *vfTable = adapter->shared->devRead.rxFilterConf.vfTable; u16 vid; /* allow untagged pkts */ VMXNET3_SET_VFTABLE_ENTRY(vfTable, 0); for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) VMXNET3_SET_VFTABLE_ENTRY(vfTable, vid); } static int vmxnet3_vlan_rx_add_vid(struct net_device *netdev, u16 vid) { struct vmxnet3_adapter *adapter = netdev_priv(netdev); if (!(netdev->flags & IFF_PROMISC)) { u32 *vfTable = adapter->shared->devRead.rxFilterConf.vfTable; unsigned long flags; VMXNET3_SET_VFTABLE_ENTRY(vfTable, vid); spin_lock_irqsave(&adapter->cmd_lock, flags); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_UPDATE_VLAN_FILTERS); spin_unlock_irqrestore(&adapter->cmd_lock, flags); } set_bit(vid, adapter->active_vlans); return 0; } static int vmxnet3_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) { struct vmxnet3_adapter *adapter = netdev_priv(netdev); if (!(netdev->flags & IFF_PROMISC)) { u32 *vfTable = adapter->shared->devRead.rxFilterConf.vfTable; unsigned long flags; VMXNET3_CLEAR_VFTABLE_ENTRY(vfTable, vid); spin_lock_irqsave(&adapter->cmd_lock, flags); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_UPDATE_VLAN_FILTERS); spin_unlock_irqrestore(&adapter->cmd_lock, flags); } clear_bit(vid, adapter->active_vlans); return 0; } static u8 * vmxnet3_copy_mc(struct net_device *netdev) { u8 *buf = NULL; u32 sz = netdev_mc_count(netdev) * ETH_ALEN; /* struct Vmxnet3_RxFilterConf.mfTableLen is u16. */ if (sz <= 0xffff) { /* We may be called with BH disabled */ buf = kmalloc(sz, GFP_ATOMIC); if (buf) { struct netdev_hw_addr *ha; int i = 0; netdev_for_each_mc_addr(ha, netdev) memcpy(buf + i++ * ETH_ALEN, ha->addr, ETH_ALEN); } } return buf; } static void vmxnet3_set_mc(struct net_device *netdev) { struct vmxnet3_adapter *adapter = netdev_priv(netdev); unsigned long flags; struct Vmxnet3_RxFilterConf *rxConf = &adapter->shared->devRead.rxFilterConf; u8 *new_table = NULL; u32 new_mode = VMXNET3_RXM_UCAST; if (netdev->flags & IFF_PROMISC) { u32 *vfTable = adapter->shared->devRead.rxFilterConf.vfTable; memset(vfTable, 0, VMXNET3_VFT_SIZE * sizeof(*vfTable)); new_mode |= VMXNET3_RXM_PROMISC; } else { vmxnet3_restore_vlan(adapter); } if (netdev->flags & IFF_BROADCAST) new_mode |= VMXNET3_RXM_BCAST; if (netdev->flags & IFF_ALLMULTI) new_mode |= VMXNET3_RXM_ALL_MULTI; else if (!netdev_mc_empty(netdev)) { new_table = vmxnet3_copy_mc(netdev); if (new_table) { new_mode |= VMXNET3_RXM_MCAST; rxConf->mfTableLen = cpu_to_le16( netdev_mc_count(netdev) * ETH_ALEN); rxConf->mfTablePA = cpu_to_le64(virt_to_phys( new_table)); } else { printk(KERN_INFO "%s: failed to copy mcast list" ", setting ALL_MULTI\n", netdev->name); new_mode |= VMXNET3_RXM_ALL_MULTI; } } if (!(new_mode & VMXNET3_RXM_MCAST)) { rxConf->mfTableLen = 0; rxConf->mfTablePA = 0; } spin_lock_irqsave(&adapter->cmd_lock, flags); if (new_mode != rxConf->rxMode) { rxConf->rxMode = cpu_to_le32(new_mode); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_UPDATE_RX_MODE); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_UPDATE_VLAN_FILTERS); } VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_UPDATE_MAC_FILTERS); spin_unlock_irqrestore(&adapter->cmd_lock, flags); kfree(new_table); } void vmxnet3_rq_destroy_all(struct vmxnet3_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) vmxnet3_rq_destroy(&adapter->rx_queue[i], adapter); } /* * Set up driver_shared based on settings in adapter. */ static void vmxnet3_setup_driver_shared(struct vmxnet3_adapter *adapter) { struct Vmxnet3_DriverShared *shared = adapter->shared; struct Vmxnet3_DSDevRead *devRead = &shared->devRead; struct Vmxnet3_TxQueueConf *tqc; struct Vmxnet3_RxQueueConf *rqc; int i; memset(shared, 0, sizeof(*shared)); /* driver settings */ shared->magic = cpu_to_le32(VMXNET3_REV1_MAGIC); devRead->misc.driverInfo.version = cpu_to_le32( VMXNET3_DRIVER_VERSION_NUM); devRead->misc.driverInfo.gos.gosBits = (sizeof(void *) == 4 ? VMXNET3_GOS_BITS_32 : VMXNET3_GOS_BITS_64); devRead->misc.driverInfo.gos.gosType = VMXNET3_GOS_TYPE_LINUX; *((u32 *)&devRead->misc.driverInfo.gos) = cpu_to_le32( *((u32 *)&devRead->misc.driverInfo.gos)); devRead->misc.driverInfo.vmxnet3RevSpt = cpu_to_le32(1); devRead->misc.driverInfo.uptVerSpt = cpu_to_le32(1); devRead->misc.ddPA = cpu_to_le64(virt_to_phys(adapter)); devRead->misc.ddLen = cpu_to_le32(sizeof(struct vmxnet3_adapter)); /* set up feature flags */ if (adapter->netdev->features & NETIF_F_RXCSUM) devRead->misc.uptFeatures |= UPT1_F_RXCSUM; if (adapter->netdev->features & NETIF_F_LRO) { devRead->misc.uptFeatures |= UPT1_F_LRO; devRead->misc.maxNumRxSG = cpu_to_le16(1 + MAX_SKB_FRAGS); } if (adapter->netdev->features & NETIF_F_HW_VLAN_RX) devRead->misc.uptFeatures |= UPT1_F_RXVLAN; devRead->misc.mtu = cpu_to_le32(adapter->netdev->mtu); devRead->misc.queueDescPA = cpu_to_le64(adapter->queue_desc_pa); devRead->misc.queueDescLen = cpu_to_le32( adapter->num_tx_queues * sizeof(struct Vmxnet3_TxQueueDesc) + adapter->num_rx_queues * sizeof(struct Vmxnet3_RxQueueDesc)); /* tx queue settings */ devRead->misc.numTxQueues = adapter->num_tx_queues; for (i = 0; i < adapter->num_tx_queues; i++) { struct vmxnet3_tx_queue *tq = &adapter->tx_queue[i]; BUG_ON(adapter->tx_queue[i].tx_ring.base == NULL); tqc = &adapter->tqd_start[i].conf; tqc->txRingBasePA = cpu_to_le64(tq->tx_ring.basePA); tqc->dataRingBasePA = cpu_to_le64(tq->data_ring.basePA); tqc->compRingBasePA = cpu_to_le64(tq->comp_ring.basePA); tqc->ddPA = cpu_to_le64(virt_to_phys(tq->buf_info)); tqc->txRingSize = cpu_to_le32(tq->tx_ring.size); tqc->dataRingSize = cpu_to_le32(tq->data_ring.size); tqc->compRingSize = cpu_to_le32(tq->comp_ring.size); tqc->ddLen = cpu_to_le32( sizeof(struct vmxnet3_tx_buf_info) * tqc->txRingSize); tqc->intrIdx = tq->comp_ring.intr_idx; } /* rx queue settings */ devRead->misc.numRxQueues = adapter->num_rx_queues; for (i = 0; i < adapter->num_rx_queues; i++) { struct vmxnet3_rx_queue *rq = &adapter->rx_queue[i]; rqc = &adapter->rqd_start[i].conf; rqc->rxRingBasePA[0] = cpu_to_le64(rq->rx_ring[0].basePA); rqc->rxRingBasePA[1] = cpu_to_le64(rq->rx_ring[1].basePA); rqc->compRingBasePA = cpu_to_le64(rq->comp_ring.basePA); rqc->ddPA = cpu_to_le64(virt_to_phys( rq->buf_info)); rqc->rxRingSize[0] = cpu_to_le32(rq->rx_ring[0].size); rqc->rxRingSize[1] = cpu_to_le32(rq->rx_ring[1].size); rqc->compRingSize = cpu_to_le32(rq->comp_ring.size); rqc->ddLen = cpu_to_le32( sizeof(struct vmxnet3_rx_buf_info) * (rqc->rxRingSize[0] + rqc->rxRingSize[1])); rqc->intrIdx = rq->comp_ring.intr_idx; } #ifdef VMXNET3_RSS memset(adapter->rss_conf, 0, sizeof(*adapter->rss_conf)); if (adapter->rss) { struct UPT1_RSSConf *rssConf = adapter->rss_conf; devRead->misc.uptFeatures |= UPT1_F_RSS; devRead->misc.numRxQueues = adapter->num_rx_queues; rssConf->hashType = UPT1_RSS_HASH_TYPE_TCP_IPV4 | UPT1_RSS_HASH_TYPE_IPV4 | UPT1_RSS_HASH_TYPE_TCP_IPV6 | UPT1_RSS_HASH_TYPE_IPV6; rssConf->hashFunc = UPT1_RSS_HASH_FUNC_TOEPLITZ; rssConf->hashKeySize = UPT1_RSS_MAX_KEY_SIZE; rssConf->indTableSize = VMXNET3_RSS_IND_TABLE_SIZE; get_random_bytes(&rssConf->hashKey[0], rssConf->hashKeySize); for (i = 0; i < rssConf->indTableSize; i++) rssConf->indTable[i] = ethtool_rxfh_indir_default( i, adapter->num_rx_queues); devRead->rssConfDesc.confVer = 1; devRead->rssConfDesc.confLen = sizeof(*rssConf); devRead->rssConfDesc.confPA = virt_to_phys(rssConf); } #endif /* VMXNET3_RSS */ /* intr settings */ devRead->intrConf.autoMask = adapter->intr.mask_mode == VMXNET3_IMM_AUTO; devRead->intrConf.numIntrs = adapter->intr.num_intrs; for (i = 0; i < adapter->intr.num_intrs; i++) devRead->intrConf.modLevels[i] = adapter->intr.mod_levels[i]; devRead->intrConf.eventIntrIdx = adapter->intr.event_intr_idx; devRead->intrConf.intrCtrl |= cpu_to_le32(VMXNET3_IC_DISABLE_ALL); /* rx filter settings */ devRead->rxFilterConf.rxMode = 0; vmxnet3_restore_vlan(adapter); vmxnet3_write_mac_addr(adapter, adapter->netdev->dev_addr); /* the rest are already zeroed */ } int vmxnet3_activate_dev(struct vmxnet3_adapter *adapter) { int err, i; u32 ret; unsigned long flags; dev_dbg(&adapter->netdev->dev, "%s: skb_buf_size %d, rx_buf_per_pkt %d," " ring sizes %u %u %u\n", adapter->netdev->name, adapter->skb_buf_size, adapter->rx_buf_per_pkt, adapter->tx_queue[0].tx_ring.size, adapter->rx_queue[0].rx_ring[0].size, adapter->rx_queue[0].rx_ring[1].size); vmxnet3_tq_init_all(adapter); err = vmxnet3_rq_init_all(adapter); if (err) { printk(KERN_ERR "Failed to init rx queue for %s: error %d\n", adapter->netdev->name, err); goto rq_err; } err = vmxnet3_request_irqs(adapter); if (err) { printk(KERN_ERR "Failed to setup irq for %s: error %d\n", adapter->netdev->name, err); goto irq_err; } vmxnet3_setup_driver_shared(adapter); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_DSAL, VMXNET3_GET_ADDR_LO( adapter->shared_pa)); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_DSAH, VMXNET3_GET_ADDR_HI( adapter->shared_pa)); spin_lock_irqsave(&adapter->cmd_lock, flags); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_ACTIVATE_DEV); ret = VMXNET3_READ_BAR1_REG(adapter, VMXNET3_REG_CMD); spin_unlock_irqrestore(&adapter->cmd_lock, flags); if (ret != 0) { printk(KERN_ERR "Failed to activate dev %s: error %u\n", adapter->netdev->name, ret); err = -EINVAL; goto activate_err; } for (i = 0; i < adapter->num_rx_queues; i++) { VMXNET3_WRITE_BAR0_REG(adapter, VMXNET3_REG_RXPROD + i * VMXNET3_REG_ALIGN, adapter->rx_queue[i].rx_ring[0].next2fill); VMXNET3_WRITE_BAR0_REG(adapter, (VMXNET3_REG_RXPROD2 + (i * VMXNET3_REG_ALIGN)), adapter->rx_queue[i].rx_ring[1].next2fill); } /* Apply the rx filter settins last. */ vmxnet3_set_mc(adapter->netdev); /* * Check link state when first activating device. It will start the * tx queue if the link is up. */ vmxnet3_check_link(adapter, true); for (i = 0; i < adapter->num_rx_queues; i++) napi_enable(&adapter->rx_queue[i].napi); vmxnet3_enable_all_intrs(adapter); clear_bit(VMXNET3_STATE_BIT_QUIESCED, &adapter->state); return 0; activate_err: VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_DSAL, 0); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_DSAH, 0); vmxnet3_free_irqs(adapter); irq_err: rq_err: /* free up buffers we allocated */ vmxnet3_rq_cleanup_all(adapter); return err; } void vmxnet3_reset_dev(struct vmxnet3_adapter *adapter) { unsigned long flags; spin_lock_irqsave(&adapter->cmd_lock, flags); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_RESET_DEV); spin_unlock_irqrestore(&adapter->cmd_lock, flags); } int vmxnet3_quiesce_dev(struct vmxnet3_adapter *adapter) { int i; unsigned long flags; if (test_and_set_bit(VMXNET3_STATE_BIT_QUIESCED, &adapter->state)) return 0; spin_lock_irqsave(&adapter->cmd_lock, flags); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_QUIESCE_DEV); spin_unlock_irqrestore(&adapter->cmd_lock, flags); vmxnet3_disable_all_intrs(adapter); for (i = 0; i < adapter->num_rx_queues; i++) napi_disable(&adapter->rx_queue[i].napi); netif_tx_disable(adapter->netdev); adapter->link_speed = 0; netif_carrier_off(adapter->netdev); vmxnet3_tq_cleanup_all(adapter); vmxnet3_rq_cleanup_all(adapter); vmxnet3_free_irqs(adapter); return 0; } static void vmxnet3_write_mac_addr(struct vmxnet3_adapter *adapter, u8 *mac) { u32 tmp; tmp = *(u32 *)mac; VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_MACL, tmp); tmp = (mac[5] << 8) | mac[4]; VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_MACH, tmp); } static int vmxnet3_set_mac_addr(struct net_device *netdev, void *p) { struct sockaddr *addr = p; struct vmxnet3_adapter *adapter = netdev_priv(netdev); memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); vmxnet3_write_mac_addr(adapter, addr->sa_data); return 0; } /* ==================== initialization and cleanup routines ============ */ static int vmxnet3_alloc_pci_resources(struct vmxnet3_adapter *adapter, bool *dma64) { int err; unsigned long mmio_start, mmio_len; struct pci_dev *pdev = adapter->pdev; err = pci_enable_device(pdev); if (err) { printk(KERN_ERR "Failed to enable adapter %s: error %d\n", pci_name(pdev), err); return err; } if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) == 0) { if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) { printk(KERN_ERR "pci_set_consistent_dma_mask failed " "for adapter %s\n", pci_name(pdev)); err = -EIO; goto err_set_mask; } *dma64 = true; } else { if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) { printk(KERN_ERR "pci_set_dma_mask failed for adapter " "%s\n", pci_name(pdev)); err = -EIO; goto err_set_mask; } *dma64 = false; } err = pci_request_selected_regions(pdev, (1 << 2) - 1, vmxnet3_driver_name); if (err) { printk(KERN_ERR "Failed to request region for adapter %s: " "error %d\n", pci_name(pdev), err); goto err_set_mask; } pci_set_master(pdev); mmio_start = pci_resource_start(pdev, 0); mmio_len = pci_resource_len(pdev, 0); adapter->hw_addr0 = ioremap(mmio_start, mmio_len); if (!adapter->hw_addr0) { printk(KERN_ERR "Failed to map bar0 for adapter %s\n", pci_name(pdev)); err = -EIO; goto err_ioremap; } mmio_start = pci_resource_start(pdev, 1); mmio_len = pci_resource_len(pdev, 1); adapter->hw_addr1 = ioremap(mmio_start, mmio_len); if (!adapter->hw_addr1) { printk(KERN_ERR "Failed to map bar1 for adapter %s\n", pci_name(pdev)); err = -EIO; goto err_bar1; } return 0; err_bar1: iounmap(adapter->hw_addr0); err_ioremap: pci_release_selected_regions(pdev, (1 << 2) - 1); err_set_mask: pci_disable_device(pdev); return err; } static void vmxnet3_free_pci_resources(struct vmxnet3_adapter *adapter) { BUG_ON(!adapter->pdev); iounmap(adapter->hw_addr0); iounmap(adapter->hw_addr1); pci_release_selected_regions(adapter->pdev, (1 << 2) - 1); pci_disable_device(adapter->pdev); } static void vmxnet3_adjust_rx_ring_size(struct vmxnet3_adapter *adapter) { size_t sz, i, ring0_size, ring1_size, comp_size; struct vmxnet3_rx_queue *rq = &adapter->rx_queue[0]; if (adapter->netdev->mtu <= VMXNET3_MAX_SKB_BUF_SIZE - VMXNET3_MAX_ETH_HDR_SIZE) { adapter->skb_buf_size = adapter->netdev->mtu + VMXNET3_MAX_ETH_HDR_SIZE; if (adapter->skb_buf_size < VMXNET3_MIN_T0_BUF_SIZE) adapter->skb_buf_size = VMXNET3_MIN_T0_BUF_SIZE; adapter->rx_buf_per_pkt = 1; } else { adapter->skb_buf_size = VMXNET3_MAX_SKB_BUF_SIZE; sz = adapter->netdev->mtu - VMXNET3_MAX_SKB_BUF_SIZE + VMXNET3_MAX_ETH_HDR_SIZE; adapter->rx_buf_per_pkt = 1 + (sz + PAGE_SIZE - 1) / PAGE_SIZE; } /* * for simplicity, force the ring0 size to be a multiple of * rx_buf_per_pkt * VMXNET3_RING_SIZE_ALIGN */ sz = adapter->rx_buf_per_pkt * VMXNET3_RING_SIZE_ALIGN; ring0_size = adapter->rx_queue[0].rx_ring[0].size; ring0_size = (ring0_size + sz - 1) / sz * sz; ring0_size = min_t(u32, ring0_size, VMXNET3_RX_RING_MAX_SIZE / sz * sz); ring1_size = adapter->rx_queue[0].rx_ring[1].size; comp_size = ring0_size + ring1_size; for (i = 0; i < adapter->num_rx_queues; i++) { rq = &adapter->rx_queue[i]; rq->rx_ring[0].size = ring0_size; rq->rx_ring[1].size = ring1_size; rq->comp_ring.size = comp_size; } } int vmxnet3_create_queues(struct vmxnet3_adapter *adapter, u32 tx_ring_size, u32 rx_ring_size, u32 rx_ring2_size) { int err = 0, i; for (i = 0; i < adapter->num_tx_queues; i++) { struct vmxnet3_tx_queue *tq = &adapter->tx_queue[i]; tq->tx_ring.size = tx_ring_size; tq->data_ring.size = tx_ring_size; tq->comp_ring.size = tx_ring_size; tq->shared = &adapter->tqd_start[i].ctrl; tq->stopped = true; tq->adapter = adapter; tq->qid = i; err = vmxnet3_tq_create(tq, adapter); /* * Too late to change num_tx_queues. We cannot do away with * lesser number of queues than what we asked for */ if (err) goto queue_err; } adapter->rx_queue[0].rx_ring[0].size = rx_ring_size; adapter->rx_queue[0].rx_ring[1].size = rx_ring2_size; vmxnet3_adjust_rx_ring_size(adapter); for (i = 0; i < adapter->num_rx_queues; i++) { struct vmxnet3_rx_queue *rq = &adapter->rx_queue[i]; /* qid and qid2 for rx queues will be assigned later when num * of rx queues is finalized after allocating intrs */ rq->shared = &adapter->rqd_start[i].ctrl; rq->adapter = adapter; err = vmxnet3_rq_create(rq, adapter); if (err) { if (i == 0) { printk(KERN_ERR "Could not allocate any rx" "queues. Aborting.\n"); goto queue_err; } else { printk(KERN_INFO "Number of rx queues changed " "to : %d.\n", i); adapter->num_rx_queues = i; err = 0; break; } } } return err; queue_err: vmxnet3_tq_destroy_all(adapter); return err; } static int vmxnet3_open(struct net_device *netdev) { struct vmxnet3_adapter *adapter; int err, i; adapter = netdev_priv(netdev); for (i = 0; i < adapter->num_tx_queues; i++) spin_lock_init(&adapter->tx_queue[i].tx_lock); err = vmxnet3_create_queues(adapter, VMXNET3_DEF_TX_RING_SIZE, VMXNET3_DEF_RX_RING_SIZE, VMXNET3_DEF_RX_RING_SIZE); if (err) goto queue_err; err = vmxnet3_activate_dev(adapter); if (err) goto activate_err; return 0; activate_err: vmxnet3_rq_destroy_all(adapter); vmxnet3_tq_destroy_all(adapter); queue_err: return err; } static int vmxnet3_close(struct net_device *netdev) { struct vmxnet3_adapter *adapter = netdev_priv(netdev); /* * Reset_work may be in the middle of resetting the device, wait for its * completion. */ while (test_and_set_bit(VMXNET3_STATE_BIT_RESETTING, &adapter->state)) msleep(1); vmxnet3_quiesce_dev(adapter); vmxnet3_rq_destroy_all(adapter); vmxnet3_tq_destroy_all(adapter); clear_bit(VMXNET3_STATE_BIT_RESETTING, &adapter->state); return 0; } void vmxnet3_force_close(struct vmxnet3_adapter *adapter) { int i; /* * we must clear VMXNET3_STATE_BIT_RESETTING, otherwise * vmxnet3_close() will deadlock. */ BUG_ON(test_bit(VMXNET3_STATE_BIT_RESETTING, &adapter->state)); /* we need to enable NAPI, otherwise dev_close will deadlock */ for (i = 0; i < adapter->num_rx_queues; i++) napi_enable(&adapter->rx_queue[i].napi); dev_close(adapter->netdev); } static int vmxnet3_change_mtu(struct net_device *netdev, int new_mtu) { struct vmxnet3_adapter *adapter = netdev_priv(netdev); int err = 0; if (new_mtu < VMXNET3_MIN_MTU || new_mtu > VMXNET3_MAX_MTU) return -EINVAL; netdev->mtu = new_mtu; /* * Reset_work may be in the middle of resetting the device, wait for its * completion. */ while (test_and_set_bit(VMXNET3_STATE_BIT_RESETTING, &adapter->state)) msleep(1); if (netif_running(netdev)) { vmxnet3_quiesce_dev(adapter); vmxnet3_reset_dev(adapter); /* we need to re-create the rx queue based on the new mtu */ vmxnet3_rq_destroy_all(adapter); vmxnet3_adjust_rx_ring_size(adapter); err = vmxnet3_rq_create_all(adapter); if (err) { printk(KERN_ERR "%s: failed to re-create rx queues," " error %d. Closing it.\n", netdev->name, err); goto out; } err = vmxnet3_activate_dev(adapter); if (err) { printk(KERN_ERR "%s: failed to re-activate, error %d. " "Closing it\n", netdev->name, err); goto out; } } out: clear_bit(VMXNET3_STATE_BIT_RESETTING, &adapter->state); if (err) vmxnet3_force_close(adapter); return err; } static void vmxnet3_declare_features(struct vmxnet3_adapter *adapter, bool dma64) { struct net_device *netdev = adapter->netdev; netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_LRO; if (dma64) netdev->hw_features |= NETIF_F_HIGHDMA; netdev->vlan_features = netdev->hw_features & ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX); netdev->features = netdev->hw_features | NETIF_F_HW_VLAN_FILTER; netdev_info(adapter->netdev, "features: sg csum vlan jf tso tsoIPv6 lro%s\n", dma64 ? " highDMA" : ""); } static void vmxnet3_read_mac_addr(struct vmxnet3_adapter *adapter, u8 *mac) { u32 tmp; tmp = VMXNET3_READ_BAR1_REG(adapter, VMXNET3_REG_MACL); *(u32 *)mac = tmp; tmp = VMXNET3_READ_BAR1_REG(adapter, VMXNET3_REG_MACH); mac[4] = tmp & 0xff; mac[5] = (tmp >> 8) & 0xff; } #ifdef CONFIG_PCI_MSI /* * Enable MSIx vectors. * Returns : * 0 on successful enabling of required vectors, * VMXNET3_LINUX_MIN_MSIX_VECT when only minimum number of vectors required * could be enabled. * number of vectors which can be enabled otherwise (this number is smaller * than VMXNET3_LINUX_MIN_MSIX_VECT) */ static int vmxnet3_acquire_msix_vectors(struct vmxnet3_adapter *adapter, int vectors) { int err = 0, vector_threshold; vector_threshold = VMXNET3_LINUX_MIN_MSIX_VECT; while (vectors >= vector_threshold) { err = pci_enable_msix(adapter->pdev, adapter->intr.msix_entries, vectors); if (!err) { adapter->intr.num_intrs = vectors; return 0; } else if (err < 0) { netdev_err(adapter->netdev, "Failed to enable MSI-X, error: %d\n", err); vectors = 0; } else if (err < vector_threshold) { break; } else { /* If fails to enable required number of MSI-x vectors * try enabling minimum number of vectors required. */ netdev_err(adapter->netdev, "Failed to enable %d MSI-X, trying %d instead\n", vectors, vector_threshold); vectors = vector_threshold; } } netdev_info(adapter->netdev, "Number of MSI-X interrupts which can be allocated are lower than min threshold required.\n"); return err; } #endif /* CONFIG_PCI_MSI */ static void vmxnet3_alloc_intr_resources(struct vmxnet3_adapter *adapter) { u32 cfg; unsigned long flags; /* intr settings */ spin_lock_irqsave(&adapter->cmd_lock, flags); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_GET_CONF_INTR); cfg = VMXNET3_READ_BAR1_REG(adapter, VMXNET3_REG_CMD); spin_unlock_irqrestore(&adapter->cmd_lock, flags); adapter->intr.type = cfg & 0x3; adapter->intr.mask_mode = (cfg >> 2) & 0x3; if (adapter->intr.type == VMXNET3_IT_AUTO) { adapter->intr.type = VMXNET3_IT_MSIX; } #ifdef CONFIG_PCI_MSI if (adapter->intr.type == VMXNET3_IT_MSIX) { int vector, err = 0; adapter->intr.num_intrs = (adapter->share_intr == VMXNET3_INTR_TXSHARE) ? 1 : adapter->num_tx_queues; adapter->intr.num_intrs += (adapter->share_intr == VMXNET3_INTR_BUDDYSHARE) ? 0 : adapter->num_rx_queues; adapter->intr.num_intrs += 1; /* for link event */ adapter->intr.num_intrs = (adapter->intr.num_intrs > VMXNET3_LINUX_MIN_MSIX_VECT ? adapter->intr.num_intrs : VMXNET3_LINUX_MIN_MSIX_VECT); for (vector = 0; vector < adapter->intr.num_intrs; vector++) adapter->intr.msix_entries[vector].entry = vector; err = vmxnet3_acquire_msix_vectors(adapter, adapter->intr.num_intrs); /* If we cannot allocate one MSIx vector per queue * then limit the number of rx queues to 1 */ if (err == VMXNET3_LINUX_MIN_MSIX_VECT) { if (adapter->share_intr != VMXNET3_INTR_BUDDYSHARE || adapter->num_rx_queues != 1) { adapter->share_intr = VMXNET3_INTR_TXSHARE; printk(KERN_ERR "Number of rx queues : 1\n"); adapter->num_rx_queues = 1; adapter->intr.num_intrs = VMXNET3_LINUX_MIN_MSIX_VECT; } return; } if (!err) return; /* If we cannot allocate MSIx vectors use only one rx queue */ netdev_info(adapter->netdev, "Failed to enable MSI-X, error %d . Limiting #rx queues to 1, try MSI.\n", err); adapter->intr.type = VMXNET3_IT_MSI; } if (adapter->intr.type == VMXNET3_IT_MSI) { int err; err = pci_enable_msi(adapter->pdev); if (!err) { adapter->num_rx_queues = 1; adapter->intr.num_intrs = 1; return; } } #endif /* CONFIG_PCI_MSI */ adapter->num_rx_queues = 1; printk(KERN_INFO "Using INTx interrupt, #Rx queues: 1.\n"); adapter->intr.type = VMXNET3_IT_INTX; /* INT-X related setting */ adapter->intr.num_intrs = 1; } static void vmxnet3_free_intr_resources(struct vmxnet3_adapter *adapter) { if (adapter->intr.type == VMXNET3_IT_MSIX) pci_disable_msix(adapter->pdev); else if (adapter->intr.type == VMXNET3_IT_MSI) pci_disable_msi(adapter->pdev); else BUG_ON(adapter->intr.type != VMXNET3_IT_INTX); } static void vmxnet3_tx_timeout(struct net_device *netdev) { struct vmxnet3_adapter *adapter = netdev_priv(netdev); adapter->tx_timeout_count++; printk(KERN_ERR "%s: tx hang\n", adapter->netdev->name); schedule_work(&adapter->work); netif_wake_queue(adapter->netdev); } static void vmxnet3_reset_work(struct work_struct *data) { struct vmxnet3_adapter *adapter; adapter = container_of(data, struct vmxnet3_adapter, work); /* if another thread is resetting the device, no need to proceed */ if (test_and_set_bit(VMXNET3_STATE_BIT_RESETTING, &adapter->state)) return; /* if the device is closed, we must leave it alone */ rtnl_lock(); if (netif_running(adapter->netdev)) { printk(KERN_INFO "%s: resetting\n", adapter->netdev->name); vmxnet3_quiesce_dev(adapter); vmxnet3_reset_dev(adapter); vmxnet3_activate_dev(adapter); } else { printk(KERN_INFO "%s: already closed\n", adapter->netdev->name); } rtnl_unlock(); clear_bit(VMXNET3_STATE_BIT_RESETTING, &adapter->state); } static int __devinit vmxnet3_probe_device(struct pci_dev *pdev, const struct pci_device_id *id) { static const struct net_device_ops vmxnet3_netdev_ops = { .ndo_open = vmxnet3_open, .ndo_stop = vmxnet3_close, .ndo_start_xmit = vmxnet3_xmit_frame, .ndo_set_mac_address = vmxnet3_set_mac_addr, .ndo_change_mtu = vmxnet3_change_mtu, .ndo_set_features = vmxnet3_set_features, .ndo_get_stats64 = vmxnet3_get_stats64, .ndo_tx_timeout = vmxnet3_tx_timeout, .ndo_set_rx_mode = vmxnet3_set_mc, .ndo_vlan_rx_add_vid = vmxnet3_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = vmxnet3_vlan_rx_kill_vid, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = vmxnet3_netpoll, #endif }; int err; bool dma64 = false; /* stupid gcc */ u32 ver; struct net_device *netdev; struct vmxnet3_adapter *adapter; u8 mac[ETH_ALEN]; int size; int num_tx_queues; int num_rx_queues; if (!pci_msi_enabled()) enable_mq = 0; #ifdef VMXNET3_RSS if (enable_mq) num_rx_queues = min(VMXNET3_DEVICE_MAX_RX_QUEUES, (int)num_online_cpus()); else #endif num_rx_queues = 1; num_rx_queues = rounddown_pow_of_two(num_rx_queues); if (enable_mq) num_tx_queues = min(VMXNET3_DEVICE_MAX_TX_QUEUES, (int)num_online_cpus()); else num_tx_queues = 1; num_tx_queues = rounddown_pow_of_two(num_tx_queues); netdev = alloc_etherdev_mq(sizeof(struct vmxnet3_adapter), max(num_tx_queues, num_rx_queues)); printk(KERN_INFO "# of Tx queues : %d, # of Rx queues : %d\n", num_tx_queues, num_rx_queues); if (!netdev) return -ENOMEM; pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; spin_lock_init(&adapter->cmd_lock); adapter->shared = pci_alloc_consistent(adapter->pdev, sizeof(struct Vmxnet3_DriverShared), &adapter->shared_pa); if (!adapter->shared) { printk(KERN_ERR "Failed to allocate memory for %s\n", pci_name(pdev)); err = -ENOMEM; goto err_alloc_shared; } adapter->num_rx_queues = num_rx_queues; adapter->num_tx_queues = num_tx_queues; size = sizeof(struct Vmxnet3_TxQueueDesc) * adapter->num_tx_queues; size += sizeof(struct Vmxnet3_RxQueueDesc) * adapter->num_rx_queues; adapter->tqd_start = pci_alloc_consistent(adapter->pdev, size, &adapter->queue_desc_pa); if (!adapter->tqd_start) { printk(KERN_ERR "Failed to allocate memory for %s\n", pci_name(pdev)); err = -ENOMEM; goto err_alloc_queue_desc; } adapter->rqd_start = (struct Vmxnet3_RxQueueDesc *)(adapter->tqd_start + adapter->num_tx_queues); adapter->pm_conf = kmalloc(sizeof(struct Vmxnet3_PMConf), GFP_KERNEL); if (adapter->pm_conf == NULL) { err = -ENOMEM; goto err_alloc_pm; } #ifdef VMXNET3_RSS adapter->rss_conf = kmalloc(sizeof(struct UPT1_RSSConf), GFP_KERNEL); if (adapter->rss_conf == NULL) { err = -ENOMEM; goto err_alloc_rss; } #endif /* VMXNET3_RSS */ err = vmxnet3_alloc_pci_resources(adapter, &dma64); if (err < 0) goto err_alloc_pci; ver = VMXNET3_READ_BAR1_REG(adapter, VMXNET3_REG_VRRS); if (ver & 1) { VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_VRRS, 1); } else { printk(KERN_ERR "Incompatible h/w version (0x%x) for adapter" " %s\n", ver, pci_name(pdev)); err = -EBUSY; goto err_ver; } ver = VMXNET3_READ_BAR1_REG(adapter, VMXNET3_REG_UVRS); if (ver & 1) { VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_UVRS, 1); } else { printk(KERN_ERR "Incompatible upt version (0x%x) for " "adapter %s\n", ver, pci_name(pdev)); err = -EBUSY; goto err_ver; } SET_NETDEV_DEV(netdev, &pdev->dev); vmxnet3_declare_features(adapter, dma64); adapter->dev_number = atomic_read(&devices_found); adapter->share_intr = irq_share_mode; if (adapter->share_intr == VMXNET3_INTR_BUDDYSHARE && adapter->num_tx_queues != adapter->num_rx_queues) adapter->share_intr = VMXNET3_INTR_DONTSHARE; vmxnet3_alloc_intr_resources(adapter); #ifdef VMXNET3_RSS if (adapter->num_rx_queues > 1 && adapter->intr.type == VMXNET3_IT_MSIX) { adapter->rss = true; printk(KERN_INFO "RSS is enabled.\n"); } else { adapter->rss = false; } #endif vmxnet3_read_mac_addr(adapter, mac); memcpy(netdev->dev_addr, mac, netdev->addr_len); netdev->netdev_ops = &vmxnet3_netdev_ops; vmxnet3_set_ethtool_ops(netdev); netdev->watchdog_timeo = 5 * HZ; INIT_WORK(&adapter->work, vmxnet3_reset_work); if (adapter->intr.type == VMXNET3_IT_MSIX) { int i; for (i = 0; i < adapter->num_rx_queues; i++) { netif_napi_add(adapter->netdev, &adapter->rx_queue[i].napi, vmxnet3_poll_rx_only, 64); } } else { netif_napi_add(adapter->netdev, &adapter->rx_queue[0].napi, vmxnet3_poll, 64); } netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues); netif_set_real_num_rx_queues(adapter->netdev, adapter->num_rx_queues); err = register_netdev(netdev); if (err) { printk(KERN_ERR "Failed to register adapter %s\n", pci_name(pdev)); goto err_register; } set_bit(VMXNET3_STATE_BIT_QUIESCED, &adapter->state); vmxnet3_check_link(adapter, false); atomic_inc(&devices_found); return 0; err_register: vmxnet3_free_intr_resources(adapter); err_ver: vmxnet3_free_pci_resources(adapter); err_alloc_pci: #ifdef VMXNET3_RSS kfree(adapter->rss_conf); err_alloc_rss: #endif kfree(adapter->pm_conf); err_alloc_pm: pci_free_consistent(adapter->pdev, size, adapter->tqd_start, adapter->queue_desc_pa); err_alloc_queue_desc: pci_free_consistent(adapter->pdev, sizeof(struct Vmxnet3_DriverShared), adapter->shared, adapter->shared_pa); err_alloc_shared: pci_set_drvdata(pdev, NULL); free_netdev(netdev); return err; } static void __devexit vmxnet3_remove_device(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct vmxnet3_adapter *adapter = netdev_priv(netdev); int size = 0; int num_rx_queues; #ifdef VMXNET3_RSS if (enable_mq) num_rx_queues = min(VMXNET3_DEVICE_MAX_RX_QUEUES, (int)num_online_cpus()); else #endif num_rx_queues = 1; num_rx_queues = rounddown_pow_of_two(num_rx_queues); cancel_work_sync(&adapter->work); unregister_netdev(netdev); vmxnet3_free_intr_resources(adapter); vmxnet3_free_pci_resources(adapter); #ifdef VMXNET3_RSS kfree(adapter->rss_conf); #endif kfree(adapter->pm_conf); size = sizeof(struct Vmxnet3_TxQueueDesc) * adapter->num_tx_queues; size += sizeof(struct Vmxnet3_RxQueueDesc) * num_rx_queues; pci_free_consistent(adapter->pdev, size, adapter->tqd_start, adapter->queue_desc_pa); pci_free_consistent(adapter->pdev, sizeof(struct Vmxnet3_DriverShared), adapter->shared, adapter->shared_pa); free_netdev(netdev); } #ifdef CONFIG_PM static int vmxnet3_suspend(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct net_device *netdev = pci_get_drvdata(pdev); struct vmxnet3_adapter *adapter = netdev_priv(netdev); struct Vmxnet3_PMConf *pmConf; struct ethhdr *ehdr; struct arphdr *ahdr; u8 *arpreq; struct in_device *in_dev; struct in_ifaddr *ifa; unsigned long flags; int i = 0; if (!netif_running(netdev)) return 0; for (i = 0; i < adapter->num_rx_queues; i++) napi_disable(&adapter->rx_queue[i].napi); vmxnet3_disable_all_intrs(adapter); vmxnet3_free_irqs(adapter); vmxnet3_free_intr_resources(adapter); netif_device_detach(netdev); netif_tx_stop_all_queues(netdev); /* Create wake-up filters. */ pmConf = adapter->pm_conf; memset(pmConf, 0, sizeof(*pmConf)); if (adapter->wol & WAKE_UCAST) { pmConf->filters[i].patternSize = ETH_ALEN; pmConf->filters[i].maskSize = 1; memcpy(pmConf->filters[i].pattern, netdev->dev_addr, ETH_ALEN); pmConf->filters[i].mask[0] = 0x3F; /* LSB ETH_ALEN bits */ pmConf->wakeUpEvents |= VMXNET3_PM_WAKEUP_FILTER; i++; } if (adapter->wol & WAKE_ARP) { in_dev = in_dev_get(netdev); if (!in_dev) goto skip_arp; ifa = (struct in_ifaddr *)in_dev->ifa_list; if (!ifa) goto skip_arp; pmConf->filters[i].patternSize = ETH_HLEN + /* Ethernet header*/ sizeof(struct arphdr) + /* ARP header */ 2 * ETH_ALEN + /* 2 Ethernet addresses*/ 2 * sizeof(u32); /*2 IPv4 addresses */ pmConf->filters[i].maskSize = (pmConf->filters[i].patternSize - 1) / 8 + 1; /* ETH_P_ARP in Ethernet header. */ ehdr = (struct ethhdr *)pmConf->filters[i].pattern; ehdr->h_proto = htons(ETH_P_ARP); /* ARPOP_REQUEST in ARP header. */ ahdr = (struct arphdr *)&pmConf->filters[i].pattern[ETH_HLEN]; ahdr->ar_op = htons(ARPOP_REQUEST); arpreq = (u8 *)(ahdr + 1); /* The Unicast IPv4 address in 'tip' field. */ arpreq += 2 * ETH_ALEN + sizeof(u32); *(u32 *)arpreq = ifa->ifa_address; /* The mask for the relevant bits. */ pmConf->filters[i].mask[0] = 0x00; pmConf->filters[i].mask[1] = 0x30; /* ETH_P_ARP */ pmConf->filters[i].mask[2] = 0x30; /* ARPOP_REQUEST */ pmConf->filters[i].mask[3] = 0x00; pmConf->filters[i].mask[4] = 0xC0; /* IPv4 TIP */ pmConf->filters[i].mask[5] = 0x03; /* IPv4 TIP */ in_dev_put(in_dev); pmConf->wakeUpEvents |= VMXNET3_PM_WAKEUP_FILTER; i++; } skip_arp: if (adapter->wol & WAKE_MAGIC) pmConf->wakeUpEvents |= VMXNET3_PM_WAKEUP_MAGIC; pmConf->numFilters = i; adapter->shared->devRead.pmConfDesc.confVer = cpu_to_le32(1); adapter->shared->devRead.pmConfDesc.confLen = cpu_to_le32(sizeof( *pmConf)); adapter->shared->devRead.pmConfDesc.confPA = cpu_to_le64(virt_to_phys( pmConf)); spin_lock_irqsave(&adapter->cmd_lock, flags); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_UPDATE_PMCFG); spin_unlock_irqrestore(&adapter->cmd_lock, flags); pci_save_state(pdev); pci_enable_wake(pdev, pci_choose_state(pdev, PMSG_SUSPEND), adapter->wol); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, PMSG_SUSPEND)); return 0; } static int vmxnet3_resume(struct device *device) { int err, i = 0; unsigned long flags; struct pci_dev *pdev = to_pci_dev(device); struct net_device *netdev = pci_get_drvdata(pdev); struct vmxnet3_adapter *adapter = netdev_priv(netdev); struct Vmxnet3_PMConf *pmConf; if (!netif_running(netdev)) return 0; /* Destroy wake-up filters. */ pmConf = adapter->pm_conf; memset(pmConf, 0, sizeof(*pmConf)); adapter->shared->devRead.pmConfDesc.confVer = cpu_to_le32(1); adapter->shared->devRead.pmConfDesc.confLen = cpu_to_le32(sizeof( *pmConf)); adapter->shared->devRead.pmConfDesc.confPA = cpu_to_le64(virt_to_phys( pmConf)); netif_device_attach(netdev); pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); err = pci_enable_device_mem(pdev); if (err != 0) return err; pci_enable_wake(pdev, PCI_D0, 0); spin_lock_irqsave(&adapter->cmd_lock, flags); VMXNET3_WRITE_BAR1_REG(adapter, VMXNET3_REG_CMD, VMXNET3_CMD_UPDATE_PMCFG); spin_unlock_irqrestore(&adapter->cmd_lock, flags); vmxnet3_alloc_intr_resources(adapter); vmxnet3_request_irqs(adapter); for (i = 0; i < adapter->num_rx_queues; i++) napi_enable(&adapter->rx_queue[i].napi); vmxnet3_enable_all_intrs(adapter); return 0; } static const struct dev_pm_ops vmxnet3_pm_ops = { .suspend = vmxnet3_suspend, .resume = vmxnet3_resume, }; #endif static struct pci_driver vmxnet3_driver = { .name = vmxnet3_driver_name, .id_table = vmxnet3_pciid_table, .probe = vmxnet3_probe_device, .remove = __devexit_p(vmxnet3_remove_device), #ifdef CONFIG_PM .driver.pm = &vmxnet3_pm_ops, #endif }; static int __init vmxnet3_init_module(void) { printk(KERN_INFO "%s - version %s\n", VMXNET3_DRIVER_DESC, VMXNET3_DRIVER_VERSION_REPORT); return pci_register_driver(&vmxnet3_driver); } module_init(vmxnet3_init_module); static void vmxnet3_exit_module(void) { pci_unregister_driver(&vmxnet3_driver); } module_exit(vmxnet3_exit_module); MODULE_AUTHOR("VMware, Inc."); MODULE_DESCRIPTION(VMXNET3_DRIVER_DESC); MODULE_LICENSE("GPL v2"); MODULE_VERSION(VMXNET3_DRIVER_VERSION_STRING);