/* * linux/net/sunrpc/sched.c * * Scheduling for synchronous and asynchronous RPC requests. * * Copyright (C) 1996 Olaf Kirch, * * TCP NFS related read + write fixes * (C) 1999 Dave Airlie, University of Limerick, Ireland */ #include #define __KERNEL_SYSCALLS__ #include #include #include #include #include #include #include #include #include #ifdef RPC_DEBUG #define RPCDBG_FACILITY RPCDBG_SCHED static int rpc_task_id; #endif /* * We give RPC the same get_free_pages priority as NFS */ #define GFP_RPC GFP_NOFS static void __rpc_default_timer(struct rpc_task *task); static void rpciod_killall(void); /* * When an asynchronous RPC task is activated within a bottom half * handler, or while executing another RPC task, it is put on * schedq, and rpciod is woken up. */ static RPC_WAITQ(schedq, "schedq"); /* * RPC tasks that create another task (e.g. for contacting the portmapper) * will wait on this queue for their child's completion */ static RPC_WAITQ(childq, "childq"); /* * RPC tasks sit here while waiting for conditions to improve. */ static RPC_WAITQ(delay_queue, "delayq"); /* * All RPC tasks are linked into this list */ static LIST_HEAD(all_tasks); /* * rpciod-related stuff */ static DECLARE_WAIT_QUEUE_HEAD(rpciod_idle); static DECLARE_WAIT_QUEUE_HEAD(rpciod_killer); static DECLARE_MUTEX(rpciod_sema); static unsigned int rpciod_users; static pid_t rpciod_pid; static int rpc_inhibit; /* * Spinlock for wait queues. Access to the latter also has to be * interrupt-safe in order to allow timers to wake up sleeping tasks. */ static spinlock_t rpc_queue_lock = SPIN_LOCK_UNLOCKED; /* * Spinlock for other critical sections of code. */ static spinlock_t rpc_sched_lock = SPIN_LOCK_UNLOCKED; /* * This is the last-ditch buffer for NFS swap requests */ static u32 swap_buffer[PAGE_SIZE >> 2]; static long swap_buffer_used; /* * Make allocation of the swap_buffer SMP-safe */ static __inline__ int rpc_lock_swapbuf(void) { return !test_and_set_bit(1, &swap_buffer_used); } static __inline__ void rpc_unlock_swapbuf(void) { clear_bit(1, &swap_buffer_used); } /* * Disable the timer for a given RPC task. Should be called with * rpc_queue_lock and bh_disabled in order to avoid races within * rpc_run_timer(). */ static inline void __rpc_disable_timer(struct rpc_task *task) { dprintk("RPC: %4d disabling timer\n", task->tk_pid); task->tk_timeout_fn = NULL; task->tk_timeout = 0; } /* * Run a timeout function. * We use the callback in order to allow __rpc_wake_up_task() * and friends to disable the timer synchronously on SMP systems * without calling del_timer_sync(). The latter could cause a * deadlock if called while we're holding spinlocks... */ static void rpc_run_timer(struct rpc_task *task) { void (*callback)(struct rpc_task *); spin_lock_bh(&rpc_queue_lock); callback = task->tk_timeout_fn; task->tk_timeout_fn = NULL; spin_unlock_bh(&rpc_queue_lock); if (callback) { dprintk("RPC: %4d running timer\n", task->tk_pid); callback(task); } } /* * Set up a timer for the current task. */ static inline void __rpc_add_timer(struct rpc_task *task, rpc_action timer) { if (!task->tk_timeout) return; dprintk("RPC: %4d setting alarm for %lu ms\n", task->tk_pid, task->tk_timeout * 1000 / HZ); if (timer) task->tk_timeout_fn = timer; else task->tk_timeout_fn = __rpc_default_timer; mod_timer(&task->tk_timer, jiffies + task->tk_timeout); } /* * Set up a timer for an already sleeping task. */ void rpc_add_timer(struct rpc_task *task, rpc_action timer) { spin_lock_bh(&rpc_queue_lock); if (!RPC_IS_RUNNING(task)) __rpc_add_timer(task, timer); spin_unlock_bh(&rpc_queue_lock); } /* * Delete any timer for the current task. Because we use del_timer_sync(), * this function should never be called while holding rpc_queue_lock. */ static inline void rpc_delete_timer(struct rpc_task *task) { dprintk("RPC: %4d deleting timer\n", task->tk_pid); del_timer_sync(&task->tk_timer); } /* * Add new request to wait queue. * * Swapper tasks always get inserted at the head of the queue. * This should avoid many nasty memory deadlocks and hopefully * improve overall performance. * Everyone else gets appended to the queue to ensure proper FIFO behavior. */ static inline int __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) { if (task->tk_rpcwait == queue) return 0; if (task->tk_rpcwait) { printk(KERN_WARNING "RPC: doubly enqueued task!\n"); return -EWOULDBLOCK; } if (RPC_IS_SWAPPER(task)) list_add(&task->tk_list, &queue->tasks); else list_add_tail(&task->tk_list, &queue->tasks); task->tk_rpcwait = queue; dprintk("RPC: %4d added to queue %p \"%s\"\n", task->tk_pid, queue, rpc_qname(queue)); return 0; } int rpc_add_wait_queue(struct rpc_wait_queue *q, struct rpc_task *task) { int result; spin_lock_bh(&rpc_queue_lock); result = __rpc_add_wait_queue(q, task); spin_unlock_bh(&rpc_queue_lock); return result; } /* * Remove request from queue. * Note: must be called with spin lock held. */ static inline void __rpc_remove_wait_queue(struct rpc_task *task) { struct rpc_wait_queue *queue = task->tk_rpcwait; if (!queue) return; list_del(&task->tk_list); task->tk_rpcwait = NULL; dprintk("RPC: %4d removed from queue %p \"%s\"\n", task->tk_pid, queue, rpc_qname(queue)); } void rpc_remove_wait_queue(struct rpc_task *task) { if (!task->tk_rpcwait) return; spin_lock_bh(&rpc_queue_lock); __rpc_remove_wait_queue(task); spin_unlock_bh(&rpc_queue_lock); } /* * Make an RPC task runnable. * * Note: If the task is ASYNC, this must be called with * the spinlock held to protect the wait queue operation. */ static inline void rpc_make_runnable(struct rpc_task *task) { if (task->tk_timeout_fn) { printk(KERN_ERR "RPC: task w/ running timer in rpc_make_runnable!!\n"); return; } rpc_set_running(task); if (RPC_IS_ASYNC(task)) { if (RPC_IS_SLEEPING(task)) { int status; status = __rpc_add_wait_queue(&schedq, task); if (status < 0) { printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); task->tk_status = status; return; } rpc_clear_sleeping(task); if (waitqueue_active(&rpciod_idle)) wake_up(&rpciod_idle); } } else { rpc_clear_sleeping(task); if (waitqueue_active(&task->tk_wait)) wake_up(&task->tk_wait); } } /* * Place a newly initialized task on the schedq. */ static inline void rpc_schedule_run(struct rpc_task *task) { /* Don't run a child twice! */ if (RPC_IS_ACTIVATED(task)) return; task->tk_active = 1; rpc_set_sleeping(task); rpc_make_runnable(task); } /* * For other people who may need to wake the I/O daemon * but should (for now) know nothing about its innards */ void rpciod_wake_up(void) { if(rpciod_pid==0) printk(KERN_ERR "rpciod: wot no daemon?\n"); if (waitqueue_active(&rpciod_idle)) wake_up(&rpciod_idle); } /* * Prepare for sleeping on a wait queue. * By always appending tasks to the list we ensure FIFO behavior. * NB: An RPC task will only receive interrupt-driven events as long * as it's on a wait queue. */ static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, rpc_action action, rpc_action timer) { int status; dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid, rpc_qname(q), jiffies); if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); return; } /* Mark the task as being activated if so needed */ if (!RPC_IS_ACTIVATED(task)) { task->tk_active = 1; rpc_set_sleeping(task); } status = __rpc_add_wait_queue(q, task); if (status) { printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); task->tk_status = status; } else { rpc_clear_running(task); if (task->tk_callback) { dprintk(KERN_ERR "RPC: %4d overwrites an active callback\n", task->tk_pid); BUG(); } task->tk_callback = action; __rpc_add_timer(task, timer); } } void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, rpc_action action, rpc_action timer) { /* * Protect the queue operations. */ spin_lock_bh(&rpc_queue_lock); __rpc_sleep_on(q, task, action, timer); spin_unlock_bh(&rpc_queue_lock); } /** * __rpc_wake_up_task - wake up a single rpc_task * @task: task to be woken up * * Caller must hold rpc_queue_lock */ static void __rpc_wake_up_task(struct rpc_task *task) { dprintk("RPC: %4d __rpc_wake_up_task (now %ld inh %d)\n", task->tk_pid, jiffies, rpc_inhibit); #ifdef RPC_DEBUG if (task->tk_magic != 0xf00baa) { printk(KERN_ERR "RPC: attempt to wake up non-existing task!\n"); rpc_debug = ~0; rpc_show_tasks(); return; } #endif /* Has the task been executed yet? If not, we cannot wake it up! */ if (!RPC_IS_ACTIVATED(task)) { printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); return; } if (RPC_IS_RUNNING(task)) return; __rpc_disable_timer(task); if (task->tk_rpcwait != &schedq) __rpc_remove_wait_queue(task); rpc_make_runnable(task); dprintk("RPC: __rpc_wake_up_task done\n"); } /* * Default timeout handler if none specified by user */ static void __rpc_default_timer(struct rpc_task *task) { dprintk("RPC: %d timeout (default timer)\n", task->tk_pid); task->tk_status = -ETIMEDOUT; rpc_wake_up_task(task); } /* * Wake up the specified task */ void rpc_wake_up_task(struct rpc_task *task) { if (RPC_IS_RUNNING(task)) return; spin_lock_bh(&rpc_queue_lock); __rpc_wake_up_task(task); spin_unlock_bh(&rpc_queue_lock); } /* * Wake up the next task on the wait queue. */ struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) { struct rpc_task *task = NULL; dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue)); spin_lock_bh(&rpc_queue_lock); task_for_first(task, &queue->tasks) __rpc_wake_up_task(task); spin_unlock_bh(&rpc_queue_lock); return task; } /** * rpc_wake_up - wake up all rpc_tasks * @queue: rpc_wait_queue on which the tasks are sleeping * * Grabs rpc_queue_lock */ void rpc_wake_up(struct rpc_wait_queue *queue) { struct rpc_task *task; spin_lock_bh(&rpc_queue_lock); while (!list_empty(&queue->tasks)) task_for_first(task, &queue->tasks) __rpc_wake_up_task(task); spin_unlock_bh(&rpc_queue_lock); } /** * rpc_wake_up_status - wake up all rpc_tasks and set their status value. * @queue: rpc_wait_queue on which the tasks are sleeping * @status: status value to set * * Grabs rpc_queue_lock */ void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) { struct rpc_task *task; spin_lock_bh(&rpc_queue_lock); while (!list_empty(&queue->tasks)) { task_for_first(task, &queue->tasks) { task->tk_status = status; __rpc_wake_up_task(task); } } spin_unlock_bh(&rpc_queue_lock); } /* * Run a task at a later time */ static void __rpc_atrun(struct rpc_task *); void rpc_delay(struct rpc_task *task, unsigned long delay) { task->tk_timeout = delay; rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun); } static void __rpc_atrun(struct rpc_task *task) { task->tk_status = 0; rpc_wake_up_task(task); } /* * This is the RPC `scheduler' (or rather, the finite state machine). */ static int __rpc_execute(struct rpc_task *task) { int status = 0; dprintk("RPC: %4d rpc_execute flgs %x\n", task->tk_pid, task->tk_flags); if (!RPC_IS_RUNNING(task)) { printk(KERN_WARNING "RPC: rpc_execute called for sleeping task!!\n"); return 0; } restarted: while (1) { /* * Execute any pending callback. */ if (RPC_DO_CALLBACK(task)) { /* Define a callback save pointer */ void (*save_callback)(struct rpc_task *); /* * If a callback exists, save it, reset it, * call it. * The save is needed to stop from resetting * another callback set within the callback handler * - Dave */ save_callback=task->tk_callback; task->tk_callback=NULL; save_callback(task); } /* * Perform the next FSM step. * tk_action may be NULL when the task has been killed * by someone else. */ if (RPC_IS_RUNNING(task)) { /* * Garbage collection of pending timers... */ rpc_delete_timer(task); if (!task->tk_action) break; task->tk_action(task); } /* * Check whether task is sleeping. */ spin_lock_bh(&rpc_queue_lock); if (!RPC_IS_RUNNING(task)) { rpc_set_sleeping(task); if (RPC_IS_ASYNC(task)) { spin_unlock_bh(&rpc_queue_lock); return 0; } } spin_unlock_bh(&rpc_queue_lock); while (RPC_IS_SLEEPING(task)) { /* sync task: sleep here */ dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid); if (current->pid == rpciod_pid) printk(KERN_ERR "RPC: rpciod waiting on sync task!\n"); __wait_event(task->tk_wait, !RPC_IS_SLEEPING(task)); dprintk("RPC: %4d sync task resuming\n", task->tk_pid); /* * When a sync task receives a signal, it exits with * -ERESTARTSYS. In order to catch any callbacks that * clean up after sleeping on some queue, we don't * break the loop here, but go around once more. */ if (task->tk_client->cl_intr && signalled()) { dprintk("RPC: %4d got signal\n", task->tk_pid); task->tk_flags |= RPC_TASK_KILLED; rpc_exit(task, -ERESTARTSYS); rpc_wake_up_task(task); } } } if (task->tk_exit) { task->tk_exit(task); /* If tk_action is non-null, the user wants us to restart */ if (task->tk_action) { if (!RPC_ASSASSINATED(task)) { /* Release RPC slot and buffer memory */ if (task->tk_rqstp) xprt_release(task); if (task->tk_buffer) { rpc_free(task->tk_buffer); task->tk_buffer = NULL; } goto restarted; } printk(KERN_ERR "RPC: dead task tries to walk away.\n"); } } dprintk("RPC: %4d exit() = %d\n", task->tk_pid, task->tk_status); status = task->tk_status; /* Release all resources associated with the task */ rpc_release_task(task); return status; } /* * User-visible entry point to the scheduler. * * This may be called recursively if e.g. an async NFS task updates * the attributes and finds that dirty pages must be flushed. * NOTE: Upon exit of this function the task is guaranteed to be * released. In particular note that tk_release() will have * been called, so your task memory may have been freed. */ int rpc_execute(struct rpc_task *task) { int status = -EIO; if (rpc_inhibit) { printk(KERN_INFO "RPC: execution inhibited!\n"); goto out_release; } status = -EWOULDBLOCK; if (task->tk_active) { printk(KERN_ERR "RPC: active task was run twice!\n"); goto out_err; } task->tk_active = 1; rpc_set_running(task); return __rpc_execute(task); out_release: rpc_release_task(task); out_err: return status; } /* * This is our own little scheduler for async RPC tasks. */ static void __rpc_schedule(void) { struct rpc_task *task; int count = 0; dprintk("RPC: rpc_schedule enter\n"); while (1) { spin_lock_bh(&rpc_queue_lock); task_for_first(task, &schedq.tasks) { __rpc_remove_wait_queue(task); spin_unlock_bh(&rpc_queue_lock); __rpc_execute(task); } else { spin_unlock_bh(&rpc_queue_lock); break; } if (++count >= 200 || current->need_resched) { count = 0; schedule(); } } dprintk("RPC: rpc_schedule leave\n"); } /* * Allocate memory for RPC purpose. * * This is yet another tricky issue: For sync requests issued by * a user process, we want to make kmalloc sleep if there isn't * enough memory. Async requests should not sleep too excessively * because that will block rpciod (but that's not dramatic when * it's starved of memory anyway). Finally, swapout requests should * never sleep at all, and should not trigger another swap_out * request through kmalloc which would just increase memory contention. * * I hope the following gets it right, which gives async requests * a slight advantage over sync requests (good for writeback, debatable * for readahead): * * sync user requests: GFP_KERNEL * async requests: GFP_RPC (== GFP_NOFS) * swap requests: GFP_ATOMIC (or new GFP_SWAPPER) */ void * rpc_allocate(unsigned int flags, unsigned int size) { u32 *buffer; int gfp; if (flags & RPC_TASK_SWAPPER) gfp = GFP_ATOMIC; else if (flags & RPC_TASK_ASYNC) gfp = GFP_RPC; else gfp = GFP_KERNEL; do { if ((buffer = (u32 *) kmalloc(size, gfp)) != NULL) { dprintk("RPC: allocated buffer %p\n", buffer); return buffer; } if ((flags & RPC_TASK_SWAPPER) && size <= sizeof(swap_buffer) && rpc_lock_swapbuf()) { dprintk("RPC: used last-ditch swap buffer\n"); return swap_buffer; } if (flags & RPC_TASK_ASYNC) return NULL; yield(); } while (!signalled()); return NULL; } void rpc_free(void *buffer) { if (buffer != swap_buffer) { kfree(buffer); return; } rpc_unlock_swapbuf(); } /* * Creation and deletion of RPC task structures */ inline void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, rpc_action callback, int flags) { memset(task, 0, sizeof(*task)); init_timer(&task->tk_timer); task->tk_timer.data = (unsigned long) task; task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer; task->tk_client = clnt; task->tk_flags = flags; task->tk_exit = callback; init_waitqueue_head(&task->tk_wait); if (current->uid != current->fsuid || current->gid != current->fsgid) task->tk_flags |= RPC_TASK_SETUID; /* Initialize retry counters */ task->tk_garb_retry = 2; task->tk_cred_retry = 2; task->tk_suid_retry = 1; /* Add to global list of all tasks */ spin_lock(&rpc_sched_lock); list_add(&task->tk_task, &all_tasks); spin_unlock(&rpc_sched_lock); if (clnt) atomic_inc(&clnt->cl_users); #ifdef RPC_DEBUG task->tk_magic = 0xf00baa; task->tk_pid = rpc_task_id++; #endif dprintk("RPC: %4d new task procpid %d\n", task->tk_pid, current->pid); } static void rpc_default_free_task(struct rpc_task *task) { dprintk("RPC: %4d freeing task\n", task->tk_pid); rpc_free(task); } /* * Create a new task for the specified client. We have to * clean up after an allocation failure, as the client may * have specified "oneshot". */ struct rpc_task * rpc_new_task(struct rpc_clnt *clnt, rpc_action callback, int flags) { struct rpc_task *task; task = (struct rpc_task *) rpc_allocate(flags, sizeof(*task)); if (!task) goto cleanup; rpc_init_task(task, clnt, callback, flags); /* Replace tk_release */ task->tk_release = rpc_default_free_task; dprintk("RPC: %4d allocated task\n", task->tk_pid); task->tk_flags |= RPC_TASK_DYNAMIC; out: return task; cleanup: /* Check whether to release the client */ if (clnt) { printk("rpc_new_task: failed, users=%d, oneshot=%d\n", atomic_read(&clnt->cl_users), clnt->cl_oneshot); atomic_inc(&clnt->cl_users); /* pretend we were used ... */ rpc_release_client(clnt); } goto out; } void rpc_release_task(struct rpc_task *task) { dprintk("RPC: %4d release task\n", task->tk_pid); #ifdef RPC_DEBUG if (task->tk_magic != 0xf00baa) { printk(KERN_ERR "RPC: attempt to release a non-existing task!\n"); rpc_debug = ~0; rpc_show_tasks(); return; } #endif /* Remove from global task list */ spin_lock(&rpc_sched_lock); list_del(&task->tk_task); spin_unlock(&rpc_sched_lock); /* Protect the execution below. */ spin_lock_bh(&rpc_queue_lock); /* Disable timer to prevent zombie wakeup */ __rpc_disable_timer(task); /* Remove from any wait queue we're still on */ __rpc_remove_wait_queue(task); task->tk_active = 0; spin_unlock_bh(&rpc_queue_lock); /* Synchronously delete any running timer */ rpc_delete_timer(task); /* Release resources */ if (task->tk_rqstp) xprt_release(task); if (task->tk_msg.rpc_cred) rpcauth_unbindcred(task); if (task->tk_buffer) { rpc_free(task->tk_buffer); task->tk_buffer = NULL; } if (task->tk_client) { rpc_release_client(task->tk_client); task->tk_client = NULL; } #ifdef RPC_DEBUG task->tk_magic = 0; #endif if (task->tk_release) task->tk_release(task); } /** * rpc_find_parent - find the parent of a child task. * @child: child task * * Checks that the parent task is still sleeping on the * queue 'childq'. If so returns a pointer to the parent. * Upon failure returns NULL. * * Caller must hold rpc_queue_lock */ static inline struct rpc_task * rpc_find_parent(struct rpc_task *child) { struct rpc_task *task, *parent; struct list_head *le; parent = (struct rpc_task *) child->tk_calldata; task_for_each(task, le, &childq.tasks) if (task == parent) return parent; return NULL; } static void rpc_child_exit(struct rpc_task *child) { struct rpc_task *parent; spin_lock_bh(&rpc_queue_lock); if ((parent = rpc_find_parent(child)) != NULL) { parent->tk_status = child->tk_status; __rpc_wake_up_task(parent); } spin_unlock_bh(&rpc_queue_lock); } /* * Note: rpc_new_task releases the client after a failure. */ struct rpc_task * rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent) { struct rpc_task *task; task = rpc_new_task(clnt, NULL, RPC_TASK_ASYNC | RPC_TASK_CHILD); if (!task) goto fail; task->tk_exit = rpc_child_exit; task->tk_calldata = parent; return task; fail: parent->tk_status = -ENOMEM; return NULL; } void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func) { spin_lock_bh(&rpc_queue_lock); /* N.B. Is it possible for the child to have already finished? */ __rpc_sleep_on(&childq, task, func, NULL); rpc_schedule_run(child); spin_unlock_bh(&rpc_queue_lock); } /* * Kill all tasks for the given client. * XXX: kill their descendants as well? */ void rpc_killall_tasks(struct rpc_clnt *clnt) { struct rpc_task *rovr; struct list_head *le; dprintk("RPC: killing all tasks for client %p\n", clnt); /* * Spin lock all_tasks to prevent changes... */ spin_lock(&rpc_sched_lock); alltask_for_each(rovr, le, &all_tasks) if (!clnt || rovr->tk_client == clnt) { rovr->tk_flags |= RPC_TASK_KILLED; rpc_exit(rovr, -EIO); rpc_wake_up_task(rovr); } spin_unlock(&rpc_sched_lock); } static DECLARE_MUTEX_LOCKED(rpciod_running); static inline int rpciod_task_pending(void) { return !list_empty(&schedq.tasks); } /* * This is the rpciod kernel thread */ static int rpciod(void *ptr) { wait_queue_head_t *assassin = (wait_queue_head_t*) ptr; int rounds = 0; MOD_INC_USE_COUNT; lock_kernel(); /* * Let our maker know we're running ... */ rpciod_pid = current->pid; up(&rpciod_running); daemonize(); spin_lock_irq(¤t->sigmask_lock); siginitsetinv(¤t->blocked, sigmask(SIGKILL)); recalc_sigpending(current); spin_unlock_irq(¤t->sigmask_lock); strcpy(current->comm, "rpciod"); dprintk("RPC: rpciod starting (pid %d)\n", rpciod_pid); while (rpciod_users) { if (signalled()) { rpciod_killall(); flush_signals(current); } __rpc_schedule(); if (++rounds >= 64) { /* safeguard */ schedule(); rounds = 0; } if (!rpciod_task_pending()) { dprintk("RPC: rpciod back to sleep\n"); wait_event_interruptible(rpciod_idle, rpciod_task_pending()); dprintk("RPC: switch to rpciod\n"); rounds = 0; } } dprintk("RPC: rpciod shutdown commences\n"); if (!list_empty(&all_tasks)) { printk(KERN_ERR "rpciod: active tasks at shutdown?!\n"); rpciod_killall(); } rpciod_pid = 0; wake_up(assassin); dprintk("RPC: rpciod exiting\n"); MOD_DEC_USE_COUNT; return 0; } static void rpciod_killall(void) { unsigned long flags; while (!list_empty(&all_tasks)) { current->sigpending = 0; rpc_killall_tasks(NULL); __rpc_schedule(); if (!list_empty(&all_tasks)) { dprintk("rpciod_killall: waiting for tasks to exit\n"); yield(); } } spin_lock_irqsave(¤t->sigmask_lock, flags); recalc_sigpending(current); spin_unlock_irqrestore(¤t->sigmask_lock, flags); } /* * Start up the rpciod process if it's not already running. */ int rpciod_up(void) { int error = 0; MOD_INC_USE_COUNT; down(&rpciod_sema); dprintk("rpciod_up: pid %d, users %d\n", rpciod_pid, rpciod_users); rpciod_users++; if (rpciod_pid) goto out; /* * If there's no pid, we should be the first user. */ if (rpciod_users > 1) printk(KERN_WARNING "rpciod_up: no pid, %d users??\n", rpciod_users); /* * Create the rpciod thread and wait for it to start. */ error = kernel_thread(rpciod, &rpciod_killer, 0); if (error < 0) { printk(KERN_WARNING "rpciod_up: create thread failed, error=%d\n", error); rpciod_users--; goto out; } down(&rpciod_running); error = 0; out: up(&rpciod_sema); MOD_DEC_USE_COUNT; return error; } void rpciod_down(void) { unsigned long flags; MOD_INC_USE_COUNT; down(&rpciod_sema); dprintk("rpciod_down pid %d sema %d\n", rpciod_pid, rpciod_users); if (rpciod_users) { if (--rpciod_users) goto out; } else printk(KERN_WARNING "rpciod_down: pid=%d, no users??\n", rpciod_pid); if (!rpciod_pid) { dprintk("rpciod_down: Nothing to do!\n"); goto out; } kill_proc(rpciod_pid, SIGKILL, 1); /* * Usually rpciod will exit very quickly, so we * wait briefly before checking the process id. */ current->sigpending = 0; yield(); /* * Display a message if we're going to wait longer. */ while (rpciod_pid) { dprintk("rpciod_down: waiting for pid %d to exit\n", rpciod_pid); if (signalled()) { dprintk("rpciod_down: caught signal\n"); break; } interruptible_sleep_on(&rpciod_killer); } spin_lock_irqsave(¤t->sigmask_lock, flags); recalc_sigpending(current); spin_unlock_irqrestore(¤t->sigmask_lock, flags); out: up(&rpciod_sema); MOD_DEC_USE_COUNT; } #ifdef RPC_DEBUG void rpc_show_tasks(void) { struct list_head *le; struct rpc_task *t; spin_lock(&rpc_sched_lock); if (list_empty(&all_tasks)) { spin_unlock(&rpc_sched_lock); return; } printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout " "-rpcwait -action- --exit--\n"); alltask_for_each(t, le, &all_tasks) printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n", t->tk_pid, t->tk_msg.rpc_proc, t->tk_flags, t->tk_status, t->tk_client, t->tk_client->cl_prog, t->tk_rqstp, t->tk_timeout, t->tk_rpcwait ? rpc_qname(t->tk_rpcwait) : " ", t->tk_action, t->tk_exit); spin_unlock(&rpc_sched_lock); } #endif