/* SCTP kernel reference Implementation * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * * This file is part of the SCTP kernel reference Implementation * * (It's really SHA-1 but Hey I was tired when I created this * file, and on a plane to France :-) * * The SCTP reference implementation is free software; * you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * The SCTP reference implementation is distributed in the hope that it * will be useful, but WITHOUT ANY WARRANTY; without even the implied * ************************ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU CC; see the file COPYING. If not, write to * the Free Software Foundation, 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers * * Or submit a bug report through the following website: * http://www.sf.net/projects/lksctp * * Written or modified by: * Randall Stewart * kmorneau@cisco.com * qxie1@email.mot.com * * Based on: * Randy Stewart, et al. SCTP Reference Implementation which is licenced * under the GPL. * * Any bugs reported given to us we will try to fix... any fixes shared will * be incorporated into the next SCTP release. */ #include #include #include #include /* for memcpy */ #include /* dead chicken for in.h */ #include /* for htonl and ntohl */ #include void SLA1_Init(struct SLA_1_Context *ctx) { /* Init the SLA-1 context structure. */ ctx->A = 0; ctx->B = 0; ctx->C = 0; ctx->D = 0; ctx->E = 0; ctx->H0 = H0INIT; ctx->H1 = H1INIT; ctx->H2 = H2INIT; ctx->H3 = H3INIT; ctx->H4 = H4INIT; ctx->TEMP = 0; memset(ctx->words, 0, sizeof(ctx->words)); ctx->howManyInBlock = 0; ctx->runningTotal = 0; } void SLA1processABlock(struct SLA_1_Context *ctx,unsigned int *block) { int i; /* init the W0-W15 to the block of words being * hashed. */ /* step a) */ for (i = 0; i < 16; i++) ctx->words[i] = ntohl(block[i]); /* now init the rest based on the SLA-1 formula, step b) */ for (i = 16; i < 80; i++) ctx->words[i] = CSHIFT(1, ((ctx->words[(i-3)]) ^ (ctx->words[(i-8)]) ^ (ctx->words[(i-14)]) ^ (ctx->words[(i-16)]))); /* step c) */ ctx->A = ctx->H0; ctx->B = ctx->H1; ctx->C = ctx->H2; ctx->D = ctx->H3; ctx->E = ctx->H4; /* step d) */ for (i = 0; i < 80; i++) { if (i < 20) { ctx->TEMP = ((CSHIFT(5, ctx->A)) + (F1(ctx->B, ctx->C, ctx->D)) + (ctx->E) + ctx->words[i] + K1 ); } else if (i < 40) { ctx->TEMP = ((CSHIFT(5, ctx->A)) + (F2(ctx->B, ctx->C, ctx->D)) + (ctx->E) + (ctx->words[i]) + K2 ); } else if (i < 60) { ctx->TEMP = ((CSHIFT(5, ctx->A)) + (F3(ctx->B, ctx->C, ctx->D)) + (ctx->E) + (ctx->words[i]) + K3 ); } else { ctx->TEMP = ((CSHIFT(5, ctx->A)) + (F4(ctx->B, ctx->C, ctx->D)) + (ctx->E) + (ctx->words[i]) + K4 ); } ctx->E = ctx->D; ctx->D = ctx->C; ctx->C = CSHIFT(30, ctx->B); ctx->B = ctx->A; ctx->A = ctx->TEMP; } /* step e) */ ctx->H0 = (ctx->H0) + (ctx->A); ctx->H1 = (ctx->H1) + (ctx->B); ctx->H2 = (ctx->H2) + (ctx->C); ctx->H3 = (ctx->H3) + (ctx->D); ctx->H4 = (ctx->H4) + (ctx->E); } void SLA1_Process(struct SLA_1_Context *ctx, const unsigned char *ptr, int siz) { int numberLeft, leftToFill; numberLeft = siz; while (numberLeft > 0) { leftToFill = sizeof(ctx->SLAblock) - ctx->howManyInBlock; if (leftToFill > numberLeft) { /* can only partially fill up this one */ memcpy(&ctx->SLAblock[ctx->howManyInBlock], ptr, numberLeft); ctx->howManyInBlock += siz; ctx->runningTotal += siz; break; } else { /* block is now full, process it */ memcpy(&ctx->SLAblock[ctx->howManyInBlock], ptr, leftToFill); SLA1processABlock(ctx, (unsigned int *) ctx->SLAblock); numberLeft -= leftToFill; ctx->runningTotal += leftToFill; ctx->howManyInBlock = 0; } } } void SLA1_Final(struct SLA_1_Context *ctx, unsigned char *digestBuf) { /* if any left in block fill with padding * and process. Then transfer the digest to * the pointer. At the last block some special * rules need to apply. We must add a 1 bit * following the message, then we pad with * 0's. The total size is encoded as a 64 bit * number at the end. Now if the last buffer has * more than 55 octets in it we cannot fit * the 64 bit number + 10000000 pad on the end * and must add the 10000000 pad, pad the rest * of the message with 0's and then create a * all 0 message with just the 64 bit size * at the end and run this block through by itself. * Also the 64 bit int must be in network byte * order. */ int i, leftToFill; unsigned int *ptr; if (ctx->howManyInBlock > 55) { /* special case, we need to process two * blocks here. One for the current stuff * plus possibly the pad. The other for * the size. */ leftToFill = sizeof(ctx->SLAblock) - ctx->howManyInBlock; if (leftToFill == 0) { /* Should not really happen but I am paranoid */ /* Not paranoid enough! It is possible for leftToFill * to become negative! AAA!!!! This is another reason * to pick MD5 :-)... */ SLA1processABlock(ctx, (unsigned int *) ctx->SLAblock); /* init last block, a bit different then the rest :-) */ ctx->SLAblock[0] = 0x80; for (i = 1; i < sizeof(ctx->SLAblock); i++) { ctx->SLAblock[i] = 0x0; } } else if (leftToFill == 1) { ctx->SLAblock[ctx->howManyInBlock] = 0x80; SLA1processABlock(ctx, (unsigned int *) ctx->SLAblock); /* init last block */ memset(ctx->SLAblock, 0, sizeof(ctx->SLAblock)); } else { ctx->SLAblock[ctx->howManyInBlock] = 0x80; for (i = (ctx->howManyInBlock + 1); i < sizeof(ctx->SLAblock); i++) { ctx->SLAblock[i] = 0x0; } SLA1processABlock(ctx, (unsigned int *) ctx->SLAblock); /* init last block */ memset(ctx->SLAblock, 0, sizeof(ctx->SLAblock)); } /* This is in bits so multiply by 8 */ ctx->runningTotal *= 8; ptr = (unsigned int *) &ctx->SLAblock[60]; *ptr = htonl(ctx->runningTotal); SLA1processABlock(ctx, (unsigned int *) ctx->SLAblock); } else { /* easy case, we just pad this * message to size - end with 0 * add the magic 0x80 to the next * word and then put the network byte * order size in the last spot and * process the block. */ ctx->SLAblock[ctx->howManyInBlock] = 0x80; for (i = (ctx->howManyInBlock + 1); i < sizeof(ctx->SLAblock); i++) { ctx->SLAblock[i] = 0x0; } /* get last int spot */ ctx->runningTotal *= 8; ptr = (unsigned int *) &ctx->SLAblock[60]; *ptr = htonl(ctx->runningTotal); SLA1processABlock(ctx, (unsigned int *) ctx->SLAblock); } /* Now at this point all we need do is transfer the * digest back to the user */ digestBuf[3] = (ctx->H0 & 0xff); digestBuf[2] = ((ctx->H0 >> 8) & 0xff); digestBuf[1] = ((ctx->H0 >> 16) & 0xff); digestBuf[0] = ((ctx->H0 >> 24) & 0xff); digestBuf[7] = (ctx->H1 & 0xff); digestBuf[6] = ((ctx->H1 >> 8) & 0xff); digestBuf[5] = ((ctx->H1 >> 16) & 0xff); digestBuf[4] = ((ctx->H1 >> 24) & 0xff); digestBuf[11] = (ctx->H2 & 0xff); digestBuf[10] = ((ctx->H2 >> 8) & 0xff); digestBuf[9] = ((ctx->H2 >> 16) & 0xff); digestBuf[8] = ((ctx->H2 >> 24) & 0xff); digestBuf[15] = (ctx->H3 & 0xff); digestBuf[14] = ((ctx->H3 >> 8) & 0xff); digestBuf[13] = ((ctx->H3 >> 16) & 0xff); digestBuf[12] = ((ctx->H3 >> 24) & 0xff); digestBuf[19] = (ctx->H4 & 0xff); digestBuf[18] = ((ctx->H4 >> 8) & 0xff); digestBuf[17] = ((ctx->H4 >> 16) & 0xff); digestBuf[16] = ((ctx->H4 >> 24) & 0xff); }