/* SCTP kernel reference Implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001 Intel Corp. * Copyright (c) 2001 Nokia, Inc. * Copyright (c) 2001 La Monte H.P. Yarroll * * This file is part of the SCTP kernel reference Implementation * * Initialization/cleanup for SCTP protocol support. * * The SCTP reference implementation is free software; * you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * The SCTP reference implementation is distributed in the hope that it * will be useful, but WITHOUT ANY WARRANTY; without even the implied * ************************ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU CC; see the file COPYING. If not, write to * the Free Software Foundation, 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers * * Or submit a bug report through the following website: * http://www.sf.net/projects/lksctp * * Written or modified by: * La Monte H.P. Yarroll * Karl Knutson * Jon Grimm * Sridhar Samudrala * Daisy Chang * Ardelle Fan * * Any bugs reported given to us we will try to fix... any fixes shared will * be incorporated into the next SCTP release. */ #include #include #include #include #include #include #include #include #include #include #include #include /* Global data structures. */ struct sctp_globals sctp_globals; struct proc_dir_entry *proc_net_sctp; DEFINE_SNMP_STAT(struct sctp_mib, sctp_statistics); /* This is the global socket data structure used for responding to * the Out-of-the-blue (OOTB) packets. A control sock will be created * for this socket at the initialization time. */ static struct socket *sctp_ctl_socket; static struct sctp_pf *sctp_pf_inet6_specific; static struct sctp_pf *sctp_pf_inet_specific; static struct sctp_af *sctp_af_v4_specific; static struct sctp_af *sctp_af_v6_specific; kmem_cache_t *sctp_chunk_cachep; extern struct net_proto_family inet_family_ops; extern int sctp_snmp_proc_init(void); extern int sctp_snmp_proc_exit(void); extern int sctp_eps_proc_init(void); extern int sctp_eps_proc_exit(void); extern int sctp_assocs_proc_init(void); extern int sctp_assocs_proc_exit(void); /* Return the address of the control sock. */ struct sock *sctp_get_ctl_sock(void) { return sctp_ctl_socket->sk; } /* Set up the proc fs entry for the SCTP protocol. */ static __init int sctp_proc_init(void) { if (!proc_net_sctp) { struct proc_dir_entry *ent; ent = proc_mkdir("net/sctp", NULL); if (ent) { ent->owner = THIS_MODULE; proc_net_sctp = ent; } else goto out_nomem; } if (sctp_snmp_proc_init()) goto out_nomem; if (sctp_eps_proc_init()) goto out_nomem; if (sctp_assocs_proc_init()) goto out_nomem; return 0; out_nomem: return -ENOMEM; } /* Clean up the proc fs entry for the SCTP protocol. * Note: Do not make this __exit as it is used in the init error * path. */ static void sctp_proc_exit(void) { sctp_snmp_proc_exit(); sctp_eps_proc_exit(); sctp_assocs_proc_exit(); if (proc_net_sctp) { proc_net_sctp = NULL; remove_proc_entry("net/sctp", 0); } } /* Private helper to extract ipv4 address and stash them in * the protocol structure. */ static void sctp_v4_copy_addrlist(struct list_head *addrlist, struct net_device *dev) { struct in_device *in_dev; struct in_ifaddr *ifa; struct sctp_sockaddr_entry *addr; read_lock(&inetdev_lock); if ((in_dev = __in_dev_get(dev)) == NULL) { read_unlock(&inetdev_lock); return; } read_lock(&in_dev->lock); for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) { /* Add the address to the local list. */ addr = t_new(struct sctp_sockaddr_entry, GFP_ATOMIC); if (addr) { addr->a.v4.sin_family = AF_INET; addr->a.v4.sin_port = 0; addr->a.v4.sin_addr.s_addr = ifa->ifa_local; list_add_tail(&addr->list, addrlist); } } read_unlock(&in_dev->lock); read_unlock(&inetdev_lock); } /* Extract our IP addresses from the system and stash them in the * protocol structure. */ static void __sctp_get_local_addr_list(void) { struct net_device *dev; struct list_head *pos; struct sctp_af *af; read_lock(&dev_base_lock); for (dev = dev_base; dev; dev = dev->next) { list_for_each(pos, &sctp_address_families) { af = list_entry(pos, struct sctp_af, list); af->copy_addrlist(&sctp_local_addr_list, dev); } } read_unlock(&dev_base_lock); } static void sctp_get_local_addr_list(void) { unsigned long flags; sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); __sctp_get_local_addr_list(); sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); } /* Free the existing local addresses. */ static void __sctp_free_local_addr_list(void) { struct sctp_sockaddr_entry *addr; struct list_head *pos, *temp; list_for_each_safe(pos, temp, &sctp_local_addr_list) { addr = list_entry(pos, struct sctp_sockaddr_entry, list); list_del(pos); kfree(addr); } } /* Free the existing local addresses. */ static void sctp_free_local_addr_list(void) { unsigned long flags; sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); __sctp_free_local_addr_list(); sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); } /* Copy the local addresses which are valid for 'scope' into 'bp'. */ int sctp_copy_local_addr_list(struct sctp_bind_addr *bp, sctp_scope_t scope, int gfp, int copy_flags) { struct sctp_sockaddr_entry *addr; int error = 0; struct list_head *pos; unsigned long flags; sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); list_for_each(pos, &sctp_local_addr_list) { addr = list_entry(pos, struct sctp_sockaddr_entry, list); if (sctp_in_scope(&addr->a, scope)) { /* Now that the address is in scope, check to see if * the address type is really supported by the local * sock as well as the remote peer. */ if ((((AF_INET == addr->a.sa.sa_family) && (copy_flags & SCTP_ADDR4_PEERSUPP))) || (((AF_INET6 == addr->a.sa.sa_family) && (copy_flags & SCTP_ADDR6_ALLOWED) && (copy_flags & SCTP_ADDR6_PEERSUPP)))) { error = sctp_add_bind_addr(bp, &addr->a, GFP_ATOMIC); if (error) goto end_copy; } } } end_copy: sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); return error; } /* Initialize a sctp_addr from in incoming skb. */ static void sctp_v4_from_skb(union sctp_addr *addr, struct sk_buff *skb, int is_saddr) { void *from; __u16 *port; struct sctphdr *sh; port = &addr->v4.sin_port; addr->v4.sin_family = AF_INET; sh = (struct sctphdr *) skb->h.raw; if (is_saddr) { *port = ntohs(sh->source); from = &skb->nh.iph->saddr; } else { *port = ntohs(sh->dest); from = &skb->nh.iph->daddr; } memcpy(&addr->v4.sin_addr.s_addr, from, sizeof(struct in_addr)); } /* Initialize an sctp_addr from a socket. */ static void sctp_v4_from_sk(union sctp_addr *addr, struct sock *sk) { addr->v4.sin_family = AF_INET; addr->v4.sin_port = sk->num; addr->v4.sin_addr.s_addr = sk->rcv_saddr; } /* Initialize sk->sk_rcv_saddr from sctp_addr. */ static void sctp_v4_to_sk_saddr(union sctp_addr *addr, struct sock *sk) { sk->rcv_saddr = addr->v4.sin_addr.s_addr; } /* Initialize sk->sk_daddr from sctp_addr. */ static void sctp_v4_to_sk_daddr(union sctp_addr *addr, struct sock *sk) { sk->daddr = addr->v4.sin_addr.s_addr; } /* Initialize a sctp_addr from an address parameter. */ static void sctp_v4_from_addr_param(union sctp_addr *addr, union sctp_addr_param *param, __u16 port, int iif) { addr->v4.sin_family = AF_INET; addr->v4.sin_port = port; addr->v4.sin_addr.s_addr = param->v4.addr.s_addr; } /* Initialize an address parameter from a sctp_addr and return the length * of the address parameter. */ static int sctp_v4_to_addr_param(const union sctp_addr *addr, union sctp_addr_param *param) { int length = sizeof(sctp_ipv4addr_param_t); param->v4.param_hdr.type = SCTP_PARAM_IPV4_ADDRESS; param->v4.param_hdr.length = ntohs(length); param->v4.addr.s_addr = addr->v4.sin_addr.s_addr; return length; } /* Initialize a sctp_addr from a dst_entry. */ static void sctp_v4_dst_saddr(union sctp_addr *saddr, struct dst_entry *dst, unsigned short port) { struct rtable *rt = (struct rtable *)dst; saddr->v4.sin_family = AF_INET; saddr->v4.sin_port = port; saddr->v4.sin_addr.s_addr = rt->rt_src; } /* Compare two addresses exactly. */ static int sctp_v4_cmp_addr(const union sctp_addr *addr1, const union sctp_addr *addr2) { if (addr1->sa.sa_family != addr2->sa.sa_family) return 0; if (addr1->v4.sin_port != addr2->v4.sin_port) return 0; if (addr1->v4.sin_addr.s_addr != addr2->v4.sin_addr.s_addr) return 0; return 1; } /* Initialize addr struct to INADDR_ANY. */ static void sctp_v4_inaddr_any(union sctp_addr *addr, unsigned short port) { addr->v4.sin_family = AF_INET; addr->v4.sin_addr.s_addr = INADDR_ANY; addr->v4.sin_port = port; } /* Is this a wildcard address? */ static int sctp_v4_is_any(const union sctp_addr *addr) { return INADDR_ANY == addr->v4.sin_addr.s_addr; } /* This function checks if the address is a valid address to be used for * SCTP binding. * * Output: * Return 0 - If the address is a non-unicast or an illegal address. * Return 1 - If the address is a unicast. */ static int sctp_v4_addr_valid(union sctp_addr *addr, struct sctp_opt *sp) { /* Is this a non-unicast address or a unusable SCTP address? */ if (IS_IPV4_UNUSABLE_ADDRESS(&addr->v4.sin_addr.s_addr)) return 0; return 1; } /* Should this be available for binding? */ static int sctp_v4_available(union sctp_addr *addr, struct sctp_opt *sp) { int ret = inet_addr_type(addr->v4.sin_addr.s_addr); /* FIXME: ip_nonlocal_bind sysctl support. */ if (addr->v4.sin_addr.s_addr != INADDR_ANY && ret != RTN_LOCAL) return 0; return 1; } /* Checking the loopback, private and other address scopes as defined in * RFC 1918. The IPv4 scoping is based on the draft for SCTP IPv4 * scoping . * * Level 0 - unusable SCTP addresses * Level 1 - loopback address * Level 2 - link-local addresses * Level 3 - private addresses. * Level 4 - global addresses * For INIT and INIT-ACK address list, let L be the level of * of requested destination address, sender and receiver * SHOULD include all of its addresses with level greater * than or equal to L. */ static sctp_scope_t sctp_v4_scope(union sctp_addr *addr) { sctp_scope_t retval; /* Should IPv4 scoping be a sysctl configurable option * so users can turn it off (default on) for certain * unconventional networking environments? */ /* Check for unusable SCTP addresses. */ if (IS_IPV4_UNUSABLE_ADDRESS(&addr->v4.sin_addr.s_addr)) { retval = SCTP_SCOPE_UNUSABLE; } else if (LOOPBACK(addr->v4.sin_addr.s_addr)) { retval = SCTP_SCOPE_LOOPBACK; } else if (IS_IPV4_LINK_ADDRESS(&addr->v4.sin_addr.s_addr)) { retval = SCTP_SCOPE_LINK; } else if (IS_IPV4_PRIVATE_ADDRESS(&addr->v4.sin_addr.s_addr)) { retval = SCTP_SCOPE_PRIVATE; } else { retval = SCTP_SCOPE_GLOBAL; } return retval; } /* Returns a valid dst cache entry for the given source and destination ip * addresses. If an association is passed, trys to get a dst entry with a * source address that matches an address in the bind address list. */ static struct dst_entry *sctp_v4_get_dst(struct sctp_association *asoc, union sctp_addr *daddr, union sctp_addr *saddr) { struct rtable *rt; struct rt_key key; struct sctp_bind_addr *bp; rwlock_t *addr_lock; struct sctp_sockaddr_entry *laddr; struct list_head *pos; struct dst_entry *dst = NULL; union sctp_addr dst_saddr; memset(&key, 0x0, sizeof(struct rt_key)); key.dst = daddr->v4.sin_addr.s_addr; if (asoc) { key.tos = RT_CONN_FLAGS(asoc->base.sk); key.oif = asoc->base.sk->bound_dev_if; } if (saddr) key.src = saddr->v4.sin_addr.s_addr; SCTP_DEBUG_PRINTK("%s: DST:%u.%u.%u.%u, SRC:%u.%u.%u.%u - ", __FUNCTION__, NIPQUAD(key.dst), NIPQUAD(key.src)); if (!ip_route_output_key(&rt, &key)) { dst = &rt->u.dst; } /* If there is no association or if a source address is passed, no * more validation is required. */ if (!asoc || saddr) goto out; bp = &asoc->base.bind_addr; addr_lock = &asoc->base.addr_lock; if (dst) { /* Walk through the bind address list and look for a bind * address that matches the source address of the returned dst. */ sctp_read_lock(addr_lock); list_for_each(pos, &bp->address_list) { laddr = list_entry(pos, struct sctp_sockaddr_entry, list); sctp_v4_dst_saddr(&dst_saddr, dst, bp->port); if (sctp_v4_cmp_addr(&dst_saddr, &laddr->a)) goto out_unlock; } sctp_read_unlock(addr_lock); /* None of the bound addresses match the source address of the * dst. So release it. */ dst_release(dst); dst = NULL; } /* Walk through the bind address list and try to get a dst that * matches a bind address as the source address. */ sctp_read_lock(addr_lock); list_for_each(pos, &bp->address_list) { laddr = list_entry(pos, struct sctp_sockaddr_entry, list); if (AF_INET == laddr->a.sa.sa_family) { key.src = laddr->a.v4.sin_addr.s_addr; if (!ip_route_output_key(&rt, &key)) { dst = &rt->u.dst; goto out_unlock; } } } out_unlock: sctp_read_unlock(addr_lock); out: if (dst) SCTP_DEBUG_PRINTK("rt_dst:%u.%u.%u.%u, rt_src:%u.%u.%u.%u\n", NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_src)); else SCTP_DEBUG_PRINTK("NO ROUTE\n"); return dst; } /* For v4, the source address is cached in the route entry(dst). So no need * to cache it separately and hence this is an empty routine. */ static void sctp_v4_get_saddr(struct sctp_association *asoc, struct dst_entry *dst, union sctp_addr *daddr, union sctp_addr *saddr) { struct rtable *rt = (struct rtable *)dst; if (rt) { saddr->v4.sin_family = AF_INET; saddr->v4.sin_port = asoc->base.bind_addr.port; saddr->v4.sin_addr.s_addr = rt->rt_src; } } /* What interface did this skb arrive on? */ static int sctp_v4_skb_iif(const struct sk_buff *skb) { return ((struct rtable *)skb->dst)->rt_iif; } /* Was this packet marked by Explicit Congestion Notification? */ static int sctp_v4_is_ce(const struct sk_buff *skb) { return INET_ECN_is_ce(skb->nh.iph->tos); } /* Create and initialize a new sk for the socket returned by accept(). */ static struct sock *sctp_v4_create_accept_sk(struct sock *sk, struct sctp_association *asoc) { struct sock *newsk; struct inet_opt *inet = inet_sk(sk); struct inet_opt *newinet; newsk = sk_alloc(PF_INET, GFP_KERNEL, sizeof(struct sock)); if (!newsk) goto out; sock_init_data(NULL, newsk); sk_set_owner(newsk, THIS_MODULE); newsk->type = SOCK_STREAM; newsk->prot = sk->prot; newsk->no_check = sk->no_check; newsk->reuse = sk->reuse; newsk->shutdown = sk->shutdown; newsk->destruct = inet_sock_destruct; newsk->zapped = 0; newsk->family = PF_INET; newsk->protocol = IPPROTO_SCTP; newsk->backlog_rcv = sk->prot->backlog_rcv; newinet = inet_sk(newsk); /* Initialize sk's sport, dport, rcv_saddr and daddr for * getsockname() and getpeername() */ newsk->sport = sk->sport; newsk->saddr = sk->saddr; newsk->rcv_saddr = sk->rcv_saddr; newsk->dport = htons(asoc->peer.port); newsk->daddr = asoc->peer.primary_addr.v4.sin_addr.s_addr; newinet->pmtudisc = inet->pmtudisc; newinet->id = 0; newinet->ttl = sysctl_ip_default_ttl; newinet->mc_loop = 1; newinet->mc_ttl = 1; newinet->mc_index = 0; newinet->mc_list = NULL; #ifdef INET_REFCNT_DEBUG atomic_inc(&inet_sock_nr); #endif if (newsk->prot->init(newsk)) { inet_sock_release(newsk); newsk = NULL; } out: return newsk; } /* Map address, empty for v4 family */ static void sctp_v4_addr_v4map(struct sctp_opt *sp, union sctp_addr *addr) { /* Empty */ } /* Dump the v4 addr to the seq file. */ static void sctp_v4_seq_dump_addr(struct seq_file *seq, union sctp_addr *addr) { seq_printf(seq, "%d.%d.%d.%d ", NIPQUAD(addr->v4.sin_addr)); } /* Event handler for inet address addition/deletion events. * Basically, whenever there is an event, we re-build our local address list. */ int sctp_inetaddr_event(struct notifier_block *this, unsigned long ev, void *ptr) { unsigned long flags; sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); __sctp_free_local_addr_list(); __sctp_get_local_addr_list(); sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); return NOTIFY_DONE; } /* * Initialize the control inode/socket with a control endpoint data * structure. This endpoint is reserved exclusively for the OOTB processing. */ static int sctp_ctl_sock_init(void) { int err; sa_family_t family; if (sctp_get_pf_specific(PF_INET6)) family = PF_INET6; else family = PF_INET; err = sock_create(family, SOCK_SEQPACKET, IPPROTO_SCTP, &sctp_ctl_socket); if (err < 0) { printk(KERN_ERR "SCTP: Failed to create the SCTP control socket.\n"); return err; } sctp_ctl_socket->sk->allocation = GFP_ATOMIC; inet_sk(sctp_ctl_socket->sk)->ttl = MAXTTL; return 0; } /* Register address family specific functions. */ int sctp_register_af(struct sctp_af *af) { switch (af->sa_family) { case AF_INET: if (sctp_af_v4_specific) return 0; sctp_af_v4_specific = af; break; case AF_INET6: if (sctp_af_v6_specific) return 0; sctp_af_v6_specific = af; break; default: return 0; } INIT_LIST_HEAD(&af->list); list_add_tail(&af->list, &sctp_address_families); return 1; } /* Get the table of functions for manipulating a particular address * family. */ struct sctp_af *sctp_get_af_specific(sa_family_t family) { switch (family) { case AF_INET: return sctp_af_v4_specific; case AF_INET6: return sctp_af_v6_specific; default: return NULL; } } /* Common code to initialize a AF_INET msg_name. */ static void sctp_inet_msgname(char *msgname, int *addr_len) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)msgname; *addr_len = sizeof(struct sockaddr_in); sin->sin_family = AF_INET; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } /* Copy the primary address of the peer primary address as the msg_name. */ static void sctp_inet_event_msgname(struct sctp_ulpevent *event, char *msgname, int *addr_len) { struct sockaddr_in *sin, *sinfrom; if (msgname) { struct sctp_association *asoc; asoc = event->asoc; sctp_inet_msgname(msgname, addr_len); sin = (struct sockaddr_in *)msgname; sinfrom = &asoc->peer.primary_addr.v4; sin->sin_port = htons(asoc->peer.port); sin->sin_addr.s_addr = sinfrom->sin_addr.s_addr; } } /* Initialize and copy out a msgname from an inbound skb. */ static void sctp_inet_skb_msgname(struct sk_buff *skb, char *msgname, int *len) { struct sctphdr *sh; struct sockaddr_in *sin; if (msgname) { sctp_inet_msgname(msgname, len); sin = (struct sockaddr_in *)msgname; sh = (struct sctphdr *)skb->h.raw; sin->sin_port = sh->source; sin->sin_addr.s_addr = skb->nh.iph->saddr; } } /* Do we support this AF? */ static int sctp_inet_af_supported(sa_family_t family, struct sctp_opt *sp) { /* PF_INET only supports AF_INET addresses. */ return (AF_INET == family); } /* Address matching with wildcards allowed. */ static int sctp_inet_cmp_addr(const union sctp_addr *addr1, const union sctp_addr *addr2, struct sctp_opt *opt) { /* PF_INET only supports AF_INET addresses. */ if (addr1->sa.sa_family != addr2->sa.sa_family) return 0; if (INADDR_ANY == addr1->v4.sin_addr.s_addr || INADDR_ANY == addr2->v4.sin_addr.s_addr) return 1; if (addr1->v4.sin_addr.s_addr == addr2->v4.sin_addr.s_addr) return 1; return 0; } /* Verify that provided sockaddr looks bindable. Common verification has * already been taken care of. */ static int sctp_inet_bind_verify(struct sctp_opt *opt, union sctp_addr *addr) { return sctp_v4_available(addr, opt); } /* Verify that sockaddr looks sendable. Common verification has already * been taken care of. */ static int sctp_inet_send_verify(struct sctp_opt *opt, union sctp_addr *addr) { return 1; } /* Fill in Supported Address Type information for INIT and INIT-ACK * chunks. Returns number of addresses supported. */ static int sctp_inet_supported_addrs(const struct sctp_opt *opt, __u16 *types) { types[0] = SCTP_PARAM_IPV4_ADDRESS; return 1; } /* Wrapper routine that calls the ip transmit routine. */ static inline int sctp_v4_xmit(struct sk_buff *skb, struct sctp_transport *transport, int ipfragok) { SCTP_DEBUG_PRINTK("%s: skb:%p, len:%d, " "src:%u.%u.%u.%u, dst:%u.%u.%u.%u\n", __FUNCTION__, skb, skb->len, NIPQUAD(((struct rtable *)skb->dst)->rt_src), NIPQUAD(((struct rtable *)skb->dst)->rt_dst)); SCTP_INC_STATS(SctpOutSCTPPacks); return ip_queue_xmit(skb, ipfragok); } static struct sctp_af sctp_ipv4_specific; static struct sctp_pf sctp_pf_inet = { .event_msgname = sctp_inet_event_msgname, .skb_msgname = sctp_inet_skb_msgname, .af_supported = sctp_inet_af_supported, .cmp_addr = sctp_inet_cmp_addr, .bind_verify = sctp_inet_bind_verify, .send_verify = sctp_inet_send_verify, .supported_addrs = sctp_inet_supported_addrs, .create_accept_sk = sctp_v4_create_accept_sk, .addr_v4map = sctp_v4_addr_v4map, .af = &sctp_ipv4_specific, }; /* Notifier for inetaddr addition/deletion events. */ static struct notifier_block sctp_inetaddr_notifier = { .notifier_call = sctp_inetaddr_event, }; /* Socket operations. */ static struct proto_ops inet_seqpacket_ops = { .family = PF_INET, .release = inet_release, /* Needs to be wrapped... */ .bind = inet_bind, .connect = inet_dgram_connect, .socketpair = sock_no_socketpair, .accept = inet_accept, .getname = inet_getname, /* Semantics are different. */ .poll = sctp_poll, .ioctl = inet_ioctl, .listen = sctp_inet_listen, .shutdown = inet_shutdown, /* Looks harmless. */ .setsockopt = inet_setsockopt, /* IP_SOL IP_OPTION is a problem. */ .getsockopt = inet_getsockopt, .sendmsg = inet_sendmsg, .recvmsg = inet_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; /* Registration with AF_INET family. */ static struct inet_protosw sctp_seqpacket_protosw = { .type = SOCK_SEQPACKET, .protocol = IPPROTO_SCTP, .prot = &sctp_prot, .ops = &inet_seqpacket_ops, .capability = -1, .no_check = 0, .flags = SCTP_PROTOSW_FLAG }; static struct inet_protosw sctp_stream_protosw = { .type = SOCK_STREAM, .protocol = IPPROTO_SCTP, .prot = &sctp_prot, .ops = &inet_seqpacket_ops, .capability = -1, .no_check = 0, .flags = SCTP_PROTOSW_FLAG }; /* Register with IP layer. */ static struct inet_protocol sctp_protocol = { .handler = sctp_rcv, .err_handler = sctp_v4_err, .protocol = IPPROTO_SCTP, .name = "SCTP" }; /* IPv4 address related functions. */ static struct sctp_af sctp_ipv4_specific = { .sctp_xmit = sctp_v4_xmit, .setsockopt = ip_setsockopt, .getsockopt = ip_getsockopt, .get_dst = sctp_v4_get_dst, .get_saddr = sctp_v4_get_saddr, .copy_addrlist = sctp_v4_copy_addrlist, .from_skb = sctp_v4_from_skb, .from_sk = sctp_v4_from_sk, .to_sk_saddr = sctp_v4_to_sk_saddr, .to_sk_daddr = sctp_v4_to_sk_daddr, .from_addr_param= sctp_v4_from_addr_param, .to_addr_param = sctp_v4_to_addr_param, .dst_saddr = sctp_v4_dst_saddr, .cmp_addr = sctp_v4_cmp_addr, .addr_valid = sctp_v4_addr_valid, .inaddr_any = sctp_v4_inaddr_any, .is_any = sctp_v4_is_any, .available = sctp_v4_available, .scope = sctp_v4_scope, .skb_iif = sctp_v4_skb_iif, .is_ce = sctp_v4_is_ce, .seq_dump_addr = sctp_v4_seq_dump_addr, .net_header_len = sizeof(struct iphdr), .sockaddr_len = sizeof(struct sockaddr_in), .sa_family = AF_INET, }; struct sctp_pf *sctp_get_pf_specific(sa_family_t family) { switch (family) { case PF_INET: return sctp_pf_inet_specific; case PF_INET6: return sctp_pf_inet6_specific; default: return NULL; } } /* Register the PF specific function table. */ int sctp_register_pf(struct sctp_pf *pf, sa_family_t family) { switch (family) { case PF_INET: if (sctp_pf_inet_specific) return 0; sctp_pf_inet_specific = pf; break; case PF_INET6: if (sctp_pf_inet6_specific) return 0; sctp_pf_inet6_specific = pf; break; default: return 0; } return 1; } static int __init init_sctp_mibs(void) { return 0; } static void cleanup_sctp_mibs(void) { return; } /* Initialize the universe into something sensible. */ SCTP_STATIC __init int sctp_init(void) { int i; int status = 0; unsigned long goal; int order; /* SCTP_DEBUG sanity check. */ if (!sctp_sanity_check()) return -EINVAL; /* Add SCTP to inet_protos hash table. */ inet_add_protocol(&sctp_protocol); /* Add SCTP(TCP and UDP style) to inetsw linked list. */ inet_register_protosw(&sctp_seqpacket_protosw); inet_register_protosw(&sctp_stream_protosw); /* Allocate cache pools. */ sctp_chunk_cachep = kmem_cache_create("sctp_chunk", sizeof(struct sctp_chunk), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!sctp_chunk_cachep) goto err_chunk_cachep; /* Allocate and initialise sctp mibs. */ status = init_sctp_mibs(); if (status) goto err_init_mibs; /* Initialize proc fs directory. */ sctp_proc_init(); if (status) goto err_init_proc; /* Initialize object count debugging. */ sctp_dbg_objcnt_init(); /* Initialize the SCTP specific PF functions. */ sctp_register_pf(&sctp_pf_inet, PF_INET); /* * 14. Suggested SCTP Protocol Parameter Values */ /* The following protocol parameters are RECOMMENDED: */ /* RTO.Initial - 3 seconds */ sctp_rto_initial = SCTP_RTO_INITIAL; /* RTO.Min - 1 second */ sctp_rto_min = SCTP_RTO_MIN; /* RTO.Max - 60 seconds */ sctp_rto_max = SCTP_RTO_MAX; /* RTO.Alpha - 1/8 */ sctp_rto_alpha = SCTP_RTO_ALPHA; /* RTO.Beta - 1/4 */ sctp_rto_beta = SCTP_RTO_BETA; /* Valid.Cookie.Life - 60 seconds */ sctp_valid_cookie_life = 60 * HZ; /* Whether Cookie Preservative is enabled(1) or not(0) */ sctp_cookie_preserve_enable = 1; /* Max.Burst - 4 */ sctp_max_burst = SCTP_MAX_BURST; /* Association.Max.Retrans - 10 attempts * Path.Max.Retrans - 5 attempts (per destination address) * Max.Init.Retransmits - 8 attempts */ sctp_max_retrans_association = 10; sctp_max_retrans_path = 5; sctp_max_retrans_init = 8; /* HB.interval - 30 seconds */ sctp_hb_interval = 30 * HZ; /* Implementation specific variables. */ /* Initialize default stream count setup information. */ sctp_max_instreams = SCTP_DEFAULT_INSTREAMS; sctp_max_outstreams = SCTP_DEFAULT_OUTSTREAMS; /* Size and allocate the association hash table. * The methodology is similar to that of the tcp hash tables. */ if (num_physpages >= (128 * 1024)) goal = num_physpages >> (22 - PAGE_SHIFT); else goal = num_physpages >> (24 - PAGE_SHIFT); for (order = 0; (1UL << order) < goal; order++) ; do { sctp_assoc_hashsize = (1UL << order) * PAGE_SIZE / sizeof(struct sctp_hashbucket); if ((sctp_assoc_hashsize > (64 * 1024)) && order > 0) continue; sctp_assoc_hashtable = (struct sctp_hashbucket *) __get_free_pages(GFP_ATOMIC, order); } while (!sctp_assoc_hashtable && --order > 0); if (!sctp_assoc_hashtable) { printk(KERN_ERR "SCTP: Failed association hash alloc.\n"); status = -ENOMEM; goto err_ahash_alloc; } for (i = 0; i < sctp_assoc_hashsize; i++) { sctp_assoc_hashtable[i].lock = RW_LOCK_UNLOCKED; sctp_assoc_hashtable[i].chain = NULL; } /* Allocate and initialize the endpoint hash table. */ sctp_ep_hashsize = 64; sctp_ep_hashtable = (struct sctp_hashbucket *) kmalloc(64 * sizeof(struct sctp_hashbucket), GFP_KERNEL); if (!sctp_ep_hashtable) { printk(KERN_ERR "SCTP: Failed endpoint_hash alloc.\n"); status = -ENOMEM; goto err_ehash_alloc; } for (i = 0; i < sctp_ep_hashsize; i++) { sctp_ep_hashtable[i].lock = RW_LOCK_UNLOCKED; sctp_ep_hashtable[i].chain = NULL; } /* Allocate and initialize the SCTP port hash table. */ do { sctp_port_hashsize = (1UL << order) * PAGE_SIZE / sizeof(struct sctp_bind_hashbucket); if ((sctp_port_hashsize > (64 * 1024)) && order > 0) continue; sctp_port_hashtable = (struct sctp_bind_hashbucket *) __get_free_pages(GFP_ATOMIC, order); } while (!sctp_port_hashtable && --order > 0); if (!sctp_port_hashtable) { printk(KERN_ERR "SCTP: Failed bind hash alloc."); status = -ENOMEM; goto err_bhash_alloc; } for (i = 0; i < sctp_port_hashsize; i++) { sctp_port_hashtable[i].lock = SPIN_LOCK_UNLOCKED; sctp_port_hashtable[i].chain = NULL; } sctp_port_alloc_lock = SPIN_LOCK_UNLOCKED; sctp_port_rover = sysctl_local_port_range[0] - 1; printk(KERN_INFO "SCTP: Hash tables configured " "(established %d bind %d)\n", sctp_assoc_hashsize, sctp_port_hashsize); /* Disable ADDIP by default. */ sctp_addip_enable = 0; /* Enable PR-SCTP by default. */ sctp_prsctp_enable = 1; sctp_sysctl_register(); INIT_LIST_HEAD(&sctp_address_families); sctp_register_af(&sctp_ipv4_specific); status = sctp_v6_init(); if (status) goto err_v6_init; /* Initialize the control inode/socket for handling OOTB packets. */ if ((status = sctp_ctl_sock_init())) { printk (KERN_ERR "SCTP: Failed to initialize the SCTP control sock.\n"); goto err_ctl_sock_init; } /* Initialize the local address list. */ INIT_LIST_HEAD(&sctp_local_addr_list); sctp_local_addr_lock = SPIN_LOCK_UNLOCKED; /* Register notifier for inet address additions/deletions. */ register_inetaddr_notifier(&sctp_inetaddr_notifier); sctp_get_local_addr_list(); __unsafe(THIS_MODULE); return 0; err_ctl_sock_init: sctp_v6_exit(); err_v6_init: sctp_sysctl_unregister(); list_del(&sctp_ipv4_specific.list); free_pages((unsigned long)sctp_port_hashtable, get_order(sctp_port_hashsize * sizeof(struct sctp_bind_hashbucket))); err_bhash_alloc: kfree(sctp_ep_hashtable); err_ehash_alloc: free_pages((unsigned long)sctp_assoc_hashtable, get_order(sctp_assoc_hashsize * sizeof(struct sctp_hashbucket))); err_ahash_alloc: sctp_dbg_objcnt_exit(); err_init_proc: sctp_proc_exit(); cleanup_sctp_mibs(); err_init_mibs: kmem_cache_destroy(sctp_chunk_cachep); err_chunk_cachep: inet_del_protocol(&sctp_protocol); inet_unregister_protosw(&sctp_seqpacket_protosw); inet_unregister_protosw(&sctp_stream_protosw); return status; } /* Exit handler for the SCTP protocol. */ SCTP_STATIC __exit void sctp_exit(void) { /* BUG. This should probably do something useful like clean * up all the remaining associations and all that memory. */ /* Unregister notifier for inet address additions/deletions. */ unregister_inetaddr_notifier(&sctp_inetaddr_notifier); /* Free the local address list. */ sctp_free_local_addr_list(); /* Free the control endpoint. */ sock_release(sctp_ctl_socket); sctp_v6_exit(); sctp_sysctl_unregister(); list_del(&sctp_ipv4_specific.list); free_pages((unsigned long)sctp_assoc_hashtable, get_order(sctp_assoc_hashsize * sizeof(struct sctp_hashbucket))); kfree(sctp_ep_hashtable); free_pages((unsigned long)sctp_port_hashtable, get_order(sctp_port_hashsize * sizeof(struct sctp_bind_hashbucket))); kmem_cache_destroy(sctp_chunk_cachep); sctp_dbg_objcnt_exit(); sctp_proc_exit(); cleanup_sctp_mibs(); inet_del_protocol(&sctp_protocol); inet_unregister_protosw(&sctp_seqpacket_protosw); inet_unregister_protosw(&sctp_stream_protosw); } module_init(sctp_init); module_exit(sctp_exit); MODULE_AUTHOR("Linux Kernel SCTP developers "); MODULE_DESCRIPTION("Support for the SCTP protocol (RFC2960)"); MODULE_LICENSE("GPL");