/* * IPVS An implementation of the IP virtual server support for the * LINUX operating system. IPVS is now implemented as a module * over the NetFilter framework. IPVS can be used to build a * high-performance and highly available server based on a * cluster of servers. * * Version: $Id: ip_vs_sync.c,v 1.8 2002/08/17 14:06:02 wensong Exp $ * * Authors: Wensong Zhang * * ip_vs_sync: sync connection info from master load balancer to backups * through multicast * * Changes: * Alexandre Cassen : Added master & backup support at a time. * Alexandre Cassen : Added SyncID support for incoming sync * messages filtering. * Justin Ossevoort : Fix endian problem on sync message size. */ #include #include #include #include #include #include /* for ip_mc_join_group */ #include #include #include /* for get_fs and set_fs */ #include #define IP_VS_SYNC_GROUP 0xe0000051 /* multicast addr - 224.0.0.81 */ #define IP_VS_SYNC_PORT 8848 /* multicast port */ /* * IPVS sync connection entry */ struct ip_vs_sync_conn { __u8 reserved; /* Protocol, addresses and port numbers */ __u8 protocol; /* Which protocol (TCP/UDP) */ __u16 cport; __u16 vport; __u16 dport; __u32 caddr; /* client address */ __u32 vaddr; /* virtual address */ __u32 daddr; /* destination address */ /* Flags and state transition */ __u16 flags; /* status flags */ __u16 state; /* state info */ /* The sequence options start here */ }; struct ip_vs_sync_conn_options { struct ip_vs_seq in_seq; /* incoming seq. struct */ struct ip_vs_seq out_seq; /* outgoing seq. struct */ }; #define IP_VS_SYNC_CONN_TIMEOUT (3*60*HZ) #define SIMPLE_CONN_SIZE (sizeof(struct ip_vs_sync_conn)) #define FULL_CONN_SIZE \ (sizeof(struct ip_vs_sync_conn) + sizeof(struct ip_vs_sync_conn_options)) /* The master mulitcasts messages to the backup load balancers in the following format. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Count Conns | Sync ID | Size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | IPVS Sync Connection (1) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | . | | . | | . | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | IPVS Sync Connection (n) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Count Conns : Number of IPVS sync Connection entries. Sync ID : IPVS sync group we belong to. Size : Size of packet. */ #define SYNC_MESG_MAX_SIZE (24*50+4) struct ip_vs_sync_mesg { __u8 nr_conns; __u8 syncid; __u16 size; /* ip_vs_sync_conn entries start here */ }; struct ip_vs_sync_buff { struct list_head list; unsigned long firstuse; /* pointers for the message data */ struct ip_vs_sync_mesg *mesg; unsigned char *head; unsigned char *end; }; /* the sync_buff list head and the lock */ static LIST_HEAD(ip_vs_sync_queue); static spinlock_t ip_vs_sync_lock = SPIN_LOCK_UNLOCKED; /* current sync_buff for accepting new conn entries */ static struct ip_vs_sync_buff *curr_sb = NULL; static spinlock_t curr_sb_lock = SPIN_LOCK_UNLOCKED; /* ipvs sync daemon state */ volatile int ip_vs_sync_state = IP_VS_STATE_NONE; volatile int ip_vs_master_syncid = 0; volatile int ip_vs_backup_syncid = 0; /* multicast interface name */ char ip_vs_mcast_master_ifn[IP_VS_IFNAME_MAXLEN]; char ip_vs_mcast_backup_ifn[IP_VS_IFNAME_MAXLEN]; /* multicast addr */ static struct sockaddr_in mcast_addr; static inline void sb_queue_tail(struct ip_vs_sync_buff *sb) { spin_lock(&ip_vs_sync_lock); list_add_tail(&sb->list, &ip_vs_sync_queue); spin_unlock(&ip_vs_sync_lock); } static inline struct ip_vs_sync_buff * sb_dequeue(void) { struct ip_vs_sync_buff *sb; spin_lock_bh(&ip_vs_sync_lock); if (list_empty(&ip_vs_sync_queue)) { sb = NULL; } else { sb = list_entry(ip_vs_sync_queue.next, struct ip_vs_sync_buff, list); list_del(&sb->list); } spin_unlock_bh(&ip_vs_sync_lock); return sb; } static inline struct ip_vs_sync_buff * ip_vs_sync_buff_create(void) { struct ip_vs_sync_buff *sb; if (!(sb=kmalloc(sizeof(struct ip_vs_sync_buff), GFP_ATOMIC))) return NULL; if (!(sb->mesg=kmalloc(SYNC_MESG_MAX_SIZE, GFP_ATOMIC))) { kfree(sb); return NULL; } sb->mesg->nr_conns = 0; sb->mesg->syncid = ip_vs_master_syncid; sb->mesg->size = 4; sb->head = (unsigned char *)sb->mesg + 4; sb->end = (unsigned char *)sb->mesg + SYNC_MESG_MAX_SIZE; sb->firstuse = jiffies; return sb; } static inline void ip_vs_sync_buff_release(struct ip_vs_sync_buff *sb) { kfree(sb->mesg); kfree(sb); } /* * Get the current sync buffer if it has been created for more * than the specified time or the specified time is zero. */ static inline struct ip_vs_sync_buff * get_curr_sync_buff(unsigned long time) { struct ip_vs_sync_buff *sb; spin_lock_bh(&curr_sb_lock); if (curr_sb && (jiffies - curr_sb->firstuse > time || time == 0)) { sb = curr_sb; curr_sb = NULL; } else sb = NULL; spin_unlock_bh(&curr_sb_lock); return sb; } /* * Add an ip_vs_conn information into the current sync_buff. * Called by ip_vs_in. */ void ip_vs_sync_conn(struct ip_vs_conn *cp) { struct ip_vs_sync_mesg *m; struct ip_vs_sync_conn *s; int len; spin_lock(&curr_sb_lock); if (!curr_sb) { if (!(curr_sb=ip_vs_sync_buff_create())) { spin_unlock(&curr_sb_lock); IP_VS_ERR("ip_vs_sync_buff_create failed.\n"); return; } } len = (cp->flags & IP_VS_CONN_F_SEQ_MASK) ? FULL_CONN_SIZE : SIMPLE_CONN_SIZE; m = curr_sb->mesg; s = (struct ip_vs_sync_conn *)curr_sb->head; /* copy members */ s->protocol = cp->protocol; s->cport = cp->cport; s->vport = cp->vport; s->dport = cp->dport; s->caddr = cp->caddr; s->vaddr = cp->vaddr; s->daddr = cp->daddr; s->flags = htons(cp->flags & ~IP_VS_CONN_F_HASHED); s->state = htons(cp->state); if (cp->flags & IP_VS_CONN_F_SEQ_MASK) { struct ip_vs_sync_conn_options *opt = (struct ip_vs_sync_conn_options *)&s[1]; memcpy(opt, &cp->in_seq, sizeof(*opt)); } m->nr_conns++; m->size += len; curr_sb->head += len; /* check if there is a space for next one */ if (curr_sb->head+FULL_CONN_SIZE > curr_sb->end) { sb_queue_tail(curr_sb); curr_sb = NULL; } spin_unlock(&curr_sb_lock); /* synchronize its controller if it has */ if (cp->control) ip_vs_sync_conn(cp->control); } /* * Process received multicast message and create the corresponding * ip_vs_conn entries. */ static void ip_vs_process_message(const char *buffer, const size_t buflen) { struct ip_vs_sync_mesg *m = (struct ip_vs_sync_mesg *)buffer; struct ip_vs_sync_conn *s; struct ip_vs_sync_conn_options *opt; struct ip_vs_conn *cp; char *p; int i; /* Convert size back to host byte order */ m->size = ntohs(m->size); if (buflen != m->size) { IP_VS_ERR("bogus message\n"); return; } /* SyncID sanity check */ if (ip_vs_backup_syncid != 0 && m->syncid != ip_vs_backup_syncid) { IP_VS_DBG(7, "Ignoring incoming msg with syncid = %d\n", m->syncid); return; } p = (char *)buffer + sizeof(struct ip_vs_sync_mesg); for (i=0; inr_conns; i++) { unsigned flags; s = (struct ip_vs_sync_conn *)p; flags = ntohs(s->flags); if (!(flags & IP_VS_CONN_F_TEMPLATE)) cp = ip_vs_conn_in_get(s->protocol, s->caddr, s->cport, s->vaddr, s->vport); else cp = ip_vs_ct_in_get(s->protocol, s->caddr, s->cport, s->vaddr, s->vport); if (!cp) { cp = ip_vs_conn_new(s->protocol, s->caddr, s->cport, s->vaddr, s->vport, s->daddr, s->dport, flags, NULL); if (!cp) { IP_VS_ERR("ip_vs_conn_new failed\n"); return; } cp->state = ntohs(s->state); } else if (!cp->dest) { /* it is an entry created by the synchronization */ cp->state = ntohs(s->state); cp->flags = flags | IP_VS_CONN_F_HASHED; } /* Note that we don't touch its state and flags if it is a normal entry. */ if (flags & IP_VS_CONN_F_SEQ_MASK) { opt = (struct ip_vs_sync_conn_options *)&s[1]; memcpy(&cp->in_seq, opt, sizeof(*opt)); p += FULL_CONN_SIZE; } else p += SIMPLE_CONN_SIZE; atomic_set(&cp->in_pkts, sysctl_ip_vs_sync_threshold); cp->timeout = IP_VS_SYNC_CONN_TIMEOUT; ip_vs_conn_put(cp); if (p > buffer+buflen) { IP_VS_ERR("bogus message\n"); return; } } } /* * Setup loopback of outgoing multicasts on a sending socket */ static void set_mcast_loop(struct sock *sk, u_char loop) { /* setsockopt(sock, SOL_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop)); */ lock_sock(sk); sk->protinfo.af_inet.mc_loop = loop ? 1 : 0; release_sock(sk); } /* * Specify TTL for outgoing multicasts on a sending socket */ static void set_mcast_ttl(struct sock *sk, u_char ttl) { /* setsockopt(sock, SOL_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl)); */ lock_sock(sk); sk->protinfo.af_inet.mc_ttl = ttl; release_sock(sk); } /* * Specifiy default interface for outgoing multicasts */ static int set_mcast_if(struct sock *sk, char *ifname) { struct net_device *dev; if ((dev = __dev_get_by_name(ifname)) == NULL) return -ENODEV; if (sk->bound_dev_if && dev->ifindex != sk->bound_dev_if) return -EINVAL; lock_sock(sk); sk->protinfo.af_inet.mc_index = dev->ifindex; /* sk->protinfo.af_inet.mc_addr = 0; */ release_sock(sk); return 0; } /* * Join a multicast group. * the group is specified by a class D multicast address 224.0.0.0/8 * in the in_addr structure passed in as a parameter. */ static int join_mcast_group(struct sock *sk, struct in_addr *addr, char *ifname) { struct ip_mreqn mreq; struct net_device *dev; int ret; memset(&mreq, 0, sizeof(mreq)); memcpy(&mreq.imr_multiaddr, addr, sizeof(struct in_addr)); if ((dev = __dev_get_by_name(ifname)) == NULL) return -ENODEV; if (sk->bound_dev_if && dev->ifindex != sk->bound_dev_if) return -EINVAL; mreq.imr_ifindex = dev->ifindex; lock_sock(sk); ret = ip_mc_join_group(sk, &mreq); release_sock(sk); return ret; } static int bind_mcastif_addr(struct socket *sock, char *ifname) { struct net_device *dev; u32 addr; struct sockaddr_in sin; if ((dev = __dev_get_by_name(ifname)) == NULL) return -ENODEV; addr = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE); if (!addr) IP_VS_ERR("You probably need to specify IP address on " "multicast interface.\n"); IP_VS_DBG(7, "binding socket with (%s) %u.%u.%u.%u\n", ifname, NIPQUAD(addr)); /* Now bind the socket with the address of multicast interface */ sin.sin_family = AF_INET; sin.sin_addr.s_addr = addr; sin.sin_port = 0; return sock->ops->bind(sock, (struct sockaddr*)&sin, sizeof(sin)); } /* * Set up sending multicast socket over UDP */ static struct socket * make_send_sock(void) { struct socket *sock; /* First create a socket */ if (sock_create(PF_INET, SOCK_DGRAM, IPPROTO_UDP, &sock) < 0) { IP_VS_ERR("Error during creation of socket; terminating\n"); return NULL; } if (set_mcast_if(sock->sk, ip_vs_mcast_master_ifn) < 0) { IP_VS_ERR("Error setting outbound mcast interface\n"); goto error; } set_mcast_loop(sock->sk, 0); set_mcast_ttl(sock->sk, 1); if (bind_mcastif_addr(sock, ip_vs_mcast_master_ifn) < 0) { IP_VS_ERR("Error binding address of the mcast interface\n"); goto error; } if (sock->ops->connect(sock, (struct sockaddr*)&mcast_addr, sizeof(struct sockaddr), 0) < 0) { IP_VS_ERR("Error connecting to the multicast addr\n"); goto error; } return sock; error: sock_release(sock); return NULL; } /* * Set up receiving multicast socket over UDP */ static struct socket * make_receive_sock(void) { struct socket *sock; /* First create a socket */ if (sock_create(PF_INET, SOCK_DGRAM, IPPROTO_UDP, &sock) < 0) { IP_VS_ERR("Error during creation of socket; terminating\n"); return NULL; } /* it is equivalent to the REUSEADDR option in user-space */ sock->sk->reuse = 1; if (sock->ops->bind(sock, (struct sockaddr*)&mcast_addr, sizeof(struct sockaddr)) < 0) { IP_VS_ERR("Error binding to the multicast addr\n"); goto error; } /* join the multicast group */ if (join_mcast_group(sock->sk, (struct in_addr*)&mcast_addr.sin_addr, ip_vs_mcast_backup_ifn) < 0) { IP_VS_ERR("Error joining to the multicast group\n"); goto error; } return sock; error: sock_release(sock); return NULL; } static int ip_vs_send_async(struct socket *sock, const char *buffer, const size_t length) { struct msghdr msg; mm_segment_t oldfs; struct iovec iov; int len; EnterFunction(7); iov.iov_base = (void *)buffer; iov.iov_len = length; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = MSG_DONTWAIT|MSG_NOSIGNAL; oldfs = get_fs(); set_fs(KERNEL_DS); len = sock_sendmsg(sock, &msg, (size_t)(length)); set_fs(oldfs); LeaveFunction(7); return len; } static void ip_vs_send_sync_msg(struct socket *sock, struct ip_vs_sync_mesg *msg) { int msize; msize = msg->size; /* Put size in network byte order */ msg->size = htons(msg->size); if (ip_vs_send_async(sock, (char *)msg, msize) != msize) IP_VS_ERR("ip_vs_send_async error\n"); } static int ip_vs_receive(struct socket *sock, char *buffer, const size_t buflen) { struct msghdr msg; struct iovec iov; int len; mm_segment_t oldfs; EnterFunction(7); /* Receive a packet */ iov.iov_base = buffer; iov.iov_len = (size_t)buflen; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; oldfs = get_fs(); set_fs(KERNEL_DS); len = sock_recvmsg(sock, &msg, buflen, 0); set_fs(oldfs); if (len < 0) return -1; LeaveFunction(7); return len; } static DECLARE_WAIT_QUEUE_HEAD(sync_wait); static pid_t sync_master_pid = 0; static pid_t sync_backup_pid = 0; static DECLARE_WAIT_QUEUE_HEAD(stop_sync_wait); static int stop_master_sync = 0; static int stop_backup_sync = 0; static void sync_master_loop(void) { struct socket *sock; struct ip_vs_sync_buff *sb; /* create the sending multicast socket */ sock = make_send_sock(); if (!sock) return; IP_VS_INFO("sync thread started: state = MASTER, mcast_ifn = %s, " "syncid = %d\n", ip_vs_mcast_master_ifn, ip_vs_master_syncid); for (;;) { while ((sb=sb_dequeue())) { ip_vs_send_sync_msg(sock, sb->mesg); ip_vs_sync_buff_release(sb); } /* check if entries stay in curr_sb for 2 seconds */ if ((sb = get_curr_sync_buff(2*HZ))) { ip_vs_send_sync_msg(sock, sb->mesg); ip_vs_sync_buff_release(sb); } if (stop_master_sync) break; __set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ); __set_current_state(TASK_RUNNING); } /* clean up the sync_buff queue */ while ((sb=sb_dequeue())) { ip_vs_sync_buff_release(sb); } /* clean up the current sync_buff */ if ((sb = get_curr_sync_buff(0))) { ip_vs_sync_buff_release(sb); } /* release the sending multicast socket */ sock_release(sock); } static void sync_backup_loop(void) { struct socket *sock; char *buf; int len; if (!(buf=kmalloc(SYNC_MESG_MAX_SIZE, GFP_ATOMIC))) { IP_VS_ERR("sync_backup_loop: kmalloc error\n"); return; } /* create the receiving multicast socket */ sock = make_receive_sock(); if (!sock) goto out; IP_VS_INFO("sync thread started: state = BACKUP, mcast_ifn = %s, " "syncid = %d\n", ip_vs_mcast_backup_ifn, ip_vs_backup_syncid); for (;;) { /* do you have data now? */ while (!skb_queue_empty(&(sock->sk->receive_queue))) { if ((len=ip_vs_receive(sock, buf, SYNC_MESG_MAX_SIZE))<=0) { IP_VS_ERR("receiving message error\n"); break; } /* disable bottom half, because it accessed the data shared by softirq while getting/creating conns */ local_bh_disable(); ip_vs_process_message(buf, len); local_bh_enable(); } if (stop_backup_sync) break; __set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ); __set_current_state(TASK_RUNNING); } /* release the sending multicast socket */ sock_release(sock); out: kfree(buf); } static void sync_pid_set(int sync_state, pid_t sync_pid) { if (sync_state == IP_VS_STATE_MASTER) sync_master_pid = sync_pid; else if (sync_state == IP_VS_STATE_BACKUP) sync_backup_pid = sync_pid; } static void sync_stop_set(int sync_state, int set) { if (sync_state == IP_VS_STATE_MASTER) stop_master_sync = set; else if (sync_state == IP_VS_STATE_BACKUP) stop_backup_sync = set; else { stop_master_sync = set; stop_backup_sync = set; } } static int sync_thread(void *startup) { DECLARE_WAITQUEUE(wait, current); mm_segment_t oldmm; int state = IP_VS_STATE_NONE; MOD_INC_USE_COUNT; daemonize(); oldmm = get_fs(); set_fs(KERNEL_DS); if (ip_vs_sync_state & IP_VS_STATE_MASTER && !sync_master_pid) { state = IP_VS_STATE_MASTER; sprintf(current->comm, "ipvs_syncmaster"); } else if (ip_vs_sync_state & IP_VS_STATE_BACKUP) { state = IP_VS_STATE_BACKUP; sprintf(current->comm, "ipvs_syncbackup"); } else IP_VS_BUG(); /* Block all signals */ spin_lock_irq(¤t->sigmask_lock); siginitsetinv(¤t->blocked, 0); recalc_sigpending(current); spin_unlock_irq(¤t->sigmask_lock); /* set up multicast address */ mcast_addr.sin_family = AF_INET; mcast_addr.sin_port = htons(IP_VS_SYNC_PORT); mcast_addr.sin_addr.s_addr = htonl(IP_VS_SYNC_GROUP); add_wait_queue(&sync_wait, &wait); sync_pid_set(state, current->pid); complete((struct completion *)startup); /* processing master/backup loop here */ if (state == IP_VS_STATE_MASTER) sync_master_loop(); else if (state == IP_VS_STATE_BACKUP) sync_backup_loop(); else IP_VS_BUG(); remove_wait_queue(&sync_wait, &wait); /* thread exits */ sync_pid_set(state, 0); IP_VS_INFO("sync thread stopped!\n"); set_fs(oldmm); MOD_DEC_USE_COUNT; sync_stop_set(state, 0); wake_up(&stop_sync_wait); return 0; } static int fork_sync_thread(void *startup) { pid_t pid; /* fork the sync thread here, then the parent process of the sync thread is the init process after this thread exits. */ repeat: if ((pid = kernel_thread(sync_thread, startup, 0)) < 0) { IP_VS_ERR("could not create sync_thread due to %d... " "retrying.\n", pid); current->state = TASK_UNINTERRUPTIBLE; schedule_timeout(HZ); goto repeat; } return 0; } int start_sync_thread(int state, char *mcast_ifn, __u8 syncid) { DECLARE_COMPLETION(startup); pid_t pid; if ((state == IP_VS_STATE_MASTER && sync_master_pid) || (state == IP_VS_STATE_BACKUP && sync_backup_pid)) return -EEXIST; IP_VS_DBG(7, "%s: pid %d\n", __FUNCTION__, current->pid); IP_VS_DBG(7, "Each ip_vs_sync_conn entry need %d bytes\n", sizeof(struct ip_vs_sync_conn)); ip_vs_sync_state |= state; if (state == IP_VS_STATE_MASTER) { strncpy(ip_vs_mcast_master_ifn, mcast_ifn, sizeof(ip_vs_mcast_master_ifn)); ip_vs_mcast_master_ifn[sizeof(ip_vs_mcast_master_ifn) - 1] = 0; ip_vs_master_syncid = syncid; } else { strncpy(ip_vs_mcast_backup_ifn, mcast_ifn, sizeof(ip_vs_mcast_backup_ifn)); ip_vs_mcast_backup_ifn[sizeof(ip_vs_mcast_backup_ifn) - 1] = 0; ip_vs_backup_syncid = syncid; } repeat: if ((pid = kernel_thread(fork_sync_thread, &startup, 0)) < 0) { IP_VS_ERR("could not create fork_sync_thread due to %d... " "retrying.\n", pid); current->state = TASK_UNINTERRUPTIBLE; schedule_timeout(HZ); goto repeat; } wait_for_completion(&startup); return 0; } int stop_sync_thread(int state) { DECLARE_WAITQUEUE(wait, current); if ((state == IP_VS_STATE_MASTER && !sync_master_pid) || (state == IP_VS_STATE_BACKUP && !sync_backup_pid)) return -ESRCH; IP_VS_DBG(7, "%s: pid %d\n", __FUNCTION__, current->pid); IP_VS_INFO("stopping sync thread %d ...\n", (state == IP_VS_STATE_MASTER) ? sync_master_pid : sync_backup_pid); __set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&stop_sync_wait, &wait); sync_stop_set(state, 1); ip_vs_sync_state -= state; wake_up(&sync_wait); schedule(); __set_current_state(TASK_RUNNING); remove_wait_queue(&stop_sync_wait, &wait); /* Note: no need to reap the sync thread, because its parent process is the init process */ if ((state == IP_VS_STATE_MASTER && stop_master_sync) || (state == IP_VS_STATE_BACKUP && stop_backup_sync)) IP_VS_BUG(); return 0; }