/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * PF_INET protocol family socket handler. * * Version: $Id: af_inet.c,v 1.136 2001/11/06 22:21:08 davem Exp $ * * Authors: Ross Biro, * Fred N. van Kempen, * Florian La Roche, * Alan Cox, * * Changes (see also sock.c) * * piggy, * Karl Knutson : Socket protocol table * A.N.Kuznetsov : Socket death error in accept(). * John Richardson : Fix non blocking error in connect() * so sockets that fail to connect * don't return -EINPROGRESS. * Alan Cox : Asynchronous I/O support * Alan Cox : Keep correct socket pointer on sock structures * when accept() ed * Alan Cox : Semantics of SO_LINGER aren't state moved * to close when you look carefully. With * this fixed and the accept bug fixed * some RPC stuff seems happier. * Niibe Yutaka : 4.4BSD style write async I/O * Alan Cox, * Tony Gale : Fixed reuse semantics. * Alan Cox : bind() shouldn't abort existing but dead * sockets. Stops FTP netin:.. I hope. * Alan Cox : bind() works correctly for RAW sockets. Note * that FreeBSD at least was broken in this respect * so be careful with compatibility tests... * Alan Cox : routing cache support * Alan Cox : memzero the socket structure for compactness. * Matt Day : nonblock connect error handler * Alan Cox : Allow large numbers of pending sockets * (eg for big web sites), but only if * specifically application requested. * Alan Cox : New buffering throughout IP. Used dumbly. * Alan Cox : New buffering now used smartly. * Alan Cox : BSD rather than common sense interpretation of * listen. * Germano Caronni : Assorted small races. * Alan Cox : sendmsg/recvmsg basic support. * Alan Cox : Only sendmsg/recvmsg now supported. * Alan Cox : Locked down bind (see security list). * Alan Cox : Loosened bind a little. * Mike McLagan : ADD/DEL DLCI Ioctls * Willy Konynenberg : Transparent proxying support. * David S. Miller : New socket lookup architecture. * Some other random speedups. * Cyrus Durgin : Cleaned up file for kmod hacks. * Andi Kleen : Fix inet_stream_connect TCP race. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_IP_MROUTE #include #endif #include #ifdef CONFIG_KMOD #include #endif #ifdef CONFIG_NET_DIVERT #include #endif /* CONFIG_NET_DIVERT */ #if defined(CONFIG_NET_RADIO) || defined(CONFIG_NET_PCMCIA_RADIO) #include /* Note : will define WIRELESS_EXT */ #endif /* CONFIG_NET_RADIO || CONFIG_NET_PCMCIA_RADIO */ struct linux_mib net_statistics[NR_CPUS*2]; #ifdef INET_REFCNT_DEBUG atomic_t inet_sock_nr; #endif extern int raw_get_info(char *, char **, off_t, int); extern int snmp_get_info(char *, char **, off_t, int); extern int netstat_get_info(char *, char **, off_t, int); extern int afinet_get_info(char *, char **, off_t, int); extern int tcp_get_info(char *, char **, off_t, int); extern int udp_get_info(char *, char **, off_t, int); extern void ip_mc_drop_socket(struct sock *sk); #ifdef CONFIG_DLCI extern int dlci_ioctl(unsigned int, void*); #endif #ifdef CONFIG_DLCI_MODULE int (*dlci_ioctl_hook)(unsigned int, void *); #endif #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) int (*br_ioctl_hook)(unsigned long); #endif #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) int (*vlan_ioctl_hook)(unsigned long arg); #endif /* The inetsw table contains everything that inet_create needs to * build a new socket. */ struct list_head inetsw[SOCK_MAX]; /* New destruction routine */ void inet_sock_destruct(struct sock *sk) { __skb_queue_purge(&sk->receive_queue); __skb_queue_purge(&sk->error_queue); if (sk->type == SOCK_STREAM && sk->state != TCP_CLOSE) { printk("Attempt to release TCP socket in state %d %p\n", sk->state, sk); return; } if (!sk->dead) { printk("Attempt to release alive inet socket %p\n", sk); return; } BUG_TRAP(atomic_read(&sk->rmem_alloc) == 0); BUG_TRAP(atomic_read(&sk->wmem_alloc) == 0); BUG_TRAP(sk->wmem_queued == 0); BUG_TRAP(sk->forward_alloc == 0); if (sk->protinfo.af_inet.opt) kfree(sk->protinfo.af_inet.opt); dst_release(sk->dst_cache); #ifdef INET_REFCNT_DEBUG atomic_dec(&inet_sock_nr); printk(KERN_DEBUG "INET socket %p released, %d are still alive\n", sk, atomic_read(&inet_sock_nr)); #endif } void inet_sock_release(struct sock *sk) { if (sk->prot->destroy) sk->prot->destroy(sk); /* Observation: when inet_sock_release is called, processes have * no access to socket. But net still has. * Step one, detach it from networking: * * A. Remove from hash tables. */ sk->prot->unhash(sk); /* In this point socket cannot receive new packets, * but it is possible that some packets are in flight * because some CPU runs receiver and did hash table lookup * before we unhashed socket. They will achieve receive queue * and will be purged by socket destructor. * * Also we still have packets pending on receive * queue and probably, our own packets waiting in device queues. * sock_destroy will drain receive queue, but transmitted * packets will delay socket destruction until the last reference * will be released. */ sock_orphan(sk); #ifdef INET_REFCNT_DEBUG if (atomic_read(&sk->refcnt) != 1) { printk(KERN_DEBUG "Destruction inet %p delayed, c=%d\n", sk, atomic_read(&sk->refcnt)); } #endif sock_put(sk); } /* * The routines beyond this point handle the behaviour of an AF_INET * socket object. Mostly it punts to the subprotocols of IP to do * the work. */ /* * Set socket options on an inet socket. */ int inet_setsockopt(struct socket *sock, int level, int optname, char *optval, int optlen) { struct sock *sk=sock->sk; return sk->prot->setsockopt(sk,level,optname,optval,optlen); } /* * Get a socket option on an AF_INET socket. * * FIX: POSIX 1003.1g is very ambiguous here. It states that * asynchronous errors should be reported by getsockopt. We assume * this means if you specify SO_ERROR (otherwise whats the point of it). */ int inet_getsockopt(struct socket *sock, int level, int optname, char *optval, int *optlen) { struct sock *sk=sock->sk; return sk->prot->getsockopt(sk,level,optname,optval,optlen); } /* * Automatically bind an unbound socket. */ static int inet_autobind(struct sock *sk) { /* We may need to bind the socket. */ lock_sock(sk); if (sk->num == 0) { if (sk->prot->get_port(sk, 0) != 0) { release_sock(sk); return -EAGAIN; } sk->sport = htons(sk->num); } release_sock(sk); return 0; } /* * Move a socket into listening state. */ int inet_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; unsigned char old_state; int err; lock_sock(sk); err = -EINVAL; if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) goto out; old_state = sk->state; if (!((1<max_ack_backlog = backlog; err = 0; out: release_sock(sk); return err; } /* * Create an inet socket. */ static int inet_create(struct socket *sock, int protocol) { struct sock *sk; struct list_head *p; struct inet_protosw *answer; sock->state = SS_UNCONNECTED; sk = sk_alloc(PF_INET, GFP_KERNEL, 1); if (sk == NULL) goto do_oom; /* Look for the requested type/protocol pair. */ answer = NULL; br_read_lock_bh(BR_NETPROTO_LOCK); list_for_each(p, &inetsw[sock->type]) { answer = list_entry(p, struct inet_protosw, list); /* Check the non-wild match. */ if (protocol == answer->protocol) { if (protocol != IPPROTO_IP) break; } else { /* Check for the two wild cases. */ if (IPPROTO_IP == protocol) { protocol = answer->protocol; break; } if (IPPROTO_IP == answer->protocol) break; } answer = NULL; } br_read_unlock_bh(BR_NETPROTO_LOCK); if (!answer) goto free_and_badtype; if (answer->capability > 0 && !capable(answer->capability)) goto free_and_badperm; if (!protocol) goto free_and_noproto; sock->ops = answer->ops; sk->prot = answer->prot; sk->no_check = answer->no_check; if (INET_PROTOSW_REUSE & answer->flags) sk->reuse = 1; if (SOCK_RAW == sock->type) { sk->num = protocol; if (IPPROTO_RAW == protocol) sk->protinfo.af_inet.hdrincl = 1; } if (ipv4_config.no_pmtu_disc) sk->protinfo.af_inet.pmtudisc = IP_PMTUDISC_DONT; else sk->protinfo.af_inet.pmtudisc = IP_PMTUDISC_WANT; sk->protinfo.af_inet.id = 0; sock_init_data(sock,sk); sk->destruct = inet_sock_destruct; sk->zapped = 0; sk->family = PF_INET; sk->protocol = protocol; sk->backlog_rcv = sk->prot->backlog_rcv; sk->protinfo.af_inet.ttl = sysctl_ip_default_ttl; sk->protinfo.af_inet.mc_loop = 1; sk->protinfo.af_inet.mc_ttl = 1; sk->protinfo.af_inet.mc_index = 0; sk->protinfo.af_inet.mc_list = NULL; #ifdef INET_REFCNT_DEBUG atomic_inc(&inet_sock_nr); #endif if (sk->num) { /* It assumes that any protocol which allows * the user to assign a number at socket * creation time automatically * shares. */ sk->sport = htons(sk->num); /* Add to protocol hash chains. */ sk->prot->hash(sk); } if (sk->prot->init) { int err = sk->prot->init(sk); if (err != 0) { inet_sock_release(sk); return err; } } return 0; free_and_badtype: sk_free(sk); return -ESOCKTNOSUPPORT; free_and_badperm: sk_free(sk); return -EPERM; free_and_noproto: sk_free(sk); return -EPROTONOSUPPORT; do_oom: return -ENOBUFS; } /* * The peer socket should always be NULL (or else). When we call this * function we are destroying the object and from then on nobody * should refer to it. */ int inet_release(struct socket *sock) { struct sock *sk = sock->sk; if (sk) { long timeout; /* Applications forget to leave groups before exiting */ ip_mc_drop_socket(sk); /* If linger is set, we don't return until the close * is complete. Otherwise we return immediately. The * actually closing is done the same either way. * * If the close is due to the process exiting, we never * linger.. */ timeout = 0; if (sk->linger && !(current->flags & PF_EXITING)) timeout = sk->lingertime; sock->sk = NULL; sk->prot->close(sk, timeout); } return(0); } /* It is off by default, see below. */ int sysctl_ip_nonlocal_bind; int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sockaddr_in *addr=(struct sockaddr_in *)uaddr; struct sock *sk=sock->sk; unsigned short snum; int chk_addr_ret; int err; /* If the socket has its own bind function then use it. (RAW) */ if(sk->prot->bind) return sk->prot->bind(sk, uaddr, addr_len); if (addr_len < sizeof(struct sockaddr_in)) return -EINVAL; chk_addr_ret = inet_addr_type(addr->sin_addr.s_addr); /* Not specified by any standard per-se, however it breaks too * many applications when removed. It is unfortunate since * allowing applications to make a non-local bind solves * several problems with systems using dynamic addressing. * (ie. your servers still start up even if your ISDN link * is temporarily down) */ if (sysctl_ip_nonlocal_bind == 0 && sk->protinfo.af_inet.freebind == 0 && addr->sin_addr.s_addr != INADDR_ANY && chk_addr_ret != RTN_LOCAL && chk_addr_ret != RTN_MULTICAST && chk_addr_ret != RTN_BROADCAST) return -EADDRNOTAVAIL; snum = ntohs(addr->sin_port); if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) return -EACCES; /* We keep a pair of addresses. rcv_saddr is the one * used by hash lookups, and saddr is used for transmit. * * In the BSD API these are the same except where it * would be illegal to use them (multicast/broadcast) in * which case the sending device address is used. */ lock_sock(sk); /* Check these errors (active socket, double bind). */ err = -EINVAL; if ((sk->state != TCP_CLOSE) || (sk->num != 0)) goto out; sk->rcv_saddr = sk->saddr = addr->sin_addr.s_addr; if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) sk->saddr = 0; /* Use device */ /* Make sure we are allowed to bind here. */ if (sk->prot->get_port(sk, snum) != 0) { sk->saddr = sk->rcv_saddr = 0; err = -EADDRINUSE; goto out; } if (sk->rcv_saddr) sk->userlocks |= SOCK_BINDADDR_LOCK; if (snum) sk->userlocks |= SOCK_BINDPORT_LOCK; sk->sport = htons(sk->num); sk->daddr = 0; sk->dport = 0; sk_dst_reset(sk); err = 0; out: release_sock(sk); return err; } int inet_dgram_connect(struct socket *sock, struct sockaddr * uaddr, int addr_len, int flags) { struct sock *sk=sock->sk; if (uaddr->sa_family == AF_UNSPEC) return sk->prot->disconnect(sk, flags); if (sk->num==0 && inet_autobind(sk) != 0) return -EAGAIN; return sk->prot->connect(sk, (struct sockaddr *)uaddr, addr_len); } static long inet_wait_for_connect(struct sock *sk, long timeo) { DECLARE_WAITQUEUE(wait, current); __set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(sk->sleep, &wait); /* Basic assumption: if someone sets sk->err, he _must_ * change state of the socket from TCP_SYN_*. * Connect() does not allow to get error notifications * without closing the socket. */ while ((1<state)&(TCPF_SYN_SENT|TCPF_SYN_RECV)) { release_sock(sk); timeo = schedule_timeout(timeo); lock_sock(sk); if (signal_pending(current) || !timeo) break; set_current_state(TASK_INTERRUPTIBLE); } __set_current_state(TASK_RUNNING); remove_wait_queue(sk->sleep, &wait); return timeo; } /* * Connect to a remote host. There is regrettably still a little * TCP 'magic' in here. */ int inet_stream_connect(struct socket *sock, struct sockaddr * uaddr, int addr_len, int flags) { struct sock *sk=sock->sk; int err; long timeo; lock_sock(sk); if (uaddr->sa_family == AF_UNSPEC) { err = sk->prot->disconnect(sk, flags); sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; goto out; } switch (sock->state) { default: err = -EINVAL; goto out; case SS_CONNECTED: err = -EISCONN; goto out; case SS_CONNECTING: err = -EALREADY; /* Fall out of switch with err, set for this state */ break; case SS_UNCONNECTED: err = -EISCONN; if (sk->state != TCP_CLOSE) goto out; err = sk->prot->connect(sk, uaddr, addr_len); if (err < 0) goto out; sock->state = SS_CONNECTING; /* Just entered SS_CONNECTING state; the only * difference is that return value in non-blocking * case is EINPROGRESS, rather than EALREADY. */ err = -EINPROGRESS; break; } timeo = sock_sndtimeo(sk, flags&O_NONBLOCK); if ((1<state)&(TCPF_SYN_SENT|TCPF_SYN_RECV)) { /* Error code is set above */ if (!timeo || !inet_wait_for_connect(sk, timeo)) goto out; err = sock_intr_errno(timeo); if (signal_pending(current)) goto out; } /* Connection was closed by RST, timeout, ICMP error * or another process disconnected us. */ if (sk->state == TCP_CLOSE) goto sock_error; /* sk->err may be not zero now, if RECVERR was ordered by user * and error was received after socket entered established state. * Hence, it is handled normally after connect() return successfully. */ sock->state = SS_CONNECTED; err = 0; out: release_sock(sk); return err; sock_error: err = sock_error(sk) ? : -ECONNABORTED; sock->state = SS_UNCONNECTED; if (sk->prot->disconnect(sk, flags)) sock->state = SS_DISCONNECTING; goto out; } /* * Accept a pending connection. The TCP layer now gives BSD semantics. */ int inet_accept(struct socket *sock, struct socket *newsock, int flags) { struct sock *sk1 = sock->sk; struct sock *sk2; int err = -EINVAL; if((sk2 = sk1->prot->accept(sk1,flags,&err)) == NULL) goto do_err; lock_sock(sk2); BUG_TRAP((1<state)&(TCPF_ESTABLISHED|TCPF_CLOSE_WAIT|TCPF_CLOSE)); sock_graft(sk2, newsock); newsock->state = SS_CONNECTED; release_sock(sk2); return 0; do_err: return err; } /* * This does both peername and sockname. */ int inet_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer) { struct sock *sk = sock->sk; struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; sin->sin_family = AF_INET; if (peer) { if (!sk->dport) return -ENOTCONN; if (((1<state)&(TCPF_CLOSE|TCPF_SYN_SENT)) && peer == 1) return -ENOTCONN; sin->sin_port = sk->dport; sin->sin_addr.s_addr = sk->daddr; } else { __u32 addr = sk->rcv_saddr; if (!addr) addr = sk->saddr; sin->sin_port = sk->sport; sin->sin_addr.s_addr = addr; } memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); *uaddr_len = sizeof(*sin); return(0); } int inet_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags, struct scm_cookie *scm) { struct sock *sk = sock->sk; int addr_len = 0; int err; err = sk->prot->recvmsg(sk, msg, size, flags&MSG_DONTWAIT, flags&~MSG_DONTWAIT, &addr_len); if (err >= 0) msg->msg_namelen = addr_len; return err; } int inet_sendmsg(struct socket *sock, struct msghdr *msg, int size, struct scm_cookie *scm) { struct sock *sk = sock->sk; /* We may need to bind the socket. */ if (sk->num==0 && inet_autobind(sk) != 0) return -EAGAIN; return sk->prot->sendmsg(sk, msg, size); } int inet_shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; int err = 0; /* This should really check to make sure * the socket is a TCP socket. (WHY AC...) */ how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 1->2 bit 2 snds. 2->3 */ if ((how & ~SHUTDOWN_MASK) || how==0) /* MAXINT->0 */ return -EINVAL; lock_sock(sk); if (sock->state == SS_CONNECTING) { if ((1<state)&(TCPF_SYN_SENT|TCPF_SYN_RECV|TCPF_CLOSE)) sock->state = SS_DISCONNECTING; else sock->state = SS_CONNECTED; } switch (sk->state) { case TCP_CLOSE: err = -ENOTCONN; /* Hack to wake up other listeners, who can poll for POLLHUP, even on eg. unconnected UDP sockets -- RR */ default: sk->shutdown |= how; if (sk->prot->shutdown) sk->prot->shutdown(sk, how); break; /* Remaining two branches are temporary solution for missing * close() in multithreaded environment. It is _not_ a good idea, * but we have no choice until close() is repaired at VFS level. */ case TCP_LISTEN: if (!(how & RCV_SHUTDOWN)) break; /* Fall through */ case TCP_SYN_SENT: err = sk->prot->disconnect(sk, O_NONBLOCK); sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; break; } /* Wake up anyone sleeping in poll. */ sk->state_change(sk); release_sock(sk); return err; } /* * ioctl() calls you can issue on an INET socket. Most of these are * device configuration and stuff and very rarely used. Some ioctls * pass on to the socket itself. * * NOTE: I like the idea of a module for the config stuff. ie ifconfig * loads the devconfigure module does its configuring and unloads it. * There's a good 20K of config code hanging around the kernel. */ int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; int err; int pid; switch(cmd) { case FIOSETOWN: case SIOCSPGRP: err = get_user(pid, (int *) arg); if (err) return err; if (current->pid != pid && current->pgrp != -pid && !capable(CAP_NET_ADMIN)) return -EPERM; sk->proc = pid; return(0); case FIOGETOWN: case SIOCGPGRP: return put_user(sk->proc, (int *)arg); case SIOCGSTAMP: if(sk->stamp.tv_sec==0) return -ENOENT; err = copy_to_user((void *)arg,&sk->stamp,sizeof(struct timeval)); if (err) err = -EFAULT; return err; case SIOCADDRT: case SIOCDELRT: case SIOCRTMSG: return(ip_rt_ioctl(cmd,(void *) arg)); case SIOCDARP: case SIOCGARP: case SIOCSARP: return(arp_ioctl(cmd,(void *) arg)); case SIOCGIFADDR: case SIOCSIFADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCSIFPFLAGS: case SIOCGIFPFLAGS: case SIOCSIFFLAGS: return(devinet_ioctl(cmd,(void *) arg)); case SIOCGIFBR: case SIOCSIFBR: #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) #ifdef CONFIG_KMOD if (br_ioctl_hook == NULL) request_module("bridge"); #endif if (br_ioctl_hook != NULL) return br_ioctl_hook(arg); #endif return -ENOPKG; case SIOCGIFVLAN: case SIOCSIFVLAN: #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) #ifdef CONFIG_KMOD if (vlan_ioctl_hook == NULL) request_module("8021q"); #endif if (vlan_ioctl_hook != NULL) return vlan_ioctl_hook(arg); #endif return -ENOPKG; case SIOCGIFDIVERT: case SIOCSIFDIVERT: #ifdef CONFIG_NET_DIVERT return divert_ioctl(cmd, (struct divert_cf *) arg); #else return -ENOPKG; #endif /* CONFIG_NET_DIVERT */ case SIOCADDDLCI: case SIOCDELDLCI: #ifdef CONFIG_DLCI lock_kernel(); err = dlci_ioctl(cmd, (void *) arg); unlock_kernel(); return err; #endif #ifdef CONFIG_DLCI_MODULE #ifdef CONFIG_KMOD if (dlci_ioctl_hook == NULL) request_module("dlci"); #endif if (dlci_ioctl_hook) { lock_kernel(); err = (*dlci_ioctl_hook)(cmd, (void *) arg); unlock_kernel(); return err; } #endif return -ENOPKG; default: if ((cmd >= SIOCDEVPRIVATE) && (cmd <= (SIOCDEVPRIVATE + 15))) return(dev_ioctl(cmd,(void *) arg)); #ifdef WIRELESS_EXT if((cmd >= SIOCIWFIRST) && (cmd <= SIOCIWLAST)) return(dev_ioctl(cmd,(void *) arg)); #endif /* WIRELESS_EXT */ if (sk->prot->ioctl==NULL || (err=sk->prot->ioctl(sk, cmd, arg))==-ENOIOCTLCMD) return(dev_ioctl(cmd,(void *) arg)); return err; } /*NOTREACHED*/ return(0); } struct proto_ops inet_stream_ops = { family: PF_INET, release: inet_release, bind: inet_bind, connect: inet_stream_connect, socketpair: sock_no_socketpair, accept: inet_accept, getname: inet_getname, poll: tcp_poll, ioctl: inet_ioctl, listen: inet_listen, shutdown: inet_shutdown, setsockopt: inet_setsockopt, getsockopt: inet_getsockopt, sendmsg: inet_sendmsg, recvmsg: inet_recvmsg, mmap: sock_no_mmap, sendpage: tcp_sendpage }; struct proto_ops inet_dgram_ops = { family: PF_INET, release: inet_release, bind: inet_bind, connect: inet_dgram_connect, socketpair: sock_no_socketpair, accept: sock_no_accept, getname: inet_getname, poll: udp_poll, ioctl: inet_ioctl, listen: sock_no_listen, shutdown: inet_shutdown, setsockopt: inet_setsockopt, getsockopt: inet_getsockopt, sendmsg: inet_sendmsg, recvmsg: inet_recvmsg, mmap: sock_no_mmap, sendpage: sock_no_sendpage, }; struct proto_ops inet_sockraw_ops = { family: PF_INET, release: inet_release, bind: inet_bind, connect: inet_dgram_connect, socketpair: sock_no_socketpair, accept: sock_no_accept, getname: inet_getname, poll: datagram_poll, ioctl: inet_ioctl, listen: sock_no_listen, shutdown: inet_shutdown, setsockopt: inet_setsockopt, getsockopt: inet_getsockopt, sendmsg: inet_sendmsg, recvmsg: inet_recvmsg, mmap: sock_no_mmap, sendpage: sock_no_sendpage, }; struct net_proto_family inet_family_ops = { family: PF_INET, create: inet_create }; extern void tcp_init(void); extern void tcp_v4_init(struct net_proto_family *); /* Upon startup we insert all the elements in inetsw_array[] into * the linked list inetsw. */ static struct inet_protosw inetsw_array[] = { { type: SOCK_STREAM, protocol: IPPROTO_TCP, prot: &tcp_prot, ops: &inet_stream_ops, capability: -1, no_check: 0, flags: INET_PROTOSW_PERMANENT, }, { type: SOCK_DGRAM, protocol: IPPROTO_UDP, prot: &udp_prot, ops: &inet_dgram_ops, capability: -1, no_check: UDP_CSUM_DEFAULT, flags: INET_PROTOSW_PERMANENT, }, { type: SOCK_RAW, protocol: IPPROTO_IP, /* wild card */ prot: &raw_prot, ops: &inet_sockraw_ops, capability: CAP_NET_RAW, no_check: UDP_CSUM_DEFAULT, flags: INET_PROTOSW_REUSE, } }; #define INETSW_ARRAY_LEN (sizeof(inetsw_array) / sizeof(struct inet_protosw)) void inet_register_protosw(struct inet_protosw *p) { struct list_head *lh; struct inet_protosw *answer; int protocol = p->protocol; struct list_head *last_perm; br_write_lock_bh(BR_NETPROTO_LOCK); if (p->type >= SOCK_MAX) goto out_illegal; /* If we are trying to override a permanent protocol, bail. */ answer = NULL; last_perm = &inetsw[p->type]; list_for_each(lh, &inetsw[p->type]) { answer = list_entry(lh, struct inet_protosw, list); /* Check only the non-wild match. */ if (INET_PROTOSW_PERMANENT & answer->flags) { if (protocol == answer->protocol) break; last_perm = lh; } answer = NULL; } if (answer) goto out_permanent; /* Add the new entry after the last permanent entry if any, so that * the new entry does not override a permanent entry when matched with * a wild-card protocol. But it is allowed to override any existing * non-permanent entry. This means that when we remove this entry, the * system automatically returns to the old behavior. */ list_add(&p->list, last_perm); out: br_write_unlock_bh(BR_NETPROTO_LOCK); return; out_permanent: printk(KERN_ERR "Attempt to override permanent protocol %d.\n", protocol); goto out; out_illegal: printk(KERN_ERR "Ignoring attempt to register illegal socket type %d.\n", p->type); goto out; } void inet_unregister_protosw(struct inet_protosw *p) { if (INET_PROTOSW_PERMANENT & p->flags) { printk(KERN_ERR "Attempt to unregister permanent protocol %d.\n", p->protocol); } else { br_write_lock_bh(BR_NETPROTO_LOCK); list_del(&p->list); br_write_unlock_bh(BR_NETPROTO_LOCK); } } extern void ipfrag_init(void); /* * Called by socket.c on kernel startup. */ static int __init inet_init(void) { struct sk_buff *dummy_skb; struct inet_protocol *p; struct inet_protosw *q; struct list_head *r; printk(KERN_INFO "NET4: Linux TCP/IP 1.0 for NET4.0\n"); if (sizeof(struct inet_skb_parm) > sizeof(dummy_skb->cb)) { printk(KERN_CRIT "inet_proto_init: panic\n"); return -EINVAL; } /* * Tell SOCKET that we are alive... */ (void) sock_register(&inet_family_ops); /* * Add all the protocols. */ printk(KERN_INFO "IP Protocols: "); for (p = inet_protocol_base; p != NULL;) { struct inet_protocol *tmp = (struct inet_protocol *) p->next; inet_add_protocol(p); printk("%s%s",p->name,tmp?", ":"\n"); p = tmp; } /* Register the socket-side information for inet_create. */ for(r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) INIT_LIST_HEAD(r); for(q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) inet_register_protosw(q); /* * Set the ARP module up */ arp_init(); /* * Set the IP module up */ ip_init(); tcp_v4_init(&inet_family_ops); /* Setup TCP slab cache for open requests. */ tcp_init(); /* * Set the ICMP layer up */ icmp_init(&inet_family_ops); /* I wish inet_add_protocol had no constructor hook... I had to move IPIP from net/ipv4/protocol.c :-( --ANK */ #ifdef CONFIG_NET_IPIP ipip_init(); #endif #ifdef CONFIG_NET_IPGRE ipgre_init(); #endif /* * Initialise the multicast router */ #if defined(CONFIG_IP_MROUTE) ip_mr_init(); #endif /* * Create all the /proc entries. */ #ifdef CONFIG_PROC_FS proc_net_create ("raw", 0, raw_get_info); proc_net_create ("netstat", 0, netstat_get_info); proc_net_create ("snmp", 0, snmp_get_info); proc_net_create ("sockstat", 0, afinet_get_info); proc_net_create ("tcp", 0, tcp_get_info); proc_net_create ("udp", 0, udp_get_info); #endif /* CONFIG_PROC_FS */ ipfrag_init(); return 0; } module_init(inet_init);