/* * linux/kernel/fork.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * 'fork.c' contains the help-routines for the 'fork' system call * (see also entry.S and others). * Fork is rather simple, once you get the hang of it, but the memory * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* The idle threads do not count.. */ int nr_threads; int nr_running; int max_threads; unsigned long total_forks; /* Handle normal Linux uptimes. */ int last_pid; struct task_struct *pidhash[PIDHASH_SZ]; void fastcall add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait) { unsigned long flags; wait->flags &= ~WQ_FLAG_EXCLUSIVE; wq_write_lock_irqsave(&q->lock, flags); __add_wait_queue(q, wait); wq_write_unlock_irqrestore(&q->lock, flags); } void fastcall add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait) { unsigned long flags; wait->flags |= WQ_FLAG_EXCLUSIVE; wq_write_lock_irqsave(&q->lock, flags); __add_wait_queue_tail(q, wait); wq_write_unlock_irqrestore(&q->lock, flags); } void fastcall remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait) { unsigned long flags; wq_write_lock_irqsave(&q->lock, flags); __remove_wait_queue(q, wait); wq_write_unlock_irqrestore(&q->lock, flags); } void __init fork_init(unsigned long mempages) { /* * The default maximum number of threads is set to a safe * value: the thread structures can take up at most half * of memory. */ max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 8; init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2; } /* Protects next_safe and last_pid. */ spinlock_t lastpid_lock = SPIN_LOCK_UNLOCKED; static int get_pid(unsigned long flags) { static int next_safe = PID_MAX; struct task_struct *p; int pid, beginpid; if (flags & CLONE_PID) return current->pid; spin_lock(&lastpid_lock); beginpid = last_pid; if((++last_pid) & 0xffff8000) { last_pid = 300; /* Skip daemons etc. */ goto inside; } if(last_pid >= next_safe) { inside: next_safe = PID_MAX; read_lock(&tasklist_lock); repeat: for_each_task(p) { if(p->pid == last_pid || p->pgrp == last_pid || p->tgid == last_pid || p->session == last_pid) { if(++last_pid >= next_safe) { if(last_pid & 0xffff8000) last_pid = 300; next_safe = PID_MAX; } if(unlikely(last_pid == beginpid)) { next_safe = 0; goto nomorepids; } goto repeat; } if(p->pid > last_pid && next_safe > p->pid) next_safe = p->pid; if(p->pgrp > last_pid && next_safe > p->pgrp) next_safe = p->pgrp; if(p->tgid > last_pid && next_safe > p->tgid) next_safe = p->tgid; if(p->session > last_pid && next_safe > p->session) next_safe = p->session; } read_unlock(&tasklist_lock); } pid = last_pid; spin_unlock(&lastpid_lock); return pid; nomorepids: read_unlock(&tasklist_lock); spin_unlock(&lastpid_lock); return 0; } static inline int dup_mmap(struct mm_struct * mm) { struct vm_area_struct * mpnt, *tmp, **pprev; int retval; flush_cache_mm(current->mm); mm->locked_vm = 0; mm->mmap = NULL; mm->mmap_cache = NULL; mm->map_count = 0; mm->rss = 0; mm->cpu_vm_mask = 0; mm->swap_address = 0; pprev = &mm->mmap; /* * Add it to the mmlist after the parent. * Doing it this way means that we can order the list, * and fork() won't mess up the ordering significantly. * Add it first so that swapoff can see any swap entries. */ spin_lock(&mmlist_lock); list_add(&mm->mmlist, ¤t->mm->mmlist); mmlist_nr++; spin_unlock(&mmlist_lock); for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) { struct file *file; retval = -ENOMEM; if(mpnt->vm_flags & VM_DONTCOPY) continue; tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (!tmp) goto fail_nomem; *tmp = *mpnt; tmp->vm_flags &= ~VM_LOCKED; tmp->vm_mm = mm; tmp->vm_next = NULL; file = tmp->vm_file; if (file) { struct inode *inode = file->f_dentry->d_inode; get_file(file); if (tmp->vm_flags & VM_DENYWRITE) atomic_dec(&inode->i_writecount); /* insert tmp into the share list, just after mpnt */ spin_lock(&inode->i_mapping->i_shared_lock); if((tmp->vm_next_share = mpnt->vm_next_share) != NULL) mpnt->vm_next_share->vm_pprev_share = &tmp->vm_next_share; mpnt->vm_next_share = tmp; tmp->vm_pprev_share = &mpnt->vm_next_share; spin_unlock(&inode->i_mapping->i_shared_lock); } /* * Link in the new vma and copy the page table entries: * link in first so that swapoff can see swap entries. */ spin_lock(&mm->page_table_lock); *pprev = tmp; pprev = &tmp->vm_next; mm->map_count++; retval = copy_page_range(mm, current->mm, tmp); spin_unlock(&mm->page_table_lock); if (tmp->vm_ops && tmp->vm_ops->open) tmp->vm_ops->open(tmp); if (retval) goto fail_nomem; } retval = 0; build_mmap_rb(mm); fail_nomem: flush_tlb_mm(current->mm); return retval; } spinlock_t mmlist_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED; int mmlist_nr; #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL)) #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) static struct mm_struct * mm_init(struct mm_struct * mm) { atomic_set(&mm->mm_users, 1); atomic_set(&mm->mm_count, 1); init_rwsem(&mm->mmap_sem); mm->page_table_lock = SPIN_LOCK_UNLOCKED; mm->pgd = pgd_alloc(mm); mm->def_flags = 0; if (mm->pgd) return mm; free_mm(mm); return NULL; } /* * Allocate and initialize an mm_struct. */ struct mm_struct * mm_alloc(void) { struct mm_struct * mm; mm = allocate_mm(); if (mm) { memset(mm, 0, sizeof(*mm)); return mm_init(mm); } return NULL; } /* * Called when the last reference to the mm * is dropped: either by a lazy thread or by * mmput. Free the page directory and the mm. */ void fastcall __mmdrop(struct mm_struct *mm) { BUG_ON(mm == &init_mm); pgd_free(mm->pgd); check_pgt_cache(); destroy_context(mm); free_mm(mm); } /* * Decrement the use count and release all resources for an mm. */ void mmput(struct mm_struct *mm) { if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) { extern struct mm_struct *swap_mm; if (swap_mm == mm) swap_mm = list_entry(mm->mmlist.next, struct mm_struct, mmlist); list_del(&mm->mmlist); mmlist_nr--; spin_unlock(&mmlist_lock); exit_mmap(mm); mmdrop(mm); } } /* Please note the differences between mmput and mm_release. * mmput is called whenever we stop holding onto a mm_struct, * error success whatever. * * mm_release is called after a mm_struct has been removed * from the current process. * * This difference is important for error handling, when we * only half set up a mm_struct for a new process and need to restore * the old one. Because we mmput the new mm_struct before * restoring the old one. . . * Eric Biederman 10 January 1998 */ void mm_release(void) { struct task_struct *tsk = current; struct completion *vfork_done = tsk->vfork_done; /* notify parent sleeping on vfork() */ if (vfork_done) { tsk->vfork_done = NULL; complete(vfork_done); } } static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) { struct mm_struct * mm, *oldmm; int retval; tsk->min_flt = tsk->maj_flt = 0; tsk->cmin_flt = tsk->cmaj_flt = 0; tsk->nswap = tsk->cnswap = 0; tsk->mm = NULL; tsk->active_mm = NULL; /* * Are we cloning a kernel thread? * * We need to steal a active VM for that.. */ oldmm = current->mm; if (!oldmm) return 0; if (clone_flags & CLONE_VM) { atomic_inc(&oldmm->mm_users); mm = oldmm; goto good_mm; } retval = -ENOMEM; mm = allocate_mm(); if (!mm) goto fail_nomem; /* Copy the current MM stuff.. */ memcpy(mm, oldmm, sizeof(*mm)); if (!mm_init(mm)) goto fail_nomem; if (init_new_context(tsk,mm)) goto free_pt; down_write(&oldmm->mmap_sem); retval = dup_mmap(mm); up_write(&oldmm->mmap_sem); if (retval) goto free_pt; /* * child gets a private LDT (if there was an LDT in the parent) */ copy_segments(tsk, mm); good_mm: tsk->mm = mm; tsk->active_mm = mm; return 0; free_pt: mmput(mm); fail_nomem: return retval; } static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old) { struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); /* We don't need to lock fs - think why ;-) */ if (fs) { atomic_set(&fs->count, 1); fs->lock = RW_LOCK_UNLOCKED; fs->umask = old->umask; read_lock(&old->lock); fs->rootmnt = mntget(old->rootmnt); fs->root = dget(old->root); fs->pwdmnt = mntget(old->pwdmnt); fs->pwd = dget(old->pwd); if (old->altroot) { fs->altrootmnt = mntget(old->altrootmnt); fs->altroot = dget(old->altroot); } else { fs->altrootmnt = NULL; fs->altroot = NULL; } read_unlock(&old->lock); } return fs; } struct fs_struct *copy_fs_struct(struct fs_struct *old) { return __copy_fs_struct(old); } static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk) { if (clone_flags & CLONE_FS) { atomic_inc(¤t->fs->count); return 0; } tsk->fs = __copy_fs_struct(current->fs); if (!tsk->fs) return -1; return 0; } static int count_open_files(struct files_struct *files, int size) { int i; /* Find the last open fd */ for (i = size/(8*sizeof(long)); i > 0; ) { if (files->open_fds->fds_bits[--i]) break; } i = (i+1) * 8 * sizeof(long); return i; } static int copy_files(unsigned long clone_flags, struct task_struct * tsk) { struct files_struct *oldf, *newf; struct file **old_fds, **new_fds; int open_files, nfds, size, i, error = 0; /* * A background process may not have any files ... */ oldf = current->files; if (!oldf) goto out; if (clone_flags & CLONE_FILES) { atomic_inc(&oldf->count); goto out; } /* * Note: we may be using current for both targets (See exec.c) * This works because we cache current->files (old) as oldf. Don't * break this. */ tsk->files = NULL; error = -ENOMEM; newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL); if (!newf) goto out; atomic_set(&newf->count, 1); newf->file_lock = RW_LOCK_UNLOCKED; newf->next_fd = 0; newf->max_fds = NR_OPEN_DEFAULT; newf->max_fdset = __FD_SETSIZE; newf->close_on_exec = &newf->close_on_exec_init; newf->open_fds = &newf->open_fds_init; newf->fd = &newf->fd_array[0]; /* We don't yet have the oldf readlock, but even if the old fdset gets grown now, we'll only copy up to "size" fds */ size = oldf->max_fdset; if (size > __FD_SETSIZE) { newf->max_fdset = 0; write_lock(&newf->file_lock); error = expand_fdset(newf, size-1); write_unlock(&newf->file_lock); if (error) goto out_release; } read_lock(&oldf->file_lock); open_files = count_open_files(oldf, size); /* * Check whether we need to allocate a larger fd array. * Note: we're not a clone task, so the open count won't * change. */ nfds = NR_OPEN_DEFAULT; if (open_files > nfds) { read_unlock(&oldf->file_lock); newf->max_fds = 0; write_lock(&newf->file_lock); error = expand_fd_array(newf, open_files-1); write_unlock(&newf->file_lock); if (error) goto out_release; nfds = newf->max_fds; read_lock(&oldf->file_lock); } old_fds = oldf->fd; new_fds = newf->fd; memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8); memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8); for (i = open_files; i != 0; i--) { struct file *f = *old_fds++; if (f) { get_file(f); } else { /* * The fd may be claimed in the fd bitmap but not yet * instantiated in the files array if a sibling thread * is partway through open(). So make sure that this * fd is available to the new process. */ FD_CLR(open_files - i, newf->open_fds); } *new_fds++ = f; } read_unlock(&oldf->file_lock); /* compute the remainder to be cleared */ size = (newf->max_fds - open_files) * sizeof(struct file *); /* This is long word aligned thus could use a optimized version */ memset(new_fds, 0, size); if (newf->max_fdset > open_files) { int left = (newf->max_fdset-open_files)/8; int start = open_files / (8 * sizeof(unsigned long)); memset(&newf->open_fds->fds_bits[start], 0, left); memset(&newf->close_on_exec->fds_bits[start], 0, left); } tsk->files = newf; error = 0; out: return error; out_release: free_fdset (newf->close_on_exec, newf->max_fdset); free_fdset (newf->open_fds, newf->max_fdset); kmem_cache_free(files_cachep, newf); goto out; } /* * Helper to unshare the files of the current task. * We don't want to expose copy_files internals to * the exec layer of the kernel. */ int unshare_files(void) { struct files_struct *files = current->files; int rc; if(!files) BUG(); /* This can race but the race causes us to copy when we don't need to and drop the copy */ if(atomic_read(&files->count) == 1) { atomic_inc(&files->count); return 0; } rc = copy_files(0, current); if(rc) current->files = files; return rc; } static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) { struct signal_struct *sig; if (clone_flags & CLONE_SIGHAND) { atomic_inc(¤t->sig->count); return 0; } sig = kmem_cache_alloc(sigact_cachep, GFP_KERNEL); tsk->sig = sig; if (!sig) return -1; spin_lock_init(&sig->siglock); atomic_set(&sig->count, 1); memcpy(tsk->sig->action, current->sig->action, sizeof(tsk->sig->action)); return 0; } static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) { unsigned long new_flags = p->flags; new_flags &= ~(PF_SUPERPRIV | PF_USEDFPU); new_flags |= PF_FORKNOEXEC; if (!(clone_flags & CLONE_PTRACE)) p->ptrace = 0; p->flags = new_flags; } long kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { struct task_struct *task = current; unsigned old_task_dumpable; long ret; /* lock out any potential ptracer */ task_lock(task); if (task->ptrace) { task_unlock(task); return -EPERM; } old_task_dumpable = task->task_dumpable; task->task_dumpable = 0; task_unlock(task); ret = arch_kernel_thread(fn, arg, flags); /* never reached in child process, only in parent */ current->task_dumpable = old_task_dumpable; return ret; } /* * Ok, this is the main fork-routine. It copies the system process * information (task[nr]) and sets up the necessary registers. It also * copies the data segment in its entirety. The "stack_start" and * "stack_top" arguments are simply passed along to the platform * specific copy_thread() routine. Most platforms ignore stack_top. * For an example that's using stack_top, see * arch/ia64/kernel/process.c. */ int do_fork(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size) { int retval; struct task_struct *p; struct completion vfork; if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) return -EINVAL; retval = -EPERM; /* * CLONE_PID is only allowed for the initial SMP swapper * calls */ if (clone_flags & CLONE_PID) { if (current->pid) goto fork_out; } retval = -ENOMEM; p = alloc_task_struct(); if (!p) goto fork_out; *p = *current; retval = -EAGAIN; /* * Check if we are over our maximum process limit, but be sure to * exclude root. This is needed to make it possible for login and * friends to set the per-user process limit to something lower * than the amount of processes root is running. -- Rik */ if (atomic_read(&p->user->processes) >= p->rlim[RLIMIT_NPROC].rlim_cur && p->user != &root_user && !capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE)) goto bad_fork_free; atomic_inc(&p->user->__count); atomic_inc(&p->user->processes); /* * Counter increases are protected by * the kernel lock so nr_threads can't * increase under us (but it may decrease). */ if (nr_threads >= max_threads) goto bad_fork_cleanup_count; get_exec_domain(p->exec_domain); if (p->binfmt && p->binfmt->module) __MOD_INC_USE_COUNT(p->binfmt->module); p->did_exec = 0; p->swappable = 0; p->state = TASK_UNINTERRUPTIBLE; copy_flags(clone_flags, p); p->pid = get_pid(clone_flags); if (p->pid == 0 && current->pid != 0) goto bad_fork_cleanup; p->run_list.next = NULL; p->run_list.prev = NULL; p->p_cptr = NULL; init_waitqueue_head(&p->wait_chldexit); p->vfork_done = NULL; if (clone_flags & CLONE_VFORK) { p->vfork_done = &vfork; init_completion(&vfork); } spin_lock_init(&p->alloc_lock); p->sigpending = 0; init_sigpending(&p->pending); p->it_real_value = p->it_virt_value = p->it_prof_value = 0; p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0; init_timer(&p->real_timer); p->real_timer.data = (unsigned long) p; p->leader = 0; /* session leadership doesn't inherit */ p->tty_old_pgrp = 0; p->times.tms_utime = p->times.tms_stime = 0; p->times.tms_cutime = p->times.tms_cstime = 0; #ifdef CONFIG_SMP { int i; p->cpus_runnable = ~0UL; p->processor = current->processor; /* ?? should we just memset this ?? */ for(i = 0; i < smp_num_cpus; i++) p->per_cpu_utime[i] = p->per_cpu_stime[i] = 0; spin_lock_init(&p->sigmask_lock); } #endif p->lock_depth = -1; /* -1 = no lock */ p->start_time = jiffies; INIT_LIST_HEAD(&p->local_pages); retval = -ENOMEM; /* copy all the process information */ if (copy_files(clone_flags, p)) goto bad_fork_cleanup; if (copy_fs(clone_flags, p)) goto bad_fork_cleanup_files; if (copy_sighand(clone_flags, p)) goto bad_fork_cleanup_fs; if (copy_mm(clone_flags, p)) goto bad_fork_cleanup_sighand; retval = copy_namespace(clone_flags, p); if (retval) goto bad_fork_cleanup_mm; retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); if (retval) goto bad_fork_cleanup_namespace; p->semundo = NULL; /* ok, now we should be set up.. */ p->swappable = 1; p->exit_signal = clone_flags & CSIGNAL; p->pdeath_signal = 0; /* * "share" dynamic priority between parent and child, thus the * total amount of dynamic priorities in the system doesn't change, * more scheduling fairness. This is only important in the first * timeslice, on the long run the scheduling behaviour is unchanged. */ p->counter = (current->counter + 1) >> 1; current->counter >>= 1; if (!current->counter) current->need_resched = 1; /* * Ok, add it to the run-queues and make it * visible to the rest of the system. * * Let it rip! */ retval = p->pid; p->tgid = retval; INIT_LIST_HEAD(&p->thread_group); /* Need tasklist lock for parent etc handling! */ write_lock_irq(&tasklist_lock); /* CLONE_PARENT re-uses the old parent */ p->p_opptr = current->p_opptr; p->p_pptr = current->p_pptr; if (!(clone_flags & CLONE_PARENT)) { p->p_opptr = current; p->parent_exec_id = p->self_exec_id; if (!(p->ptrace & PT_PTRACED)) p->p_pptr = current; } if (clone_flags & CLONE_THREAD) { p->tgid = current->tgid; list_add(&p->thread_group, ¤t->thread_group); } SET_LINKS(p); hash_pid(p); nr_threads++; write_unlock_irq(&tasklist_lock); if (p->ptrace & PT_PTRACED) send_sig(SIGSTOP, p, 1); wake_up_process(p); /* do this last */ ++total_forks; if (clone_flags & CLONE_VFORK) wait_for_completion(&vfork); fork_out: return retval; bad_fork_cleanup_namespace: exit_namespace(p); bad_fork_cleanup_mm: exit_mm(p); if (p->active_mm) mmdrop(p->active_mm); bad_fork_cleanup_sighand: exit_sighand(p); bad_fork_cleanup_fs: exit_fs(p); /* blocking */ bad_fork_cleanup_files: exit_files(p); /* blocking */ bad_fork_cleanup: put_exec_domain(p->exec_domain); if (p->binfmt && p->binfmt->module) __MOD_DEC_USE_COUNT(p->binfmt->module); bad_fork_cleanup_count: atomic_dec(&p->user->processes); free_uid(p->user); bad_fork_free: free_task_struct(p); goto fork_out; } /* SLAB cache for signal_struct structures (tsk->sig) */ kmem_cache_t *sigact_cachep; /* SLAB cache for files_struct structures (tsk->files) */ kmem_cache_t *files_cachep; /* SLAB cache for fs_struct structures (tsk->fs) */ kmem_cache_t *fs_cachep; /* SLAB cache for vm_area_struct structures */ kmem_cache_t *vm_area_cachep; /* SLAB cache for mm_struct structures (tsk->mm) */ kmem_cache_t *mm_cachep; void __init proc_caches_init(void) { sigact_cachep = kmem_cache_create("signal_act", sizeof(struct signal_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!sigact_cachep) panic("Cannot create signal action SLAB cache"); files_cachep = kmem_cache_create("files_cache", sizeof(struct files_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!files_cachep) panic("Cannot create files SLAB cache"); fs_cachep = kmem_cache_create("fs_cache", sizeof(struct fs_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!fs_cachep) panic("Cannot create fs_struct SLAB cache"); vm_area_cachep = kmem_cache_create("vm_area_struct", sizeof(struct vm_area_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if(!vm_area_cachep) panic("vma_init: Cannot alloc vm_area_struct SLAB cache"); mm_cachep = kmem_cache_create("mm_struct", sizeof(struct mm_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if(!mm_cachep) panic("vma_init: Cannot alloc mm_struct SLAB cache"); }