#ifndef _LINUX_PAGEMAP_H #define _LINUX_PAGEMAP_H /* * Page-mapping primitive inline functions * * Copyright 1995 Linus Torvalds */ #include #include #include #include #include #include /* * The page cache can done in larger chunks than * one page, because it allows for more efficient * throughput (it can then be mapped into user * space in smaller chunks for same flexibility). * * Or rather, it _will_ be done in larger chunks. */ #define PAGE_CACHE_SHIFT PAGE_SHIFT #define PAGE_CACHE_SIZE PAGE_SIZE #define PAGE_CACHE_MASK PAGE_MASK #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) #define page_cache_get(x) get_page(x) #define page_cache_release(x) __free_page(x) static inline struct page *page_cache_alloc(struct address_space *x) { return alloc_pages(x->gfp_mask, 0); } /* * From a kernel address, get the "struct page *" */ #define page_cache_entry(x) virt_to_page(x) extern unsigned int page_hash_bits; #define PAGE_HASH_BITS (page_hash_bits) #define PAGE_HASH_SIZE (1 << PAGE_HASH_BITS) extern unsigned long page_cache_size; /* # of pages currently in the hash table */ extern struct page **page_hash_table; extern void page_cache_init(unsigned long); /* * We use a power-of-two hash table to avoid a modulus, * and get a reasonable hash by knowing roughly how the * inode pointer and indexes are distributed (ie, we * roughly know which bits are "significant") * * For the time being it will work for struct address_space too (most of * them sitting inside the inodes). We might want to change it later. */ static inline unsigned long _page_hashfn(struct address_space * mapping, unsigned long index) { #define i (((unsigned long) mapping)/(sizeof(struct inode) & ~ (sizeof(struct inode) - 1))) #define s(x) ((x)+((x)>>PAGE_HASH_BITS)) return s(i+index) & (PAGE_HASH_SIZE-1); #undef i #undef s } #define page_hash(mapping,index) (page_hash_table+_page_hashfn(mapping,index)) extern struct page * __find_get_page(struct address_space *mapping, unsigned long index, struct page **hash); #define find_get_page(mapping, index) \ __find_get_page(mapping, index, page_hash(mapping, index)) extern struct page * __find_lock_page (struct address_space * mapping, unsigned long index, struct page **hash); extern struct page * find_or_create_page(struct address_space *mapping, unsigned long index, unsigned int gfp_mask); extern void FASTCALL(lock_page(struct page *page)); extern void FASTCALL(unlock_page(struct page *page)); #define find_lock_page(mapping, index) \ __find_lock_page(mapping, index, page_hash(mapping, index)) extern struct page *find_trylock_page(struct address_space *, unsigned long); extern void add_to_page_cache(struct page * page, struct address_space *mapping, unsigned long index); extern void add_to_page_cache_locked(struct page * page, struct address_space *mapping, unsigned long index); extern int add_to_page_cache_unique(struct page * page, struct address_space *mapping, unsigned long index, struct page **hash); extern void ___wait_on_page(struct page *); static inline void wait_on_page(struct page * page) { if (PageLocked(page)) ___wait_on_page(page); } extern void FASTCALL(wakeup_page_waiters(struct page * page)); /* * Returns locked page at given index in given cache, creating it if needed. */ static inline struct page *grab_cache_page(struct address_space *mapping, unsigned long index) { return find_or_create_page(mapping, index, mapping->gfp_mask); } extern struct page * grab_cache_page_nowait (struct address_space *, unsigned long); typedef int filler_t(void *, struct page*); extern struct page *read_cache_page(struct address_space *, unsigned long, filler_t *, void *); #endif