#ifndef _LINUX_BLKDEV_H #define _LINUX_BLKDEV_H #include #include #include #include #include #include #include struct request_queue; typedef struct request_queue request_queue_t; struct elevator_s; typedef struct elevator_s elevator_t; /* * Ok, this is an expanded form so that we can use the same * request for paging requests. */ struct request { struct list_head queue; int elevator_sequence; volatile int rq_status; /* should split this into a few status bits */ #define RQ_INACTIVE (-1) #define RQ_ACTIVE 1 #define RQ_SCSI_BUSY 0xffff #define RQ_SCSI_DONE 0xfffe #define RQ_SCSI_DISCONNECTING 0xffe0 kdev_t rq_dev; int cmd; /* READ or WRITE */ int errors; unsigned long start_time; unsigned long sector; unsigned long nr_sectors; unsigned long hard_sector, hard_nr_sectors; unsigned int nr_segments; unsigned int nr_hw_segments; unsigned long current_nr_sectors, hard_cur_sectors; void * special; char * buffer; struct completion * waiting; struct buffer_head * bh; struct buffer_head * bhtail; request_queue_t *q; char io_account; }; #include typedef int (merge_request_fn) (request_queue_t *q, struct request *req, struct buffer_head *bh, int); typedef int (merge_requests_fn) (request_queue_t *q, struct request *req, struct request *req2, int); typedef void (request_fn_proc) (request_queue_t *q); typedef request_queue_t * (queue_proc) (kdev_t dev); typedef int (make_request_fn) (request_queue_t *q, int rw, struct buffer_head *bh); typedef void (plug_device_fn) (request_queue_t *q, kdev_t device); typedef void (unplug_device_fn) (void *q); struct request_list { unsigned int count; unsigned int pending[2]; struct list_head free; }; struct request_queue { /* * the queue request freelist, one for reads and one for writes */ struct request_list rq; /* * The total number of requests on each queue */ int nr_requests; /* * Batching threshold for sleep/wakeup decisions */ int batch_requests; /* * The total number of 512byte blocks on each queue */ atomic_t nr_sectors; /* * Batching threshold for sleep/wakeup decisions */ int batch_sectors; /* * The max number of 512byte blocks on each queue */ int max_queue_sectors; /* * Together with queue_head for cacheline sharing */ struct list_head queue_head; elevator_t elevator; request_fn_proc * request_fn; merge_request_fn * back_merge_fn; merge_request_fn * front_merge_fn; merge_requests_fn * merge_requests_fn; make_request_fn * make_request_fn; plug_device_fn * plug_device_fn; /* * The queue owner gets to use this for whatever they like. * ll_rw_blk doesn't touch it. */ void * queuedata; /* * This is used to remove the plug when tq_disk runs. */ struct tq_struct plug_tq; /* * Boolean that indicates whether this queue is plugged or not. */ int plugged:1; /* * Boolean that indicates whether current_request is active or * not. */ int head_active:1; /* * Boolean that indicates you will use blk_started_sectors * and blk_finished_sectors in addition to blk_started_io * and blk_finished_io. It enables the throttling code to * help keep the sectors in flight to a reasonable value */ int can_throttle:1; unsigned long bounce_pfn; /* * Is meant to protect the queue in the future instead of * io_request_lock */ spinlock_t queue_lock; /* * Tasks wait here for free read and write requests */ wait_queue_head_t wait_for_requests; }; #define blk_queue_plugged(q) (q)->plugged #define blk_fs_request(rq) ((rq)->cmd == READ || (rq)->cmd == WRITE) #define blk_queue_empty(q) list_empty(&(q)->queue_head) extern inline int rq_data_dir(struct request *rq) { if (rq->cmd == READ) return READ; else if (rq->cmd == WRITE) return WRITE; else { BUG(); return -1; /* ahem */ } } extern unsigned long blk_max_low_pfn, blk_max_pfn; #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) #define BLK_BOUNCE_ANY ((u64)blk_max_pfn << PAGE_SHIFT) extern void blk_queue_bounce_limit(request_queue_t *, u64); #ifdef CONFIG_HIGHMEM extern struct buffer_head *create_bounce(int, struct buffer_head *); extern inline struct buffer_head *blk_queue_bounce(request_queue_t *q, int rw, struct buffer_head *bh) { struct page *page = bh->b_page; #ifndef CONFIG_DISCONTIGMEM if (page - mem_map <= q->bounce_pfn) #else if ((page - page_zone(page)->zone_mem_map) + (page_zone(page)->zone_start_paddr >> PAGE_SHIFT) <= q->bounce_pfn) #endif return bh; return create_bounce(rw, bh); } #else #define blk_queue_bounce(q, rw, bh) (bh) #endif #define bh_phys(bh) (page_to_phys((bh)->b_page) + bh_offset((bh))) #define BH_CONTIG(b1, b2) (bh_phys((b1)) + (b1)->b_size == bh_phys((b2))) #define BH_PHYS_4G(b1, b2) ((bh_phys((b1)) | 0xffffffff) == ((bh_phys((b2)) + (b2)->b_size - 1) | 0xffffffff)) struct blk_dev_struct { /* * queue_proc has to be atomic */ request_queue_t request_queue; queue_proc *queue; void *data; }; struct sec_size { unsigned block_size; unsigned block_size_bits; }; /* * Used to indicate the default queue for drivers that don't bother * to implement multiple queues. We have this access macro here * so as to eliminate the need for each and every block device * driver to know about the internal structure of blk_dev[]. */ #define BLK_DEFAULT_QUEUE(_MAJOR) &blk_dev[_MAJOR].request_queue extern struct sec_size * blk_sec[MAX_BLKDEV]; extern struct blk_dev_struct blk_dev[MAX_BLKDEV]; extern void grok_partitions(struct gendisk *dev, int drive, unsigned minors, long size); extern void register_disk(struct gendisk *dev, kdev_t first, unsigned minors, struct block_device_operations *ops, long size); extern void generic_make_request(int rw, struct buffer_head * bh); extern request_queue_t *blk_get_queue(kdev_t dev); extern void blkdev_release_request(struct request *); /* * Access functions for manipulating queue properties */ extern int blk_grow_request_list(request_queue_t *q, int nr_requests, int max_queue_sectors); extern void blk_init_queue(request_queue_t *, request_fn_proc *); extern void blk_cleanup_queue(request_queue_t *); extern void blk_queue_headactive(request_queue_t *, int); extern void blk_queue_throttle_sectors(request_queue_t *, int); extern void blk_queue_make_request(request_queue_t *, make_request_fn *); extern void generic_unplug_device(void *); extern int blk_seg_merge_ok(struct buffer_head *, struct buffer_head *); extern int * blk_size[MAX_BLKDEV]; extern int * blksize_size[MAX_BLKDEV]; extern int * hardsect_size[MAX_BLKDEV]; extern int * max_readahead[MAX_BLKDEV]; extern int * max_sectors[MAX_BLKDEV]; extern int * max_segments[MAX_BLKDEV]; #define MAX_SEGMENTS 128 #define MAX_SECTORS 255 #define MAX_QUEUE_SECTORS (4 << (20 - 9)) /* 4 mbytes when full sized */ #define MAX_NR_REQUESTS 1024 /* 1024k when in 512 units, normally min is 1M in 1k units */ #define PageAlignSize(size) (((size) + PAGE_SIZE -1) & PAGE_MASK) #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queue) #define blkdev_entry_next_request(entry) blkdev_entry_to_request((entry)->next) #define blkdev_entry_prev_request(entry) blkdev_entry_to_request((entry)->prev) #define blkdev_next_request(req) blkdev_entry_to_request((req)->queue.next) #define blkdev_prev_request(req) blkdev_entry_to_request((req)->queue.prev) extern void drive_stat_acct (kdev_t dev, int rw, unsigned long nr_sectors, int new_io); static inline int get_hardsect_size(kdev_t dev) { int retval = 512; int major = MAJOR(dev); if (hardsect_size[major]) { int minor = MINOR(dev); if (hardsect_size[major][minor]) retval = hardsect_size[major][minor]; } return retval; } static inline int blk_oversized_queue(request_queue_t * q) { if (q->can_throttle) return atomic_read(&q->nr_sectors) > q->max_queue_sectors; return q->rq.count == 0; } static inline int blk_oversized_queue_reads(request_queue_t * q) { if (q->can_throttle) return atomic_read(&q->nr_sectors) > q->max_queue_sectors + q->batch_sectors; return q->rq.count == 0; } static inline int blk_oversized_queue_batch(request_queue_t * q) { return atomic_read(&q->nr_sectors) > q->max_queue_sectors - q->batch_sectors; } #define blk_finished_io(nsects) do { } while (0) #define blk_started_io(nsects) do { } while (0) static inline void blk_started_sectors(struct request *rq, int count) { request_queue_t *q = rq->q; if (q && q->can_throttle) { atomic_add(count, &q->nr_sectors); if (atomic_read(&q->nr_sectors) < 0) { printk("nr_sectors is %d\n", atomic_read(&q->nr_sectors)); BUG(); } } } static inline void blk_finished_sectors(struct request *rq, int count) { request_queue_t *q = rq->q; if (q && q->can_throttle) { atomic_sub(count, &q->nr_sectors); smp_mb(); if (q->rq.count >= q->batch_requests && !blk_oversized_queue_batch(q)) { if (waitqueue_active(&q->wait_for_requests)) wake_up(&q->wait_for_requests); } if (atomic_read(&q->nr_sectors) < 0) { printk("nr_sectors is %d\n", atomic_read(&q->nr_sectors)); BUG(); } } } static inline unsigned int blksize_bits(unsigned int size) { unsigned int bits = 8; do { bits++; size >>= 1; } while (size > 256); return bits; } static inline unsigned int block_size(kdev_t dev) { int retval = BLOCK_SIZE; int major = MAJOR(dev); if (blksize_size[major]) { int minor = MINOR(dev); if (blksize_size[major][minor]) retval = blksize_size[major][minor]; } return retval; } #endif