/* $Id: bitops.h,v 1.67 2001/11/19 18:36:34 davem Exp $ * bitops.h: Bit string operations on the Sparc. * * Copyright 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright 1996 Eddie C. Dost (ecd@skynet.be) * Copyright 2001 Anton Blanchard (anton@samba.org) */ #ifndef _SPARC_BITOPS_H #define _SPARC_BITOPS_H #include #include #include #ifdef __KERNEL__ /* * Set bit 'nr' in 32-bit quantity at address 'addr' where bit '0' * is in the highest of the four bytes and bit '31' is the high bit * within the first byte. Sparc is BIG-Endian. Unless noted otherwise * all bit-ops return 0 if bit was previously clear and != 0 otherwise. */ static inline int test_and_set_bit(unsigned long nr, volatile void *addr) { register unsigned long mask asm("g2"); register unsigned long *ADDR asm("g1"); register int tmp1 asm("g3"); register int tmp2 asm("g4"); register int tmp3 asm("g5"); register int tmp4 asm("g7"); ADDR = ((unsigned long *) addr) + (nr >> 5); mask = 1 << (nr & 31); __asm__ __volatile__( "mov %%o7, %%g4\n\t" "call ___set_bit\n\t" " add %%o7, 8, %%o7\n" : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) : "0" (mask), "r" (ADDR) : "memory", "cc"); return mask != 0; } static inline void set_bit(unsigned long nr, volatile void *addr) { register unsigned long mask asm("g2"); register unsigned long *ADDR asm("g1"); register int tmp1 asm("g3"); register int tmp2 asm("g4"); register int tmp3 asm("g5"); register int tmp4 asm("g7"); ADDR = ((unsigned long *) addr) + (nr >> 5); mask = 1 << (nr & 31); __asm__ __volatile__( "mov %%o7, %%g4\n\t" "call ___set_bit\n\t" " add %%o7, 8, %%o7\n" : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) : "0" (mask), "r" (ADDR) : "memory", "cc"); } static inline int test_and_clear_bit(unsigned long nr, volatile void *addr) { register unsigned long mask asm("g2"); register unsigned long *ADDR asm("g1"); register int tmp1 asm("g3"); register int tmp2 asm("g4"); register int tmp3 asm("g5"); register int tmp4 asm("g7"); ADDR = ((unsigned long *) addr) + (nr >> 5); mask = 1 << (nr & 31); __asm__ __volatile__( "mov %%o7, %%g4\n\t" "call ___clear_bit\n\t" " add %%o7, 8, %%o7\n" : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) : "0" (mask), "r" (ADDR) : "memory", "cc"); return mask != 0; } static inline void clear_bit(unsigned long nr, volatile void *addr) { register unsigned long mask asm("g2"); register unsigned long *ADDR asm("g1"); register int tmp1 asm("g3"); register int tmp2 asm("g4"); register int tmp3 asm("g5"); register int tmp4 asm("g7"); ADDR = ((unsigned long *) addr) + (nr >> 5); mask = 1 << (nr & 31); __asm__ __volatile__( "mov %%o7, %%g4\n\t" "call ___clear_bit\n\t" " add %%o7, 8, %%o7\n" : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) : "0" (mask), "r" (ADDR) : "memory", "cc"); } static inline int test_and_change_bit(unsigned long nr, volatile void *addr) { register unsigned long mask asm("g2"); register unsigned long *ADDR asm("g1"); register int tmp1 asm("g3"); register int tmp2 asm("g4"); register int tmp3 asm("g5"); register int tmp4 asm("g7"); ADDR = ((unsigned long *) addr) + (nr >> 5); mask = 1 << (nr & 31); __asm__ __volatile__( "mov %%o7, %%g4\n\t" "call ___change_bit\n\t" " add %%o7, 8, %%o7\n" : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) : "0" (mask), "r" (ADDR) : "memory", "cc"); return mask != 0; } static inline void change_bit(unsigned long nr, volatile void *addr) { register unsigned long mask asm("g2"); register unsigned long *ADDR asm("g1"); register int tmp1 asm("g3"); register int tmp2 asm("g4"); register int tmp3 asm("g5"); register int tmp4 asm("g7"); ADDR = ((unsigned long *) addr) + (nr >> 5); mask = 1 << (nr & 31); __asm__ __volatile__( "mov %%o7, %%g4\n\t" "call ___change_bit\n\t" " add %%o7, 8, %%o7\n" : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) : "0" (mask), "r" (ADDR) : "memory", "cc"); } /* * non-atomic versions */ static inline void __set_bit(int nr, volatile void *addr) { unsigned long mask = 1UL << (nr & 0x1f); unsigned long *p = ((unsigned long *)addr) + (nr >> 5); *p |= mask; } static inline void __clear_bit(int nr, volatile void *addr) { unsigned long mask = 1UL << (nr & 0x1f); unsigned long *p = ((unsigned long *)addr) + (nr >> 5); *p &= ~mask; } static inline void __change_bit(int nr, volatile void *addr) { unsigned long mask = 1UL << (nr & 0x1f); unsigned long *p = ((unsigned long *)addr) + (nr >> 5); *p ^= mask; } static inline int __test_and_set_bit(int nr, volatile void *addr) { unsigned long mask = 1UL << (nr & 0x1f); unsigned long *p = ((unsigned long *)addr) + (nr >> 5); unsigned long old = *p; *p = old | mask; return (old & mask) != 0; } static inline int __test_and_clear_bit(int nr, volatile void *addr) { unsigned long mask = 1UL << (nr & 0x1f); unsigned long *p = ((unsigned long *)addr) + (nr >> 5); unsigned long old = *p; *p = old & ~mask; return (old & mask) != 0; } static inline int __test_and_change_bit(int nr, volatile void *addr) { unsigned long mask = 1UL << (nr & 0x1f); unsigned long *p = ((unsigned long *)addr) + (nr >> 5); unsigned long old = *p; *p = old ^ mask; return (old & mask) != 0; } #define smp_mb__before_clear_bit() do { } while(0) #define smp_mb__after_clear_bit() do { } while(0) /* The following routine need not be atomic. */ static inline int test_bit(int nr, __const__ void *addr) { return (1 & (((__const__ unsigned int *) addr)[nr >> 5] >> (nr & 31))) != 0; } /* The easy/cheese version for now. */ static inline unsigned long ffz(unsigned long word) { unsigned long result = 0; while(word & 1) { result++; word >>= 1; } return result; } /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ #define ffs(x) generic_ffs(x) /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) /* * find_next_zero_bit() finds the first zero bit in a bit string of length * 'size' bits, starting the search at bit 'offset'. This is largely based * on Linus's ALPHA routines, which are pretty portable BTW. */ static inline unsigned long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; if (tmp == ~0UL) /* Are any bits zero? */ return result + size; /* Nope. */ found_middle: return result + ffz(tmp); } /* * Linus sez that gcc can optimize the following correctly, we'll see if this * holds on the Sparc as it does for the ALPHA. */ #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) static inline int test_le_bit(int nr, __const__ void * addr) { __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; return (ADDR[nr >> 3] >> (nr & 7)) & 1; } /* * non-atomic versions */ static inline void __set_le_bit(int nr, void *addr) { unsigned char *ADDR = (unsigned char *)addr; ADDR += nr >> 3; *ADDR |= 1 << (nr & 0x07); } static inline void __clear_le_bit(int nr, void *addr) { unsigned char *ADDR = (unsigned char *)addr; ADDR += nr >> 3; *ADDR &= ~(1 << (nr & 0x07)); } static inline int __test_and_set_le_bit(int nr, void *addr) { int mask, retval; unsigned char *ADDR = (unsigned char *)addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); retval = (mask & *ADDR) != 0; *ADDR |= mask; return retval; } static inline int __test_and_clear_le_bit(int nr, void *addr) { int mask, retval; unsigned char *ADDR = (unsigned char *)addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); retval = (mask & *ADDR) != 0; *ADDR &= ~mask; return retval; } static inline unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if(offset) { tmp = *(p++); tmp |= __swab32(~0UL >> (32-offset)); if(size < 32) goto found_first; if(~tmp) goto found_middle; size -= 32; result += 32; } while(size & ~31UL) { if(~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if(!size) return result; tmp = *p; found_first: tmp = __swab32(tmp) | (~0UL << size); if (tmp == ~0UL) /* Are any bits zero? */ return result + size; /* Nope. */ return result + ffz(tmp); found_middle: return result + ffz(__swab32(tmp)); } #define find_first_zero_le_bit(addr, size) \ find_next_zero_le_bit((addr), (size), 0) #define ext2_set_bit __test_and_set_le_bit #define ext2_clear_bit __test_and_clear_le_bit #define ext2_test_bit test_le_bit #define ext2_find_first_zero_bit find_first_zero_le_bit #define ext2_find_next_zero_bit find_next_zero_le_bit /* Bitmap functions for the minix filesystem. */ #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_set_bit(nr,addr) set_bit(nr,addr) #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* defined(_SPARC_BITOPS_H) */