/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org) * Copyright (c) 2000 Silicon Graphics, Inc. */ #ifndef _ASM_BITOPS_H #define _ASM_BITOPS_H #include #include #include /* sigh ... */ #if (_MIPS_SZLONG == 32) #define SZLONG_LOG 5 #define SZLONG_MASK 31UL #elif (_MIPS_SZLONG == 64) #define SZLONG_LOG 6 #define SZLONG_MASK 63UL #endif #ifdef __KERNEL__ #include #include /* * clear_bit() doesn't provide any barrier for the compiler. */ #define smp_mb__before_clear_bit() smp_mb() #define smp_mb__after_clear_bit() smp_mb() /* * Only disable interrupt for kernel mode stuff to keep usermode stuff * that dares to use kernel include files alive. */ #define __bi_flags unsigned long flags #define __bi_cli() local_irq_disable() #define __bi_save_flags(x) local_save_flags(x) #define __bi_local_irq_save(x) local_irq_save(x) #define __bi_local_irq_restore(x) local_irq_restore(x) #else #define __bi_flags #define __bi_cli() #define __bi_save_flags(x) #define __bi_local_irq_save(x) #define __bi_local_irq_restore(x) #endif /* __KERNEL__ */ #ifdef CONFIG_CPU_HAS_LLSC /* * These functions for MIPS ISA > 1 are interrupt and SMP proof and * interrupt friendly */ /* * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered. See __set_bit() * if you do not require the atomic guarantees. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static __inline__ void set_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); unsigned long temp; __asm__ __volatile__( "1:\tll\t%0, %1\t\t# set_bit\n\t" "or\t%0, %2\n\t" "sc\t%0, %1\n\t" "beqz\t%0, 1b" : "=&r" (temp), "=m" (*m) : "ir" (1UL << (nr & 0x1f)), "m" (*m)); } /* * __set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static __inline__ void __set_bit(int nr, volatile void * addr) { unsigned long * m = ((unsigned long *) addr) + (nr >> 5); *m |= 1UL << (nr & 31); } /* * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered. However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ static __inline__ void clear_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); unsigned long temp; __asm__ __volatile__( "1:\tll\t%0, %1\t\t# clear_bit\n\t" "and\t%0, %2\n\t" "sc\t%0, %1\n\t" "beqz\t%0, 1b\n\t" : "=&r" (temp), "=m" (*m) : "ir" (~(1UL << (nr & 0x1f))), "m" (*m)); } /* * change_bit - Toggle a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static __inline__ void change_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); unsigned long temp; __asm__ __volatile__( "1:\tll\t%0, %1\t\t# change_bit\n\t" "xor\t%0, %2\n\t" "sc\t%0, %1\n\t" "beqz\t%0, 1b" : "=&r" (temp), "=m" (*m) : "ir" (1UL << (nr & 0x1f)), "m" (*m)); } /* * __change_bit - Toggle a bit in memory * @nr: the bit to change * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static __inline__ void __change_bit(int nr, volatile void * addr) { unsigned long * m = ((unsigned long *) addr) + (nr >> 5); *m ^= 1UL << (nr & 31); } /* * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_set_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); unsigned long temp; int res; __asm__ __volatile__( ".set\tnoreorder\t\t# test_and_set_bit\n" "1:\tll\t%0, %1\n\t" "or\t%2, %0, %3\n\t" "sc\t%2, %1\n\t" "beqz\t%2, 1b\n\t" " and\t%2, %0, %3\n\t" #ifdef CONFIG_SMP "sync\n\t" #endif ".set\treorder" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << (nr & 0x1f)), "m" (*m) : "memory"); return res != 0; } /* * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static __inline__ int __test_and_set_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; int retval; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a |= mask; return retval; } /* * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_clear_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); unsigned long temp, res; __asm__ __volatile__( ".set\tnoreorder\t\t# test_and_clear_bit\n" "1:\tll\t%0, %1\n\t" "or\t%2, %0, %3\n\t" "xor\t%2, %3\n\t" "sc\t%2, %1\n\t" "beqz\t%2, 1b\n\t" " and\t%2, %0, %3\n\t" #ifdef CONFIG_SMP "sync\n\t" #endif ".set\treorder" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << (nr & 0x1f)), "m" (*m) : "memory"); return res != 0; } /* * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask, retval; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a &= ~mask; return retval; } /* * test_and_change_bit - Change a bit and return its new value * @nr: Bit to change * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_change_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); unsigned long temp, res; __asm__ __volatile__( ".set\tnoreorder\t\t# test_and_change_bit\n" "1:\tll\t%0, %1\n\t" "xor\t%2, %0, %3\n\t" "sc\t%2, %1\n\t" "beqz\t%2, 1b\n\t" " and\t%2, %0, %3\n\t" #ifdef CONFIG_SMP "sync\n\t" #endif ".set\treorder" : "=&r" (temp), "=m" (*m), "=&r" (res) : "r" (1UL << (nr & 0x1f)), "m" (*m) : "memory"); return res != 0; } /* * __test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static __inline__ int __test_and_change_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; int retval; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a ^= mask; return retval; } #else /* MIPS I */ /* * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered. See __set_bit() * if you do not require the atomic guarantees. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static __inline__ void set_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_local_irq_save(flags); *a |= mask; __bi_local_irq_restore(flags); } /* * __set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static __inline__ void __set_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; a += nr >> 5; mask = 1 << (nr & 0x1f); *a |= mask; } /* * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered. However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ static __inline__ void clear_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_local_irq_save(flags); *a &= ~mask; __bi_local_irq_restore(flags); } /* * change_bit - Toggle a bit in memory * @nr: Bit to change * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static __inline__ void change_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_local_irq_save(flags); *a ^= mask; __bi_local_irq_restore(flags); } /* * __change_bit - Toggle a bit in memory * @nr: the bit to change * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static __inline__ void __change_bit(int nr, volatile void * addr) { unsigned long * m = ((unsigned long *) addr) + (nr >> 5); *m ^= 1UL << (nr & 31); } /* * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_set_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; int retval; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_local_irq_save(flags); retval = (mask & *a) != 0; *a |= mask; __bi_local_irq_restore(flags); return retval; } /* * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static __inline__ int __test_and_set_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; int retval; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a |= mask; return retval; } /* * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_clear_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; int retval; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_local_irq_save(flags); retval = (mask & *a) != 0; *a &= ~mask; __bi_local_irq_restore(flags); return retval; } /* * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; int retval; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a &= ~mask; return retval; } /* * test_and_change_bit - Change a bit and return its new value * @nr: Bit to change * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_change_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask, retval; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_local_irq_save(flags); retval = (mask & *a) != 0; *a ^= mask; __bi_local_irq_restore(flags); return retval; } /* * __test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static __inline__ int __test_and_change_bit(int nr, volatile void * addr) { volatile unsigned long *a = addr; unsigned long mask; int retval; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a ^= mask; return retval; } #undef __bi_flags #undef __bi_cli #undef __bi_save_flags #undef __bi_local_irq_restore #endif /* MIPS I */ /* * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from */ static inline int test_bit(int nr, volatile void *addr) { return 1UL & (((const volatile unsigned long *) addr)[nr >> SZLONG_LOG] >> (nr & SZLONG_MASK)); } /* * ffz - find first zero in word. * @word: The word to search * * Undefined if no zero exists, so code should check against ~0UL first. */ static __inline__ unsigned long ffz(unsigned long word) { int b = 0, s; word = ~word; s = 16; if (word << 16 != 0) s = 0; b += s; word >>= s; s = 8; if (word << 24 != 0) s = 0; b += s; word >>= s; s = 4; if (word << 28 != 0) s = 0; b += s; word >>= s; s = 2; if (word << 30 != 0) s = 0; b += s; word >>= s; s = 1; if (word << 31 != 0) s = 0; b += s; return b; } #ifdef __KERNEL__ /* * ffs - find first bit set * @x: the word to search * * Undefined if no bit exists, so code should check against 0 first. */ #define ffs(x) generic_ffs(x) /* * find_next_zero_bit - find the first zero bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */ static inline long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; if (tmp == ~0UL) /* Are any bits zero? */ return result + size; /* Nope. */ found_middle: return result + ffz(tmp); } #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) #if 0 /* Fool kernel-doc since it doesn't do macros yet */ /* * find_first_zero_bit - find the first zero bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first zero bit, not the number of the byte * containing a bit. */ static int find_first_zero_bit (void *addr, unsigned size); #endif #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) /* * hweightN - returns the hamming weight of a N-bit word * @x: the word to weigh * * The Hamming Weight of a number is the total number of bits set in it. */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) static __inline__ int __test_and_set_le_bit(int nr, void * addr) { unsigned char *ADDR = (unsigned char *) addr; int mask, retval; ADDR += nr >> 3; mask = 1 << (nr & 0x07); retval = (mask & *ADDR) != 0; *ADDR |= mask; return retval; } static __inline__ int __test_and_clear_le_bit(int nr, void * addr) { unsigned char *ADDR = (unsigned char *) addr; int mask, retval; ADDR += nr >> 3; mask = 1 << (nr & 0x07); retval = (mask & *ADDR) != 0; *ADDR &= ~mask; return retval; } static __inline__ int test_le_bit(int nr, const void * addr) { const unsigned char *ADDR = (const unsigned char *) addr; int mask; ADDR += nr >> 3; mask = 1 << (nr & 0x07); return ((mask & *ADDR) != 0); } static inline unsigned long ext2_ffz(unsigned int word) { int b = 0, s; word = ~word; s = 16; if (word << 16 != 0) s = 0; b += s; word >>= s; s = 8; if (word << 24 != 0) s = 0; b += s; word >>= s; s = 4; if (word << 28 != 0) s = 0; b += s; word >>= s; s = 2; if (word << 30 != 0) s = 0; b += s; word >>= s; s = 1; if (word << 31 != 0) s = 0; b += s; return b; } static inline unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset) { unsigned int *p = ((unsigned int *) addr) + (offset >> 5); unsigned int result = offset & ~31; unsigned int tmp; if (offset >= size) return size; size -= result; offset &= 31; if (offset) { tmp = cpu_to_le32p(p++); tmp |= ~0U >> (32-offset); /* bug or feature ? */ if (size < 32) goto found_first; if (tmp != ~0U) goto found_middle; size -= 32; result += 32; } while (size >= 32) { if ((tmp = cpu_to_le32p(p++)) != ~0U) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = cpu_to_le32p(p); found_first: tmp |= ~0 << size; if (tmp == ~0U) /* Are any bits zero? */ return result + size; /* Nope. */ found_middle: return result + ext2_ffz(tmp); } #define find_first_zero_le_bit(addr, size) \ find_next_zero_le_bit((addr), (size), 0) #define ext2_set_bit __test_and_set_le_bit #define ext2_clear_bit __test_and_clear_le_bit #define ext2_test_bit test_le_bit #define ext2_find_first_zero_bit find_first_zero_le_bit #define ext2_find_next_zero_bit find_next_zero_le_bit /* * Bitmap functions for the minix filesystem. * * FIXME: These assume that Minix uses the native byte/bitorder. * This limits the Minix filesystem's value for data exchange very much. */ #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_set_bit(nr,addr) set_bit(nr,addr) #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* _ASM_BITOPS_H */