/* * BRIEF MODULE DESCRIPTION * Defines for using and allocating dma channels on the Alchemy * Au1000 mips processor. * * Copyright 2000 MontaVista Software Inc. * Author: MontaVista Software, Inc. * stevel@mvista.com or source@mvista.com * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * */ #ifndef __ASM_AU1000_DMA_H #define __ASM_AU1000_DMA_H #include #include /* need byte IO */ #include /* And spinlocks */ #include #include #define NUM_AU1000_DMA_CHANNELS 8 /* DMA Channel Base Addresses */ #define DMA_CHANNEL_BASE 0xB4002000 #define DMA_CHANNEL_LEN 0x00000100 /* DMA Channel Register Offsets */ #define DMA_MODE_SET 0x00000000 #define DMA_MODE_READ DMA_MODE_SET #define DMA_MODE_CLEAR 0x00000004 /* DMA Mode register bits follow */ #define DMA_DAH_MASK (0x0f << 20) #define DMA_DID_BIT 16 #define DMA_DID_MASK (0x0f << DMA_DID_BIT) #define DMA_DS (1<<15) #define DMA_BE (1<<13) #define DMA_DR (1<<12) #define DMA_TS8 (1<<11) #define DMA_DW_BIT 9 #define DMA_DW_MASK (0x03 << DMA_DW_BIT) #define DMA_DW8 (0 << DMA_DW_BIT) #define DMA_DW16 (1 << DMA_DW_BIT) #define DMA_DW32 (2 << DMA_DW_BIT) #define DMA_NC (1<<8) #define DMA_IE (1<<7) #define DMA_HALT (1<<6) #define DMA_GO (1<<5) #define DMA_AB (1<<4) #define DMA_D1 (1<<3) #define DMA_BE1 (1<<2) #define DMA_D0 (1<<1) #define DMA_BE0 (1<<0) #define DMA_PERIPHERAL_ADDR 0x00000008 #define DMA_BUFFER0_START 0x0000000C #define DMA_BUFFER1_START 0x00000014 #define DMA_BUFFER0_COUNT 0x00000010 #define DMA_BUFFER1_COUNT 0x00000018 #define DMA_BAH_BIT 16 #define DMA_BAH_MASK (0x0f << DMA_BAH_BIT) #define DMA_COUNT_BIT 0 #define DMA_COUNT_MASK (0xffff << DMA_COUNT_BIT) /* DMA Device ID's follow */ enum { DMA_ID_UART0_TX = 0, DMA_ID_UART0_RX, DMA_ID_GP04, DMA_ID_GP05, DMA_ID_AC97C_TX, DMA_ID_AC97C_RX, DMA_ID_UART3_TX, DMA_ID_UART3_RX, DMA_ID_USBDEV_EP0_RX, DMA_ID_USBDEV_EP0_TX, DMA_ID_USBDEV_EP2_TX, DMA_ID_USBDEV_EP3_TX, DMA_ID_USBDEV_EP4_RX, DMA_ID_USBDEV_EP5_RX, DMA_ID_I2S_TX, DMA_ID_I2S_RX, DMA_NUM_DEV }; /* DMA Device ID's for 2nd bank (AU1100) follow */ enum { DMA_ID_SD0_TX = 0, DMA_ID_SD0_RX, DMA_ID_SD1_TX, DMA_ID_SD1_RX, DMA_NUM_DEV_BANK2 }; struct dma_chan { int dev_id; // this channel is allocated if >=0, free otherwise unsigned int io; const char *dev_str; int irq; void *irq_dev; unsigned int fifo_addr; unsigned int mode; }; /* These are in arch/mips/au1000/common/dma.c */ extern struct dma_chan au1000_dma_table[]; extern int request_au1000_dma(int dev_id, const char *dev_str, void (*irqhandler)(int, void *, struct pt_regs *), unsigned long irqflags, void *irq_dev_id); extern void free_au1000_dma(unsigned int dmanr); extern int au1000_dma_read_proc(char *buf, char **start, off_t fpos, int length, int *eof, void *data); extern void dump_au1000_dma_channel(unsigned int dmanr); extern spinlock_t au1000_dma_spin_lock; static __inline__ struct dma_chan *get_dma_chan(unsigned int dmanr) { if (dmanr >= NUM_AU1000_DMA_CHANNELS || au1000_dma_table[dmanr].dev_id < 0) return NULL; return &au1000_dma_table[dmanr]; } static __inline__ unsigned long claim_dma_lock(void) { unsigned long flags; spin_lock_irqsave(&au1000_dma_spin_lock, flags); return flags; } static __inline__ void release_dma_lock(unsigned long flags) { spin_unlock_irqrestore(&au1000_dma_spin_lock, flags); } /* * Set the DMA buffer enable bits in the mode register. */ static __inline__ void enable_dma_buffer0(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; au_writel(DMA_BE0, chan->io + DMA_MODE_SET); } static __inline__ void enable_dma_buffer1(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; au_writel(DMA_BE1, chan->io + DMA_MODE_SET); } static __inline__ void enable_dma_buffers(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; au_writel(DMA_BE0 | DMA_BE1, chan->io + DMA_MODE_SET); } static __inline__ void start_dma(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; au_writel(DMA_GO, chan->io + DMA_MODE_SET); } #define DMA_HALT_POLL 0x5000 static __inline__ void halt_dma(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); int i; if (!chan) return; au_writel(DMA_GO, chan->io + DMA_MODE_CLEAR); // poll the halt bit for (i = 0; i < DMA_HALT_POLL; i++) if (au_readl(chan->io + DMA_MODE_READ) & DMA_HALT) break; if (i == DMA_HALT_POLL) printk(KERN_INFO "halt_dma: HALT poll expired!\n"); } static __inline__ void disable_dma(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; halt_dma(dmanr); // now we can disable the buffers au_writel(~DMA_GO, chan->io + DMA_MODE_CLEAR); } static __inline__ int dma_halted(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return 1; return (au_readl(chan->io + DMA_MODE_READ) & DMA_HALT) ? 1 : 0; } /* initialize a DMA channel */ static __inline__ void init_dma(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); u32 mode; if (!chan) return; disable_dma(dmanr); // set device FIFO address au_writel(PHYSADDR(chan->fifo_addr), chan->io + DMA_PERIPHERAL_ADDR); mode = chan->mode | (chan->dev_id << DMA_DID_BIT); if (chan->irq) mode |= DMA_IE; au_writel(~mode, chan->io + DMA_MODE_CLEAR); au_writel(mode, chan->io + DMA_MODE_SET); } /* * set mode for a specific DMA channel */ static __inline__ void set_dma_mode(unsigned int dmanr, unsigned int mode) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; /* * set_dma_mode is only allowed to change endianess, direction, * transfer size, device FIFO width, and coherency settings. * Make sure anything else is masked off. */ mode &= (DMA_BE | DMA_DR | DMA_TS8 | DMA_DW_MASK | DMA_NC); chan->mode &= ~(DMA_BE | DMA_DR | DMA_TS8 | DMA_DW_MASK | DMA_NC); chan->mode |= mode; } static __inline__ unsigned int get_dma_mode(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return 0; return chan->mode; } static __inline__ int get_dma_active_buffer(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return -1; return (au_readl(chan->io + DMA_MODE_READ) & DMA_AB) ? 1 : 0; } /* * set the device FIFO address for a specific DMA channel - only * applicable to GPO4 and GPO5. All the other devices have fixed * FIFO addresses. */ static __inline__ void set_dma_fifo_addr(unsigned int dmanr, unsigned int a) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; if (chan->mode & DMA_DS) /* second bank of device ids */ return; if (chan->dev_id != DMA_ID_GP04 && chan->dev_id != DMA_ID_GP05) return; au_writel(PHYSADDR(a), chan->io + DMA_PERIPHERAL_ADDR); } /* * Clear the DMA buffer done bits in the mode register. */ static __inline__ void clear_dma_done0(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; au_writel(DMA_D0, chan->io + DMA_MODE_CLEAR); } static __inline__ void clear_dma_done1(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; au_writel(DMA_D1, chan->io + DMA_MODE_CLEAR); } /* * This does nothing - not applicable to Au1000 DMA. */ static __inline__ void set_dma_page(unsigned int dmanr, char pagenr) { } /* * Set Buffer 0 transfer address for specific DMA channel. */ static __inline__ void set_dma_addr0(unsigned int dmanr, unsigned int a) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; au_writel(a, chan->io + DMA_BUFFER0_START); } /* * Set Buffer 1 transfer address for specific DMA channel. */ static __inline__ void set_dma_addr1(unsigned int dmanr, unsigned int a) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; au_writel(a, chan->io + DMA_BUFFER1_START); } /* * Set Buffer 0 transfer size (max 64k) for a specific DMA channel. */ static __inline__ void set_dma_count0(unsigned int dmanr, unsigned int count) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; count &= DMA_COUNT_MASK; au_writel(count, chan->io + DMA_BUFFER0_COUNT); } /* * Set Buffer 1 transfer size (max 64k) for a specific DMA channel. */ static __inline__ void set_dma_count1(unsigned int dmanr, unsigned int count) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; count &= DMA_COUNT_MASK; au_writel(count, chan->io + DMA_BUFFER1_COUNT); } /* * Set both buffer transfer sizes (max 64k) for a specific DMA channel. */ static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; count &= DMA_COUNT_MASK; au_writel(count, chan->io + DMA_BUFFER0_COUNT); au_writel(count, chan->io + DMA_BUFFER1_COUNT); } /* * Returns which buffer has its done bit set in the mode register. * Returns -1 if neither or both done bits set. */ static __inline__ unsigned int get_dma_buffer_done(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return 0; return au_readl(chan->io + DMA_MODE_READ) & (DMA_D0 | DMA_D1); } /* * Returns the DMA channel's Buffer Done IRQ number. */ static __inline__ int get_dma_done_irq(unsigned int dmanr) { struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return -1; return chan->irq; } /* * Get DMA residue count. Returns the number of _bytes_ left to transfer. */ static __inline__ int get_dma_residue(unsigned int dmanr) { int curBufCntReg, count; struct dma_chan *chan = get_dma_chan(dmanr); if (!chan) return 0; curBufCntReg = (au_readl(chan->io + DMA_MODE_READ) & DMA_AB) ? DMA_BUFFER1_COUNT : DMA_BUFFER0_COUNT; count = au_readl(chan->io + curBufCntReg) & DMA_COUNT_MASK; if ((chan->mode & DMA_DW_MASK) == DMA_DW16) count <<= 1; else if ((chan->mode & DMA_DW_MASK) == DMA_DW32) count <<= 2; return count; } #endif /* __ASM_AU1000_DMA_H */