/* imm.c -- low level driver for the IOMEGA MatchMaker * parallel port SCSI host adapter. * * (The IMM is the embedded controller in the ZIP Plus drive.) * * Current Maintainer: David Campbell (Perth, Western Australia) * campbell@torque.net * * My unoffical company acronym list is 21 pages long: * FLA: Four letter acronym with built in facility for * future expansion to five letters. */ #include /* The following #define is to avoid a clash with hosts.c */ #define IMM_CODE 1 #define IMM_PROBE_SPP 0x0001 #define IMM_PROBE_PS2 0x0002 #define IMM_PROBE_ECR 0x0010 #define IMM_PROBE_EPP17 0x0100 #define IMM_PROBE_EPP19 0x0200 void imm_reset_pulse(unsigned int base); static int device_check(int host_no); #include #include #include #include "sd.h" #include "hosts.h" typedef struct { struct pardevice *dev; /* Parport device entry */ int base; /* Actual port address */ int base_hi; /* Hi Base address for ECP-ISA chipset */ int mode; /* Transfer mode */ int host; /* Host number (for proc) */ Scsi_Cmnd *cur_cmd; /* Current queued command */ struct tq_struct imm_tq; /* Polling interrupt stuff */ unsigned long jstart; /* Jiffies at start */ unsigned failed:1; /* Failure flag */ unsigned dp:1; /* Data phase present */ unsigned rd:1; /* Read data in data phase */ unsigned p_busy:1; /* Parport sharing busy flag */ } imm_struct; #define IMM_EMPTY \ { dev: NULL, \ base: -1, \ base_hi: 0, \ mode: IMM_AUTODETECT, \ host: -1, \ cur_cmd: NULL, \ imm_tq: { routine: imm_interrupt }, \ jstart: 0, \ failed: 0, \ dp: 0, \ rd: 0, \ p_busy: 0 \ } #include "imm.h" #define NO_HOSTS 4 static imm_struct imm_hosts[NO_HOSTS] = {IMM_EMPTY, IMM_EMPTY, IMM_EMPTY, IMM_EMPTY}; #define IMM_BASE(x) imm_hosts[(x)].base #define IMM_BASE_HI(x) imm_hosts[(x)].base_hi int parbus_base[NO_HOSTS] = {0x03bc, 0x0378, 0x0278, 0x0000}; void imm_wakeup(void *ref) { imm_struct *imm_dev = (imm_struct *) ref; if (!imm_dev->p_busy) return; if (parport_claim(imm_dev->dev)) { printk("imm: bug in imm_wakeup\n"); return; } imm_dev->p_busy = 0; imm_dev->base = imm_dev->dev->port->base; if (imm_dev->cur_cmd) imm_dev->cur_cmd->SCp.phase++; return; } int imm_release(struct Scsi_Host *host) { int host_no = host->unique_id; printk("Releasing imm%i\n", host_no); parport_unregister_device(imm_hosts[host_no].dev); return 0; } static int imm_pb_claim(int host_no) { if (parport_claim(imm_hosts[host_no].dev)) { imm_hosts[host_no].p_busy = 1; return 1; } if (imm_hosts[host_no].cur_cmd) imm_hosts[host_no].cur_cmd->SCp.phase++; return 0; } #define imm_pb_release(x) parport_release(imm_hosts[(x)].dev) /*************************************************************************** * Parallel port probing routines * ***************************************************************************/ static Scsi_Host_Template driver_template = IMM; #include "scsi_module.c" int imm_detect(Scsi_Host_Template * host) { struct Scsi_Host *hreg; int ports; int i, nhosts, try_again; struct parport *pb; /* * unlock to allow the lowlevel parport driver to probe * the irqs */ spin_unlock_irq(&io_request_lock); pb = parport_enumerate(); printk("imm: Version %s\n", IMM_VERSION); nhosts = 0; try_again = 0; if (!pb) { printk("imm: parport reports no devices.\n"); spin_lock_irq(&io_request_lock); return 0; } retry_entry: for (i = 0; pb; i++, pb = pb->next) { int modes, ppb; imm_hosts[i].dev = parport_register_device(pb, "imm", NULL, imm_wakeup, NULL, 0, (void *) &imm_hosts[i]); if (!imm_hosts[i].dev) continue; /* Claim the bus so it remembers what we do to the control * registers. [ CTR and ECP ] */ if (imm_pb_claim(i)) { unsigned long now = jiffies; while (imm_hosts[i].p_busy) { schedule(); /* We are safe to schedule here */ if (time_after(jiffies, now + 3 * HZ)) { printk(KERN_ERR "imm%d: failed to claim parport because a " "pardevice is owning the port for too longtime!\n", i); parport_unregister_device (imm_hosts[i].dev); spin_lock_irq(&io_request_lock); return 0; } } } ppb = IMM_BASE(i) = imm_hosts[i].dev->port->base; IMM_BASE_HI(i) = imm_hosts[i].dev->port->base_hi; w_ctr(ppb, 0x0c); modes = imm_hosts[i].dev->port->modes; /* Mode detection works up the chain of speed * This avoids a nasty if-then-else-if-... tree */ imm_hosts[i].mode = IMM_NIBBLE; if (modes & PARPORT_MODE_TRISTATE) imm_hosts[i].mode = IMM_PS2; /* Done configuration */ imm_pb_release(i); if (imm_init(i)) { parport_unregister_device(imm_hosts[i].dev); continue; } /* now the glue ... */ switch (imm_hosts[i].mode) { case IMM_NIBBLE: ports = 3; break; case IMM_PS2: ports = 3; break; case IMM_EPP_8: case IMM_EPP_16: case IMM_EPP_32: ports = 8; break; default: /* Never gets here */ continue; } host->can_queue = IMM_CAN_QUEUE; host->sg_tablesize = imm_sg; hreg = scsi_register(host, 0); if(hreg == NULL) continue; hreg->io_port = pb->base; hreg->n_io_port = ports; hreg->dma_channel = -1; hreg->unique_id = i; imm_hosts[i].host = hreg->host_no; nhosts++; } if (nhosts == 0) { if (try_again == 1) { spin_lock_irq(&io_request_lock); return 0; } try_again = 1; goto retry_entry; } else { spin_lock_irq (&io_request_lock); return 1; /* return number of hosts detected */ } } /* This is to give the imm driver a way to modify the timings (and other * parameters) by writing to the /proc/scsi/imm/0 file. * Very simple method really... (To simple, no error checking :( ) * Reason: Kernel hackers HATE having to unload and reload modules for * testing... * Also gives a method to use a script to obtain optimum timings (TODO) */ static inline int imm_proc_write(int hostno, char *buffer, int length) { unsigned long x; if ((length > 5) && (strncmp(buffer, "mode=", 5) == 0)) { x = simple_strtoul(buffer + 5, NULL, 0); imm_hosts[hostno].mode = x; return length; } printk("imm /proc: invalid variable\n"); return (-EINVAL); } int imm_proc_info(char *buffer, char **start, off_t offset, int length, int hostno, int inout) { int i; int len = 0; for (i = 0; i < 4; i++) if (imm_hosts[i].host == hostno) break; if (inout) return imm_proc_write(i, buffer, length); len += sprintf(buffer + len, "Version : %s\n", IMM_VERSION); len += sprintf(buffer + len, "Parport : %s\n", imm_hosts[i].dev->port->name); len += sprintf(buffer + len, "Mode : %s\n", IMM_MODE_STRING[imm_hosts[i].mode]); /* Request for beyond end of buffer */ if (offset > len) return 0; *start = buffer + offset; len -= offset; if (len > length) len = length; return len; } #if IMM_DEBUG > 0 #define imm_fail(x,y) printk("imm: imm_fail(%i) from %s at line %d\n",\ y, __FUNCTION__, __LINE__); imm_fail_func(x,y); static inline void imm_fail_func(int host_no, int error_code) #else static inline void imm_fail(int host_no, int error_code) #endif { /* If we fail a device then we trash status / message bytes */ if (imm_hosts[host_no].cur_cmd) { imm_hosts[host_no].cur_cmd->result = error_code << 16; imm_hosts[host_no].failed = 1; } } /* * Wait for the high bit to be set. * * In principle, this could be tied to an interrupt, but the adapter * doesn't appear to be designed to support interrupts. We spin on * the 0x80 ready bit. */ static unsigned char imm_wait(int host_no) { int k; unsigned short ppb = IMM_BASE(host_no); unsigned char r; w_ctr(ppb, 0x0c); k = IMM_SPIN_TMO; do { r = r_str(ppb); k--; udelay(1); } while (!(r & 0x80) && (k)); /* * STR register (LPT base+1) to SCSI mapping: * * STR imm imm * =================================== * 0x80 S_REQ S_REQ * 0x40 !S_BSY (????) * 0x20 !S_CD !S_CD * 0x10 !S_IO !S_IO * 0x08 (????) !S_BSY * * imm imm meaning * ================================== * 0xf0 0xb8 Bit mask * 0xc0 0x88 ZIP wants more data * 0xd0 0x98 ZIP wants to send more data * 0xe0 0xa8 ZIP is expecting SCSI command data * 0xf0 0xb8 end of transfer, ZIP is sending status */ w_ctr(ppb, 0x04); if (k) return (r & 0xb8); /* Counter expired - Time out occurred */ imm_fail(host_no, DID_TIME_OUT); printk("imm timeout in imm_wait\n"); return 0; /* command timed out */ } static int imm_negotiate(imm_struct * tmp) { /* * The following is supposedly the IEEE 1284-1994 negotiate * sequence. I have yet to obtain a copy of the above standard * so this is a bit of a guess... * * A fair chunk of this is based on the Linux parport implementation * of IEEE 1284. * * Return 0 if data available * 1 if no data available */ unsigned short base = tmp->base; unsigned char a, mode; switch (tmp->mode) { case IMM_NIBBLE: mode = 0x00; break; case IMM_PS2: mode = 0x01; break; default: return 0; } w_ctr(base, 0x04); udelay(5); w_dtr(base, mode); udelay(100); w_ctr(base, 0x06); udelay(5); a = (r_str(base) & 0x20) ? 0 : 1; udelay(5); w_ctr(base, 0x07); udelay(5); w_ctr(base, 0x06); if (a) { printk("IMM: IEEE1284 negotiate indicates no data available.\n"); imm_fail(tmp->host, DID_ERROR); } return a; } /* * Clear EPP timeout bit. */ static inline void epp_reset(unsigned short ppb) { int i; i = r_str(ppb); w_str(ppb, i); w_str(ppb, i & 0xfe); } /* * Wait for empty ECP fifo (if we are in ECP fifo mode only) */ static inline void ecp_sync(unsigned short hostno) { int i, ppb_hi=IMM_BASE_HI(hostno); if (ppb_hi == 0) return; if ((r_ecr(ppb_hi) & 0xe0) == 0x60) { /* mode 011 == ECP fifo mode */ for (i = 0; i < 100; i++) { if (r_ecr(ppb_hi) & 0x01) return; udelay(5); } printk("imm: ECP sync failed as data still present in FIFO.\n"); } } static int imm_byte_out(unsigned short base, const char *buffer, int len) { int i; w_ctr(base, 0x4); /* apparently a sane mode */ for (i = len >> 1; i; i--) { w_dtr(base, *buffer++); w_ctr(base, 0x5); /* Drop STROBE low */ w_dtr(base, *buffer++); w_ctr(base, 0x0); /* STROBE high + INIT low */ } w_ctr(base, 0x4); /* apparently a sane mode */ return 1; /* All went well - we hope! */ } static int imm_nibble_in(unsigned short base, char *buffer, int len) { unsigned char l; int i; /* * The following is based on documented timing signals */ w_ctr(base, 0x4); for (i = len; i; i--) { w_ctr(base, 0x6); l = (r_str(base) & 0xf0) >> 4; w_ctr(base, 0x5); *buffer++ = (r_str(base) & 0xf0) | l; w_ctr(base, 0x4); } return 1; /* All went well - we hope! */ } static int imm_byte_in(unsigned short base, char *buffer, int len) { int i; /* * The following is based on documented timing signals */ w_ctr(base, 0x4); for (i = len; i; i--) { w_ctr(base, 0x26); *buffer++ = r_dtr(base); w_ctr(base, 0x25); } return 1; /* All went well - we hope! */ } static int imm_out(int host_no, char *buffer, int len) { int r; unsigned short ppb = IMM_BASE(host_no); r = imm_wait(host_no); /* * Make sure that: * a) the SCSI bus is BUSY (device still listening) * b) the device is listening */ if ((r & 0x18) != 0x08) { imm_fail(host_no, DID_ERROR); printk("IMM: returned SCSI status %2x\n", r); return 0; } switch (imm_hosts[host_no].mode) { case IMM_EPP_32: case IMM_EPP_16: case IMM_EPP_8: epp_reset(ppb); w_ctr(ppb, 0x4); #ifdef CONFIG_SCSI_IZIP_EPP16 if (!(((long) buffer | len) & 0x01)) outsw(ppb + 4, buffer, len >> 1); #else if (!(((long) buffer | len) & 0x03)) outsl(ppb + 4, buffer, len >> 2); #endif else outsb(ppb + 4, buffer, len); w_ctr(ppb, 0xc); r = !(r_str(ppb) & 0x01); w_ctr(ppb, 0xc); ecp_sync(host_no); break; case IMM_NIBBLE: case IMM_PS2: /* 8 bit output, with a loop */ r = imm_byte_out(ppb, buffer, len); break; default: printk("IMM: bug in imm_out()\n"); r = 0; } return r; } static int imm_in(int host_no, char *buffer, int len) { int r; unsigned short ppb = IMM_BASE(host_no); r = imm_wait(host_no); /* * Make sure that: * a) the SCSI bus is BUSY (device still listening) * b) the device is sending data */ if ((r & 0x18) != 0x18) { imm_fail(host_no, DID_ERROR); return 0; } switch (imm_hosts[host_no].mode) { case IMM_NIBBLE: /* 4 bit input, with a loop */ r = imm_nibble_in(ppb, buffer, len); w_ctr(ppb, 0xc); break; case IMM_PS2: /* 8 bit input, with a loop */ r = imm_byte_in(ppb, buffer, len); w_ctr(ppb, 0xc); break; case IMM_EPP_32: case IMM_EPP_16: case IMM_EPP_8: epp_reset(ppb); w_ctr(ppb, 0x24); #ifdef CONFIG_SCSI_IZIP_EPP16 if (!(((long) buffer | len) & 0x01)) insw(ppb + 4, buffer, len >> 1); #else if (!(((long) buffer | len) & 0x03)) insl(ppb + 4, buffer, len >> 2); #endif else insb(ppb + 4, buffer, len); w_ctr(ppb, 0x2c); r = !(r_str(ppb) & 0x01); w_ctr(ppb, 0x2c); ecp_sync(host_no); break; default: printk("IMM: bug in imm_ins()\n"); r = 0; break; } return r; } static int imm_cpp(unsigned short ppb, unsigned char b) { /* * Comments on udelay values refer to the * Command Packet Protocol (CPP) timing diagram. */ unsigned char s1, s2, s3; w_ctr(ppb, 0x0c); udelay(2); /* 1 usec - infinite */ w_dtr(ppb, 0xaa); udelay(10); /* 7 usec - infinite */ w_dtr(ppb, 0x55); udelay(10); /* 7 usec - infinite */ w_dtr(ppb, 0x00); udelay(10); /* 7 usec - infinite */ w_dtr(ppb, 0xff); udelay(10); /* 7 usec - infinite */ s1 = r_str(ppb) & 0xb8; w_dtr(ppb, 0x87); udelay(10); /* 7 usec - infinite */ s2 = r_str(ppb) & 0xb8; w_dtr(ppb, 0x78); udelay(10); /* 7 usec - infinite */ s3 = r_str(ppb) & 0x38; /* * Values for b are: * 0000 00aa Assign address aa to current device * 0010 00aa Select device aa in EPP Winbond mode * 0010 10aa Select device aa in EPP mode * 0011 xxxx Deselect all devices * 0110 00aa Test device aa * 1101 00aa Select device aa in ECP mode * 1110 00aa Select device aa in Compatible mode */ w_dtr(ppb, b); udelay(2); /* 1 usec - infinite */ w_ctr(ppb, 0x0c); udelay(10); /* 7 usec - infinite */ w_ctr(ppb, 0x0d); udelay(2); /* 1 usec - infinite */ w_ctr(ppb, 0x0c); udelay(10); /* 7 usec - infinite */ w_dtr(ppb, 0xff); udelay(10); /* 7 usec - infinite */ /* * The following table is electrical pin values. * (BSY is inverted at the CTR register) * * BSY ACK POut SEL Fault * S1 0 X 1 1 1 * S2 1 X 0 1 1 * S3 L X 1 1 S * * L => Last device in chain * S => Selected * * Observered values for S1,S2,S3 are: * Disconnect => f8/58/78 * Connect => f8/58/70 */ if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x30)) return 1; /* Connected */ if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x38)) return 0; /* Disconnected */ return -1; /* No device present */ } static inline int imm_connect(int host_no, int flag) { unsigned short ppb = IMM_BASE(host_no); imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */ imm_cpp(ppb, 0x30); /* Disconnect all devices */ if ((imm_hosts[host_no].mode == IMM_EPP_8) || (imm_hosts[host_no].mode == IMM_EPP_16) || (imm_hosts[host_no].mode == IMM_EPP_32)) return imm_cpp(ppb, 0x28); /* Select device 0 in EPP mode */ return imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */ } static void imm_disconnect(int host_no) { unsigned short ppb = IMM_BASE(host_no); imm_cpp(ppb, 0x30); /* Disconnect all devices */ } static int imm_select(int host_no, int target) { int k; unsigned short ppb = IMM_BASE(host_no); /* * Firstly we want to make sure there is nothing * holding onto the SCSI bus. */ w_ctr(ppb, 0xc); k = IMM_SELECT_TMO; do { k--; } while ((r_str(ppb) & 0x08) && (k)); if (!k) return 0; /* * Now assert the SCSI ID (HOST and TARGET) on the data bus */ w_ctr(ppb, 0x4); w_dtr(ppb, 0x80 | (1 << target)); udelay(1); /* * Deassert SELIN first followed by STROBE */ w_ctr(ppb, 0xc); w_ctr(ppb, 0xd); /* * ACK should drop low while SELIN is deasserted. * FAULT should drop low when the SCSI device latches the bus. */ k = IMM_SELECT_TMO; do { k--; } while (!(r_str(ppb) & 0x08) && (k)); /* * Place the interface back into a sane state (status mode) */ w_ctr(ppb, 0xc); return (k) ? 1 : 0; } static int imm_init(int host_no) { int retv; #if defined(CONFIG_PARPORT) || defined(CONFIG_PARPORT_MODULE) if (imm_pb_claim(host_no)) while (imm_hosts[host_no].p_busy) schedule(); /* We can safe schedule here */ #endif retv = imm_connect(host_no, 0); if (retv == 1) { imm_reset_pulse(IMM_BASE(host_no)); udelay(1000); /* Delay to allow devices to settle */ imm_disconnect(host_no); udelay(1000); /* Another delay to allow devices to settle */ retv = device_check(host_no); imm_pb_release(host_no); return retv; } imm_pb_release(host_no); return 1; } static inline int imm_send_command(Scsi_Cmnd * cmd) { int host_no = cmd->host->unique_id; int k; /* NOTE: IMM uses byte pairs */ for (k = 0; k < cmd->cmd_len; k += 2) if (!imm_out(host_no, &cmd->cmnd[k], 2)) return 0; return 1; } /* * The bulk flag enables some optimisations in the data transfer loops, * it should be true for any command that transfers data in integral * numbers of sectors. * * The driver appears to remain stable if we speed up the parallel port * i/o in this function, but not elsewhere. */ static int imm_completion(Scsi_Cmnd * cmd) { /* Return codes: * -1 Error * 0 Told to schedule * 1 Finished data transfer */ int host_no = cmd->host->unique_id; unsigned short ppb = IMM_BASE(host_no); unsigned long start_jiffies = jiffies; unsigned char r, v; int fast, bulk, status; v = cmd->cmnd[0]; bulk = ((v == READ_6) || (v == READ_10) || (v == WRITE_6) || (v == WRITE_10)); /* * We only get here if the drive is ready to comunicate, * hence no need for a full imm_wait. */ w_ctr(ppb, 0x0c); r = (r_str(ppb) & 0xb8); /* * while (device is not ready to send status byte) * loop; */ while (r != (unsigned char) 0xb8) { /* * If we have been running for more than a full timer tick * then take a rest. */ if (time_after(jiffies, start_jiffies + 1)) return 0; /* * FAIL if: * a) Drive status is screwy (!ready && !present) * b) Drive is requesting/sending more data than expected */ if (((r & 0x88) != 0x88) || (cmd->SCp.this_residual <= 0)) { imm_fail(host_no, DID_ERROR); return -1; /* ERROR_RETURN */ } /* determine if we should use burst I/O */ if (imm_hosts[host_no].rd == 0) { fast = (bulk && (cmd->SCp.this_residual >= IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 2; status = imm_out(host_no, cmd->SCp.ptr, fast); } else { fast = (bulk && (cmd->SCp.this_residual >= IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 1; status = imm_in(host_no, cmd->SCp.ptr, fast); } cmd->SCp.ptr += fast; cmd->SCp.this_residual -= fast; if (!status) { imm_fail(host_no, DID_BUS_BUSY); return -1; /* ERROR_RETURN */ } if (cmd->SCp.buffer && !cmd->SCp.this_residual) { /* if scatter/gather, advance to the next segment */ if (cmd->SCp.buffers_residual--) { cmd->SCp.buffer++; cmd->SCp.this_residual = cmd->SCp.buffer->length; cmd->SCp.ptr = cmd->SCp.buffer->address; /* * Make sure that we transfer even number of bytes * otherwise it makes imm_byte_out() messy. */ if (cmd->SCp.this_residual & 0x01) cmd->SCp.this_residual++; } } /* Now check to see if the drive is ready to comunicate */ w_ctr(ppb, 0x0c); r = (r_str(ppb) & 0xb8); /* If not, drop back down to the scheduler and wait a timer tick */ if (!(r & 0x80)) return 0; } return 1; /* FINISH_RETURN */ } /* deprecated synchronous interface */ int imm_command(Scsi_Cmnd * cmd) { static int first_pass = 1; int host_no = cmd->host->unique_id; if (first_pass) { printk("imm: using non-queuing interface\n"); first_pass = 0; } if (imm_hosts[host_no].cur_cmd) { printk("IMM: bug in imm_command\n"); return 0; } imm_hosts[host_no].failed = 0; imm_hosts[host_no].jstart = jiffies; imm_hosts[host_no].cur_cmd = cmd; cmd->result = DID_ERROR << 16; /* default return code */ cmd->SCp.phase = 0; imm_pb_claim(host_no); while (imm_engine(&imm_hosts[host_no], cmd)) schedule(); if (cmd->SCp.phase) /* Only disconnect if we have connected */ imm_disconnect(cmd->host->unique_id); imm_pb_release(host_no); imm_hosts[host_no].cur_cmd = 0; return cmd->result; } /* * Since the IMM itself doesn't generate interrupts, we use * the scheduler's task queue to generate a stream of call-backs and * complete the request when the drive is ready. */ static void imm_interrupt(void *data) { imm_struct *tmp = (imm_struct *) data; Scsi_Cmnd *cmd = tmp->cur_cmd; unsigned long flags; if (!cmd) { printk("IMM: bug in imm_interrupt\n"); return; } if (imm_engine(tmp, cmd)) { tmp->imm_tq.data = (void *) tmp; tmp->imm_tq.sync = 0; queue_task(&tmp->imm_tq, &tq_timer); return; } /* Command must of completed hence it is safe to let go... */ #if IMM_DEBUG > 0 switch ((cmd->result >> 16) & 0xff) { case DID_OK: break; case DID_NO_CONNECT: printk("imm: no device at SCSI ID %i\n", cmd->target); break; case DID_BUS_BUSY: printk("imm: BUS BUSY - EPP timeout detected\n"); break; case DID_TIME_OUT: printk("imm: unknown timeout\n"); break; case DID_ABORT: printk("imm: told to abort\n"); break; case DID_PARITY: printk("imm: parity error (???)\n"); break; case DID_ERROR: printk("imm: internal driver error\n"); break; case DID_RESET: printk("imm: told to reset device\n"); break; case DID_BAD_INTR: printk("imm: bad interrupt (???)\n"); break; default: printk("imm: bad return code (%02x)\n", (cmd->result >> 16) & 0xff); } #endif if (cmd->SCp.phase > 1) imm_disconnect(cmd->host->unique_id); if (cmd->SCp.phase > 0) imm_pb_release(cmd->host->unique_id); spin_lock_irqsave(&io_request_lock, flags); tmp->cur_cmd = 0; cmd->scsi_done(cmd); spin_unlock_irqrestore(&io_request_lock, flags); return; } static int imm_engine(imm_struct * tmp, Scsi_Cmnd * cmd) { int host_no = cmd->host->unique_id; unsigned short ppb = IMM_BASE(host_no); unsigned char l = 0, h = 0; int retv, x; /* First check for any errors that may of occurred * Here we check for internal errors */ if (tmp->failed) return 0; switch (cmd->SCp.phase) { case 0: /* Phase 0 - Waiting for parport */ if ((jiffies - tmp->jstart) > HZ) { /* * We waited more than a second * for parport to call us */ imm_fail(host_no, DID_BUS_BUSY); return 0; } return 1; /* wait until imm_wakeup claims parport */ /* Phase 1 - Connected */ case 1: imm_connect(host_no, CONNECT_EPP_MAYBE); cmd->SCp.phase++; /* Phase 2 - We are now talking to the scsi bus */ case 2: if (!imm_select(host_no, cmd->target)) { imm_fail(host_no, DID_NO_CONNECT); return 0; } cmd->SCp.phase++; /* Phase 3 - Ready to accept a command */ case 3: w_ctr(ppb, 0x0c); if (!(r_str(ppb) & 0x80)) return 1; if (!imm_send_command(cmd)) return 0; cmd->SCp.phase++; /* Phase 4 - Setup scatter/gather buffers */ case 4: if (cmd->use_sg) { /* if many buffers are available, start filling the first */ cmd->SCp.buffer = (struct scatterlist *) cmd->request_buffer; cmd->SCp.this_residual = cmd->SCp.buffer->length; cmd->SCp.ptr = cmd->SCp.buffer->address; } else { /* else fill the only available buffer */ cmd->SCp.buffer = NULL; cmd->SCp.this_residual = cmd->request_bufflen; cmd->SCp.ptr = cmd->request_buffer; } cmd->SCp.buffers_residual = cmd->use_sg; cmd->SCp.phase++; if (cmd->SCp.this_residual & 0x01) cmd->SCp.this_residual++; /* Phase 5 - Pre-Data transfer stage */ case 5: /* Spin lock for BUSY */ w_ctr(ppb, 0x0c); if (!(r_str(ppb) & 0x80)) return 1; /* Require negotiation for read requests */ x = (r_str(ppb) & 0xb8); tmp->rd = (x & 0x10) ? 1 : 0; tmp->dp = (x & 0x20) ? 0 : 1; if ((tmp->dp) && (tmp->rd)) if (imm_negotiate(tmp)) return 0; cmd->SCp.phase++; /* Phase 6 - Data transfer stage */ case 6: /* Spin lock for BUSY */ w_ctr(ppb, 0x0c); if (!(r_str(ppb) & 0x80)) return 1; if (tmp->dp) { retv = imm_completion(cmd); if (retv == -1) return 0; if (retv == 0) return 1; } cmd->SCp.phase++; /* Phase 7 - Post data transfer stage */ case 7: if ((tmp->dp) && (tmp->rd)) { if ((tmp->mode == IMM_NIBBLE) || (tmp->mode == IMM_PS2)) { w_ctr(ppb, 0x4); w_ctr(ppb, 0xc); w_ctr(ppb, 0xe); w_ctr(ppb, 0x4); } } cmd->SCp.phase++; /* Phase 8 - Read status/message */ case 8: /* Check for data overrun */ if (imm_wait(host_no) != (unsigned char) 0xb8) { imm_fail(host_no, DID_ERROR); return 0; } if (imm_negotiate(tmp)) return 0; if (imm_in(host_no, &l, 1)) { /* read status byte */ /* Check for optional message byte */ if (imm_wait(host_no) == (unsigned char) 0xb8) imm_in(host_no, &h, 1); cmd->result = (DID_OK << 16) + (l & STATUS_MASK); } if ((tmp->mode == IMM_NIBBLE) || (tmp->mode == IMM_PS2)) { w_ctr(ppb, 0x4); w_ctr(ppb, 0xc); w_ctr(ppb, 0xe); w_ctr(ppb, 0x4); } return 0; /* Finished */ break; default: printk("imm: Invalid scsi phase\n"); } return 0; } int imm_queuecommand(Scsi_Cmnd * cmd, void (*done) (Scsi_Cmnd *)) { int host_no = cmd->host->unique_id; if (imm_hosts[host_no].cur_cmd) { printk("IMM: bug in imm_queuecommand\n"); return 0; } imm_hosts[host_no].failed = 0; imm_hosts[host_no].jstart = jiffies; imm_hosts[host_no].cur_cmd = cmd; cmd->scsi_done = done; cmd->result = DID_ERROR << 16; /* default return code */ cmd->SCp.phase = 0; /* bus free */ imm_pb_claim(host_no); imm_hosts[host_no].imm_tq.data = imm_hosts + host_no; imm_hosts[host_no].imm_tq.sync = 0; queue_task(&imm_hosts[host_no].imm_tq, &tq_immediate); mark_bh(IMMEDIATE_BH); return 0; } /* * Apparently the disk->capacity attribute is off by 1 sector * for all disk drives. We add the one here, but it should really * be done in sd.c. Even if it gets fixed there, this will still * work. */ int imm_biosparam(Disk * disk, kdev_t dev, int ip[]) { ip[0] = 0x40; ip[1] = 0x20; ip[2] = (disk->capacity + 1) / (ip[0] * ip[1]); if (ip[2] > 1024) { ip[0] = 0xff; ip[1] = 0x3f; ip[2] = (disk->capacity + 1) / (ip[0] * ip[1]); } return 0; } int imm_abort(Scsi_Cmnd * cmd) { int host_no = cmd->host->unique_id; /* * There is no method for aborting commands since Iomega * have tied the SCSI_MESSAGE line high in the interface */ switch (cmd->SCp.phase) { case 0: /* Do not have access to parport */ case 1: /* Have not connected to interface */ imm_hosts[host_no].cur_cmd = NULL; /* Forget the problem */ return SUCCESS; break; default: /* SCSI command sent, can not abort */ return FAILED; break; } } void imm_reset_pulse(unsigned int base) { w_ctr(base, 0x04); w_dtr(base, 0x40); udelay(1); w_ctr(base, 0x0c); w_ctr(base, 0x0d); udelay(50); w_ctr(base, 0x0c); w_ctr(base, 0x04); } int imm_reset(Scsi_Cmnd * cmd) { int host_no = cmd->host->unique_id; if (cmd->SCp.phase) imm_disconnect(host_no); imm_hosts[host_no].cur_cmd = NULL; /* Forget the problem */ imm_connect(host_no, CONNECT_NORMAL); imm_reset_pulse(IMM_BASE(host_no)); udelay(1000); /* device settle delay */ imm_disconnect(host_no); udelay(1000); /* device settle delay */ return SUCCESS; } static int device_check(int host_no) { /* This routine looks for a device and then attempts to use EPP to send a command. If all goes as planned then EPP is available. */ static char cmd[6] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; int loop, old_mode, status, k, ppb = IMM_BASE(host_no); unsigned char l; old_mode = imm_hosts[host_no].mode; for (loop = 0; loop < 8; loop++) { /* Attempt to use EPP for Test Unit Ready */ if ((ppb & 0x0007) == 0x0000) imm_hosts[host_no].mode = IMM_EPP_32; second_pass: imm_connect(host_no, CONNECT_EPP_MAYBE); /* Select SCSI device */ if (!imm_select(host_no, loop)) { imm_disconnect(host_no); continue; } printk("imm: Found device at ID %i, Attempting to use %s\n", loop, IMM_MODE_STRING[imm_hosts[host_no].mode]); /* Send SCSI command */ status = 1; w_ctr(ppb, 0x0c); for (l = 0; (l < 3) && (status); l++) status = imm_out(host_no, &cmd[l << 1], 2); if (!status) { imm_disconnect(host_no); imm_connect(host_no, CONNECT_EPP_MAYBE); imm_reset_pulse(IMM_BASE(host_no)); udelay(1000); imm_disconnect(host_no); udelay(1000); if (imm_hosts[host_no].mode == IMM_EPP_32) { imm_hosts[host_no].mode = old_mode; goto second_pass; } printk("imm: Unable to establish communication, aborting driver load.\n"); return 1; } w_ctr(ppb, 0x0c); k = 1000000; /* 1 Second */ do { l = r_str(ppb); k--; udelay(1); } while (!(l & 0x80) && (k)); l &= 0xb8; if (l != 0xb8) { imm_disconnect(host_no); imm_connect(host_no, CONNECT_EPP_MAYBE); imm_reset_pulse(IMM_BASE(host_no)); udelay(1000); imm_disconnect(host_no); udelay(1000); if (imm_hosts[host_no].mode == IMM_EPP_32) { imm_hosts[host_no].mode = old_mode; goto second_pass; } printk("imm: Unable to establish communication, aborting driver load.\n"); return 1; } imm_disconnect(host_no); printk("imm: Communication established at 0x%x with ID %i using %s\n", ppb, loop, IMM_MODE_STRING[imm_hosts[host_no].mode]); imm_connect(host_no, CONNECT_EPP_MAYBE); imm_reset_pulse(IMM_BASE(host_no)); udelay(1000); imm_disconnect(host_no); udelay(1000); return 0; } printk("imm: No devices found, aborting driver load.\n"); return 1; } MODULE_LICENSE("GPL");