/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include #include #include #include #include #include #include #include #include #include #define MAJOR_NR SCSI_DISK0_MAJOR /* For DEVICE_NR() */ #include #include "scsi.h" #include "hosts.h" #include "sd.h" #include "aacraid.h" /* SCSI Commands */ /* TODO: dmb - use the ones defined in include/scsi/scsi.h */ #define SS_TEST 0x00 /* Test unit ready */ #define SS_REZERO 0x01 /* Rezero unit */ #define SS_REQSEN 0x03 /* Request Sense */ #define SS_REASGN 0x07 /* Reassign blocks */ #define SS_READ 0x08 /* Read 6 */ #define SS_WRITE 0x0A /* Write 6 */ #define SS_INQUIR 0x12 /* inquiry */ #define SS_ST_SP 0x1B /* Start/Stop unit */ #define SS_LOCK 0x1E /* prevent/allow medium removal */ #define SS_RESERV 0x16 /* Reserve */ #define SS_RELES 0x17 /* Release */ #define SS_MODESEN 0x1A /* Mode Sense 6 */ #define SS_RDCAP 0x25 /* Read Capacity */ #define SM_READ 0x28 /* Read 10 */ #define SM_WRITE 0x2A /* Write 10 */ #define SS_SEEK 0x2B /* Seek */ /* values for inqd_pdt: Peripheral device type in plain English */ #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ #define INQD_PDT_PROC 0x03 /* Processor device */ #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ #define TARGET_LUN_TO_CONTAINER(target, lun) (target) #define CONTAINER_TO_TARGET(cont) ((cont)) #define CONTAINER_TO_LUN(cont) (0) #define MAX_FIB_DATA (sizeof(struct hw_fib) - sizeof(FIB_HEADER)) #define MAX_DRIVER_SG_SEGMENT_COUNT 17 /* * Sense keys */ #define SENKEY_NO_SENSE 0x00 #define SENKEY_UNDEFINED 0x01 #define SENKEY_NOT_READY 0x02 #define SENKEY_MEDIUM_ERR 0x03 #define SENKEY_HW_ERR 0x04 #define SENKEY_ILLEGAL 0x05 #define SENKEY_ATTENTION 0x06 #define SENKEY_PROTECTED 0x07 #define SENKEY_BLANK 0x08 #define SENKEY_V_UNIQUE 0x09 #define SENKEY_CPY_ABORT 0x0A #define SENKEY_ABORT 0x0B #define SENKEY_EQUAL 0x0C #define SENKEY_VOL_OVERFLOW 0x0D #define SENKEY_MISCOMP 0x0E #define SENKEY_RESERVED 0x0F /* * Sense codes */ #define SENCODE_NO_SENSE 0x00 #define SENCODE_END_OF_DATA 0x00 #define SENCODE_BECOMING_READY 0x04 #define SENCODE_INIT_CMD_REQUIRED 0x04 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A #define SENCODE_INVALID_COMMAND 0x20 #define SENCODE_LBA_OUT_OF_RANGE 0x21 #define SENCODE_INVALID_CDB_FIELD 0x24 #define SENCODE_LUN_NOT_SUPPORTED 0x25 #define SENCODE_INVALID_PARAM_FIELD 0x26 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 #define SENCODE_PARAM_VALUE_INVALID 0x26 #define SENCODE_RESET_OCCURRED 0x29 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E #define SENCODE_INQUIRY_DATA_CHANGED 0x3F #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c #define SENCODE_OVERLAPPED_COMMAND 0x4E /* * Additional sense codes */ #define ASENCODE_NO_SENSE 0x00 #define ASENCODE_END_OF_DATA 0x05 #define ASENCODE_BECOMING_READY 0x01 #define ASENCODE_INIT_CMD_REQUIRED 0x02 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 #define ASENCODE_INVALID_COMMAND 0x00 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 #define ASENCODE_INVALID_CDB_FIELD 0x00 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 #define ASENCODE_INVALID_PARAM_FIELD 0x00 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 #define ASENCODE_PARAM_VALUE_INVALID 0x02 #define ASENCODE_RESET_OCCURRED 0x00 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 #define ASENCODE_OVERLAPPED_COMMAND 0x00 #define BYTE0(x) (unsigned char)(x) #define BYTE1(x) (unsigned char)((x) >> 8) #define BYTE2(x) (unsigned char)((x) >> 16) #define BYTE3(x) (unsigned char)((x) >> 24) /*------------------------------------------------------------------------------ * S T R U C T S / T Y P E D E F S *----------------------------------------------------------------------------*/ /* SCSI inquiry data */ struct inquiry_data { u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ u8 inqd_dtq; /* RMB | Device Type Qualifier */ u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ u8 inqd_len; /* Additional length (n-4) */ u8 inqd_pad1[2]; /* Reserved - must be zero */ u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ u8 inqd_vid[8]; /* Vendor ID */ u8 inqd_pid[16]; /* Product ID */ u8 inqd_prl[4]; /* Product Revision Level */ }; struct sense_data { u8 error_code; /* 70h (current errors), 71h(deferred errors) */ u8 valid:1; /* A valid bit of one indicates that the information */ /* field contains valid information as defined in the * SCSI-2 Standard. */ u8 segment_number; /* Only used for COPY, COMPARE, or COPY AND VERIFY Commands */ u8 sense_key:4; /* Sense Key */ u8 reserved:1; u8 ILI:1; /* Incorrect Length Indicator */ u8 EOM:1; /* End Of Medium - reserved for random access devices */ u8 filemark:1; /* Filemark - reserved for random access devices */ u8 information[4]; /* for direct-access devices, contains the unsigned * logical block address or residue associated with * the sense key */ u8 add_sense_len; /* number of additional sense bytes to follow this field */ u8 cmnd_info[4]; /* not used */ u8 ASC; /* Additional Sense Code */ u8 ASCQ; /* Additional Sense Code Qualifier */ u8 FRUC; /* Field Replaceable Unit Code - not used */ u8 bit_ptr:3; /* indicates which byte of the CDB or parameter data * was in error */ u8 BPV:1; /* bit pointer valid (BPV): 1- indicates that * the bit_ptr field has valid value */ u8 reserved2:2; u8 CD:1; /* command data bit: 1- illegal parameter in CDB. * 0- illegal parameter in data. */ u8 SKSV:1; u8 field_ptr[2]; /* byte of the CDB or parameter data in error */ }; /* * M O D U L E G L O B A L S */ static struct fsa_scsi_hba *fsa_dev[MAXIMUM_NUM_ADAPTERS]; /* SCSI Device Instance Pointers */ static struct sense_data sense_data[MAXIMUM_NUM_CONTAINERS]; static void get_sd_devname(int disknum, char *buffer); static unsigned long aac_build_sg(Scsi_Cmnd* scsicmd, struct sgmap* sgmap); static unsigned long aac_build_sg64(Scsi_Cmnd* scsicmd, struct sgmap64* psg); static int aac_send_srb_fib(Scsi_Cmnd* scsicmd); static char *aac_get_status_string(u32 status); /* * Non dasd selection is handled entirely in aachba now */ MODULE_PARM(nondasd, "i"); MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on"); MODULE_PARM(paemode, "i"); MODULE_PARM_DESC(paemode, "Control whether dma addressing is using PAE. 0=off, 1=on"); static int nondasd = -1; static int paemode = -1; /** * aac_get_containers - list containers * @common: adapter to probe * * Make a list of all containers on this controller */ int aac_get_containers(struct aac_dev *dev) { struct fsa_scsi_hba *fsa_dev_ptr; u32 index; int status = 0; struct aac_query_mount *dinfo; struct aac_mount *dresp; struct fib * fibptr; unsigned instance; fsa_dev_ptr = &(dev->fsa_dev); instance = dev->scsi_host_ptr->unique_id; if (!(fibptr = fib_alloc(dev))) return -ENOMEM; for (index = 0; index < MAXIMUM_NUM_CONTAINERS; index++) { fib_init(fibptr); dinfo = (struct aac_query_mount *) fib_data(fibptr); dinfo->command = cpu_to_le32(VM_NameServe); dinfo->count = cpu_to_le32(index); dinfo->type = cpu_to_le32(FT_FILESYS); status = fib_send(ContainerCommand, fibptr, sizeof (struct aac_query_mount), FsaNormal, 1, 1, NULL, NULL); if (status < 0 ) { printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); break; } dresp = (struct aac_mount *)fib_data(fibptr); if ((le32_to_cpu(dresp->status) == ST_OK) && (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { fsa_dev_ptr->valid[index] = 1; fsa_dev_ptr->type[index] = le32_to_cpu(dresp->mnt[0].vol); fsa_dev_ptr->size[index] = le32_to_cpu(dresp->mnt[0].capacity); if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) fsa_dev_ptr->ro[index] = 1; } fib_complete(fibptr); /* * If there are no more containers, then stop asking. */ if ((index + 1) >= le32_to_cpu(dresp->count)) break; } fib_free(fibptr); fsa_dev[instance] = fsa_dev_ptr; return status; } /** * aac_get_container_name - get container name */ static int aac_get_container_name(struct aac_dev *dev, int cid, char * pid) { struct fsa_scsi_hba *fsa_dev_ptr; int status = 0; struct aac_get_name *dinfo; struct aac_get_name_resp *dresp; struct fib * fibptr; unsigned instance; fsa_dev_ptr = &(dev->fsa_dev); instance = dev->scsi_host_ptr->unique_id; if (!(fibptr = fib_alloc(dev))) return -ENOMEM; fib_init(fibptr); dinfo = (struct aac_get_name *) fib_data(fibptr); dinfo->command = cpu_to_le32(VM_ContainerConfig); dinfo->type = cpu_to_le32(CT_READ_NAME); dinfo->cid = cpu_to_le32(cid); dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data)); status = fib_send(ContainerCommand, fibptr, sizeof (struct aac_get_name), FsaNormal, 1, 1, NULL, NULL); if (status < 0 ) { printk(KERN_WARNING "aac_get_container_name: SendFIB failed.\n"); } else { dresp = (struct aac_get_name_resp *)fib_data(fibptr); status = (le32_to_cpu(dresp->status) != CT_OK) || (dresp->data[0] == '\0'); if (status == 0) { char * sp = dresp->data; char * dp = pid; do { if ((*sp == '\0') || ((dp - pid) >= sizeof(((struct aac_get_name_resp *)NULL)->data))) { *dp = ' '; } else { *dp = *sp++; } } while (++dp < &pid[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]); } } fib_complete(fibptr); fib_free(fibptr); fsa_dev[instance] = fsa_dev_ptr; return status; } /** * probe_container - query a logical volume * @dev: device to query * @cid: container identifier * * Queries the controller about the given volume. The volume information * is updated in the struct fsa_scsi_hba structure rather than returned. */ static int probe_container(struct aac_dev *dev, int cid) { struct fsa_scsi_hba *fsa_dev_ptr; int status; struct aac_query_mount *dinfo; struct aac_mount *dresp; struct fib * fibptr; unsigned instance; fsa_dev_ptr = &(dev->fsa_dev); instance = dev->scsi_host_ptr->unique_id; if (!(fibptr = fib_alloc(dev))) return -ENOMEM; fib_init(fibptr); dinfo = (struct aac_query_mount *)fib_data(fibptr); dinfo->command = cpu_to_le32(VM_NameServe); dinfo->count = cpu_to_le32(cid); dinfo->type = cpu_to_le32(FT_FILESYS); status = fib_send(ContainerCommand, fibptr, sizeof(struct aac_query_mount), FsaNormal, 1, 1, NULL, NULL); if (status < 0) { printk(KERN_WARNING "aacraid: probe_containers query failed.\n"); goto error; } dresp = (struct aac_mount *) fib_data(fibptr); if ((le32_to_cpu(dresp->status) == ST_OK) && (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { fsa_dev_ptr->valid[cid] = 1; fsa_dev_ptr->type[cid] = le32_to_cpu(dresp->mnt[0].vol); fsa_dev_ptr->size[cid] = le32_to_cpu(dresp->mnt[0].capacity); if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) fsa_dev_ptr->ro[cid] = 1; } error: fib_complete(fibptr); fib_free(fibptr); return status; } /* Local Structure to set SCSI inquiry data strings */ struct scsi_inq { char vid[8]; /* Vendor ID */ char pid[16]; /* Product ID */ char prl[4]; /* Product Revision Level */ }; /** * InqStrCopy - string merge * @a: string to copy from * @b: string to copy to * * Copy a String from one location to another * without copying \0 */ static void inqstrcpy(char *a, char *b) { while(*a != (char)0) *b++ = *a++; } static char *container_types[] = { "None", "Volume", "Mirror", "Stripe", "RAID5", "SSRW", "SSRO", "Morph", "Legacy", "RAID4", "RAID10", "RAID00", "V-MIRRORS", "PSEUDO R4", "RAID50", "Unknown" }; /* Function: setinqstr * * Arguments: [1] pointer to void [1] int * * Purpose: Sets SCSI inquiry data strings for vendor, product * and revision level. Allows strings to be set in platform dependant * files instead of in OS dependant driver source. */ static void setinqstr(int devtype, void *data, int tindex) { struct scsi_inq *str; char *findit; struct aac_driver_ident *mp; mp = aac_get_driver_ident(devtype); str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ inqstrcpy (mp->vname, str->vid); inqstrcpy (mp->model, str->pid); /* last six chars reserved for vol type */ findit = str->pid; for ( ; *findit != ' '; findit++); /* walk till we find a space then incr by 1 */ findit++; if (tindex < (sizeof(container_types)/sizeof(char *))){ inqstrcpy (container_types[tindex], findit); } inqstrcpy ("V1.0", str->prl); } void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code, u8 a_sense_code, u8 incorrect_length, u8 bit_pointer, u16 field_pointer, u32 residue) { sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */ sense_buf[1] = 0; /* Segment number, always zero */ if (incorrect_length) { sense_buf[2] = sense_key | 0x20; /* Set ILI bit | sense key */ sense_buf[3] = BYTE3(residue); sense_buf[4] = BYTE2(residue); sense_buf[5] = BYTE1(residue); sense_buf[6] = BYTE0(residue); } else sense_buf[2] = sense_key; /* Sense key */ if (sense_key == SENKEY_ILLEGAL) sense_buf[7] = 10; /* Additional sense length */ else sense_buf[7] = 6; /* Additional sense length */ sense_buf[12] = sense_code; /* Additional sense code */ sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ if (sense_key == SENKEY_ILLEGAL) { sense_buf[15] = 0; if (sense_code == SENCODE_INVALID_PARAM_FIELD) sense_buf[15] = 0x80; /* Std sense key specific field */ /* Illegal parameter is in the parameter block */ if (sense_code == SENCODE_INVALID_CDB_FIELD) sense_buf[15] = 0xc0; /* Std sense key specific field */ /* Illegal parameter is in the CDB block */ sense_buf[15] |= bit_pointer; sense_buf[16] = field_pointer >> 8; /* MSB */ sense_buf[17] = field_pointer; /* LSB */ } } static void aac_io_done(Scsi_Cmnd * scsicmd) { unsigned long cpu_flags; spin_lock_irqsave(&io_request_lock, cpu_flags); scsicmd->scsi_done(scsicmd); spin_unlock_irqrestore(&io_request_lock, cpu_flags); } static void __aac_io_done(Scsi_Cmnd * scsicmd) { scsicmd->scsi_done(scsicmd); } int aac_get_adapter_info(struct aac_dev* dev) { struct fib* fibptr; struct aac_adapter_info* info; int rcode; u32 tmp; if (!(fibptr = fib_alloc(dev))) return -ENOMEM; fib_init(fibptr); info = (struct aac_adapter_info*) fib_data(fibptr); memset(info,0,sizeof(struct aac_adapter_info)); rcode = fib_send(RequestAdapterInfo, fibptr, sizeof(struct aac_adapter_info), FsaNormal, 1, 1, NULL, NULL); memcpy(&dev->adapter_info, info, sizeof(struct aac_adapter_info)); tmp = dev->adapter_info.kernelrev; printk(KERN_INFO "%s%d: kernel %d.%d.%d build %d\n", dev->name, dev->id, tmp>>24,(tmp>>16)&0xff,(tmp>>8)&0xff, dev->adapter_info.kernelbuild); tmp = dev->adapter_info.monitorrev; printk(KERN_INFO "%s%d: monitor %d.%d.%d build %d\n", dev->name, dev->id, tmp>>24,(tmp>>16)&0xff,(tmp>>8)&0xff, dev->adapter_info.monitorbuild); tmp = dev->adapter_info.biosrev; printk(KERN_INFO "%s%d: bios %d.%d.%d build %d\n", dev->name, dev->id, tmp>>24,(tmp>>16)&0xff,(tmp>>8)&0xff, dev->adapter_info.biosbuild); printk(KERN_INFO "%s%d: serial %x%x\n", dev->name, dev->id, dev->adapter_info.serial[0], dev->adapter_info.serial[1]); dev->nondasd_support = 0; dev->raid_scsi_mode = 0; if(dev->adapter_info.options & AAC_OPT_NONDASD){ dev->nondasd_support = 1; } /* * If the firmware supports ROMB RAID/SCSI mode and we are currently * in RAID/SCSI mode, set the flag. For now if in this mode we will * force nondasd support on. If we decide to allow the non-dasd flag * additional changes changes will have to be made to support * RAID/SCSI. the function aac_scsi_cmd in this module will have to be * changed to support the new dev->raid_scsi_mode flag instead of * leaching off of the dev->nondasd_support flag. Also in linit.c the * function aac_detect will have to be modified where it sets up the * max number of channels based on the aac->nondasd_support flag only. */ if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { dev->nondasd_support = 1; dev->raid_scsi_mode = 1; } if (dev->raid_scsi_mode != 0) printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",dev->name, dev->id); if (nondasd != -1) dev->nondasd_support = (nondasd!=0); if(dev->nondasd_support != 0) printk(KERN_INFO "%s%d: Non-DASD support enabled\n",dev->name, dev->id); dev->pae_support = 0; if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){ dev->pae_support = 1; } if(paemode != -1) dev->pae_support = (paemode != 0); if(dev->pae_support != 0) { printk(KERN_INFO "%s%d: 64 Bit PAE enabled\n", dev->name, dev->id); pci_set_dma_mask(dev->pdev, (dma_addr_t)0xFFFFFFFFFFFFFFFFULL); } fib_complete(fibptr); fib_free(fibptr); return rcode; } static void read_callback(void *context, struct fib * fibptr) { struct aac_dev *dev; struct aac_read_reply *readreply; Scsi_Cmnd *scsicmd; u32 lba; u32 cid; scsicmd = (Scsi_Cmnd *) context; dev = (struct aac_dev *)scsicmd->host->hostdata; cid =TARGET_LUN_TO_CONTAINER(scsicmd->target, scsicmd->lun); lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; dprintk((KERN_DEBUG "read_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), lba, jiffies)); if (fibptr == NULL) BUG(); if(scsicmd->use_sg) pci_unmap_sg(dev->pdev, (struct scatterlist *)scsicmd->buffer, scsicmd->use_sg, scsi_to_pci_dma_dir(scsicmd->sc_data_direction)); else if(scsicmd->request_bufflen) pci_unmap_single(dev->pdev, (dma_addr_t)(unsigned long)scsicmd->SCp.ptr, scsicmd->request_bufflen, scsi_to_pci_dma_dir(scsicmd->sc_data_direction)); readreply = (struct aac_read_reply *)fib_data(fibptr); if (le32_to_cpu(readreply->status) == ST_OK) scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | GOOD; else { printk(KERN_WARNING "read_callback: read failed, status = %d\n", readreply->status); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | CHECK_CONDITION; set_sense((u8 *) &sense_data[cid], SENKEY_HW_ERR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 0, 0); } fib_complete(fibptr); fib_free(fibptr); aac_io_done(scsicmd); } static void write_callback(void *context, struct fib * fibptr) { struct aac_dev *dev; struct aac_write_reply *writereply; Scsi_Cmnd *scsicmd; u32 lba; u32 cid; scsicmd = (Scsi_Cmnd *) context; dev = (struct aac_dev *)scsicmd->host->hostdata; cid = TARGET_LUN_TO_CONTAINER(scsicmd->target, scsicmd->lun); lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; dprintk((KERN_DEBUG "write_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), lba, jiffies)); if (fibptr == NULL) BUG(); if(scsicmd->use_sg) pci_unmap_sg(dev->pdev, (struct scatterlist *)scsicmd->buffer, scsicmd->use_sg, scsi_to_pci_dma_dir(scsicmd->sc_data_direction)); else if(scsicmd->request_bufflen) pci_unmap_single(dev->pdev, (dma_addr_t)(unsigned long)scsicmd->SCp.ptr, scsicmd->request_bufflen, scsi_to_pci_dma_dir(scsicmd->sc_data_direction)); writereply = (struct aac_write_reply *) fib_data(fibptr); if (le32_to_cpu(writereply->status) == ST_OK) scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | GOOD; else { printk(KERN_WARNING "write_callback: write failed, status = %d\n", writereply->status); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | CHECK_CONDITION; set_sense((u8 *) &sense_data[cid], SENKEY_HW_ERR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 0, 0); } fib_complete(fibptr); fib_free(fibptr); aac_io_done(scsicmd); } int aac_read(Scsi_Cmnd * scsicmd, int cid) { u32 lba; u32 count; int status; u16 fibsize; struct aac_dev *dev; struct fib * cmd_fibcontext; dev = (struct aac_dev *)scsicmd->host->hostdata; /* * Get block address and transfer length */ if (scsicmd->cmnd[0] == SS_READ) /* 6 byte command */ { dprintk((KERN_DEBUG "aachba: received a read(6) command on target %d.\n", cid)); lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; count = scsicmd->cmnd[4]; if (count == 0) count = 256; } else { dprintk((KERN_DEBUG "aachba: received a read(10) command on target %d.\n", cid)); lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; } dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), lba, jiffies)); /* * Alocate and initialize a Fib */ if (!(cmd_fibcontext = fib_alloc(dev))) { scsicmd->result = DID_ERROR << 16; aac_io_done(scsicmd); return (-1); } fib_init(cmd_fibcontext); if(dev->pae_support == 1){ struct aac_read64 *readcmd; readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext); readcmd->command = cpu_to_le32(VM_CtHostRead64); readcmd->cid = cpu_to_le16(cid); readcmd->sector_count = cpu_to_le16(count); readcmd->block = cpu_to_le32(lba); readcmd->pad = cpu_to_le16(0); readcmd->flags = cpu_to_le16(0); aac_build_sg64(scsicmd, &readcmd->sg); if(readcmd->sg.count > MAX_DRIVER_SG_SEGMENT_COUNT) BUG(); fibsize = sizeof(struct aac_read64) + ((readcmd->sg.count - 1) * sizeof (struct sgentry64)); /* * Now send the Fib to the adapter */ status = fib_send(ContainerCommand64, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) read_callback, (void *) scsicmd); } else { struct aac_read *readcmd; readcmd = (struct aac_read *) fib_data(cmd_fibcontext); readcmd->command = cpu_to_le32(VM_CtBlockRead); readcmd->cid = cpu_to_le32(cid); readcmd->block = cpu_to_le32(lba); readcmd->count = cpu_to_le32(count * 512); if (count * 512 > (64 * 1024)) BUG(); aac_build_sg(scsicmd, &readcmd->sg); if(readcmd->sg.count > MAX_DRIVER_SG_SEGMENT_COUNT) BUG(); fibsize = sizeof(struct aac_read) + ((readcmd->sg.count - 1) * sizeof (struct sgentry)); /* * Now send the Fib to the adapter */ status = fib_send(ContainerCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) read_callback, (void *) scsicmd); } /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) return 0; printk(KERN_WARNING "aac_read: fib_send failed with status: %d.\n", status); /* * For some reason, the Fib didn't queue, return QUEUE_FULL */ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | QUEUE_FULL; aac_io_done(scsicmd); fib_complete(cmd_fibcontext); fib_free(cmd_fibcontext); return -1; } static int aac_write(Scsi_Cmnd * scsicmd, int cid) { u32 lba; u32 count; int status; u16 fibsize; struct aac_dev *dev; struct fib * cmd_fibcontext; dev = (struct aac_dev *)scsicmd->host->hostdata; /* * Get block address and transfer length */ if (scsicmd->cmnd[0] == SS_WRITE) /* 6 byte command */ { lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; count = scsicmd->cmnd[4]; if (count == 0) count = 256; } else { dprintk((KERN_DEBUG "aachba: received a write(10) command on target %d.\n", cid)); lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; } dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), lba, jiffies)); /* * Allocate and initialize a Fib then setup a BlockWrite command */ if (!(cmd_fibcontext = fib_alloc(dev))) { scsicmd->result = DID_ERROR << 16; aac_io_done(scsicmd); return -1; } fib_init(cmd_fibcontext); if(dev->pae_support == 1) { struct aac_write64 *writecmd; writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext); writecmd->command = cpu_to_le32(VM_CtHostWrite64); writecmd->cid = cpu_to_le16(cid); writecmd->sector_count = cpu_to_le16(count); writecmd->block = cpu_to_le32(lba); writecmd->pad = cpu_to_le16(0); writecmd->flags = cpu_to_le16(0); aac_build_sg64(scsicmd, &writecmd->sg); if(writecmd->sg.count > MAX_DRIVER_SG_SEGMENT_COUNT) BUG(); fibsize = sizeof(struct aac_write64) + ((writecmd->sg.count - 1) * sizeof (struct sgentry64)); /* * Now send the Fib to the adapter */ status = fib_send(ContainerCommand64, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) write_callback, (void *) scsicmd); } else { struct aac_write *writecmd; writecmd = (struct aac_write *) fib_data(cmd_fibcontext); writecmd->command = cpu_to_le32(VM_CtBlockWrite); writecmd->cid = cpu_to_le32(cid); writecmd->block = cpu_to_le32(lba); writecmd->count = cpu_to_le32(count * 512); writecmd->sg.count = cpu_to_le32(1); /* ->stable is not used - it did mean which type of write */ if (count * 512 > (64 * 1024)) BUG(); aac_build_sg(scsicmd, &writecmd->sg); if(writecmd->sg.count > MAX_DRIVER_SG_SEGMENT_COUNT) BUG(); fibsize = sizeof(struct aac_write) + ((writecmd->sg.count - 1) * sizeof (struct sgentry)); /* * Now send the Fib to the adapter */ status = fib_send(ContainerCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) write_callback, (void *) scsicmd); } /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) return 0; printk(KERN_WARNING "aac_write: fib_send failed with status: %d\n", status); /* * For some reason, the Fib didn't queue, return QUEUE_FULL */ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | QUEUE_FULL; aac_io_done(scsicmd); fib_complete(cmd_fibcontext); fib_free(cmd_fibcontext); return -1; } /** * aac_scsi_cmd() - Process SCSI command * @scsicmd: SCSI command block * @wait: 1 if the user wants to await completion * * Emulate a SCSI command and queue the required request for the * aacraid firmware. */ int aac_scsi_cmd(Scsi_Cmnd * scsicmd) { u32 cid = 0; struct fsa_scsi_hba *fsa_dev_ptr; int cardtype; int ret; struct aac_dev *dev = (struct aac_dev *)scsicmd->host->hostdata; cardtype = dev->cardtype; fsa_dev_ptr = fsa_dev[scsicmd->host->unique_id]; /* * If the bus, target or lun is out of range, return fail * Test does not apply to ID 16, the pseudo id for the controller * itself. */ if (scsicmd->target != scsicmd->host->this_id) { if ((scsicmd->channel == 0) ){ if( (scsicmd->target >= AAC_MAX_TARGET) || (scsicmd->lun != 0)){ scsicmd->result = DID_NO_CONNECT << 16; __aac_io_done(scsicmd); return 0; } cid = TARGET_LUN_TO_CONTAINER(scsicmd->target, scsicmd->lun); /* * If the target container doesn't exist, it may have * been newly created */ if (fsa_dev_ptr->valid[cid] == 0) { switch (scsicmd->cmnd[0]) { case SS_INQUIR: case SS_RDCAP: case SS_TEST: spin_unlock_irq(&io_request_lock); probe_container(dev, cid); spin_lock_irq(&io_request_lock); if (fsa_dev_ptr->valid[cid] == 0) { scsicmd->result = DID_NO_CONNECT << 16; __aac_io_done(scsicmd); return 0; } default: break; } } /* * If the target container still doesn't exist, * return failure */ if (fsa_dev_ptr->valid[cid] == 0) { scsicmd->result = DID_BAD_TARGET << 16; __aac_io_done(scsicmd); return -1; } } else { /* check for physical non-dasd devices */ if(dev->nondasd_support == 1){ return aac_send_srb_fib(scsicmd); } else { scsicmd->result = DID_NO_CONNECT << 16; __aac_io_done(scsicmd); return 0; } } } /* * else Command for the controller itself */ else if ((scsicmd->cmnd[0] != SS_INQUIR) && /* only INQUIRY & TUR cmnd supported for controller */ (scsicmd->cmnd[0] != SS_TEST)) { dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | CHECK_CONDITION; set_sense((u8 *) &sense_data[cid], SENKEY_ILLEGAL, SENCODE_INVALID_COMMAND, ASENCODE_INVALID_COMMAND, 0, 0, 0, 0); __aac_io_done(scsicmd); return -1; } /* Handle commands here that don't really require going out to the adapter */ switch (scsicmd->cmnd[0]) { case SS_INQUIR: { struct inquiry_data *inq_data_ptr; dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scsicmd->target)); inq_data_ptr = (struct inquiry_data *)scsicmd->request_buffer; memset(inq_data_ptr, 0, sizeof (struct inquiry_data)); inq_data_ptr->inqd_ver = 2; /* claim compliance to SCSI-2 */ inq_data_ptr->inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ inq_data_ptr->inqd_len = 31; /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ inq_data_ptr->inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ /* * Set the Vendor, Product, and Revision Level * see: .c i.e. aac.c */ if (scsicmd->target == scsicmd->host->this_id) { setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), (sizeof(container_types)/sizeof(char *))); inq_data_ptr->inqd_pdt = INQD_PDT_PROC; /* Processor device */ } else { setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), fsa_dev_ptr->type[cid]); aac_get_container_name(dev, cid, inq_data_ptr->inqd_pid); inq_data_ptr->inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ } scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | GOOD; __aac_io_done(scsicmd); return 0; } case SS_RDCAP: { int capacity; char *cp; dprintk((KERN_DEBUG "READ CAPACITY command.\n")); capacity = fsa_dev_ptr->size[cid] - 1; cp = scsicmd->request_buffer; cp[0] = (capacity >> 24) & 0xff; cp[1] = (capacity >> 16) & 0xff; cp[2] = (capacity >> 8) & 0xff; cp[3] = (capacity >> 0) & 0xff; cp[4] = 0; cp[5] = 0; cp[6] = 2; cp[7] = 0; scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | GOOD; __aac_io_done(scsicmd); return 0; } case SS_MODESEN: { char *mode_buf; dprintk((KERN_DEBUG "MODE SENSE command.\n")); mode_buf = scsicmd->request_buffer; mode_buf[0] = 0; /* Mode data length (MSB) */ mode_buf[1] = 6; /* Mode data length (LSB) */ mode_buf[2] = 0; /* Medium type - default */ mode_buf[3] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */ mode_buf[4] = 0; /* reserved */ mode_buf[5] = 0; /* reserved */ mode_buf[6] = 0; /* Block descriptor length (MSB) */ mode_buf[7] = 0; /* Block descriptor length (LSB) */ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | GOOD; __aac_io_done(scsicmd); return 0; } case SS_REQSEN: dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); memcpy(scsicmd->sense_buffer, &sense_data[cid], sizeof (struct sense_data)); memset(&sense_data[cid], 0, sizeof (struct sense_data)); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | GOOD; __aac_io_done(scsicmd); return (0); case SS_LOCK: dprintk((KERN_DEBUG "LOCK command.\n")); if (scsicmd->cmnd[4]) fsa_dev_ptr->locked[cid] = 1; else fsa_dev_ptr->locked[cid] = 0; scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | GOOD; __aac_io_done(scsicmd); return 0; /* * These commands are all No-Ops */ case SS_TEST: case SS_RESERV: case SS_RELES: case SS_REZERO: case SS_REASGN: case SS_SEEK: case SS_ST_SP: scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | GOOD; __aac_io_done(scsicmd); return (0); } switch (scsicmd->cmnd[0]) { case SS_READ: case SM_READ: /* * Hack to keep track of ordinal number of the device that * corresponds to a container. Needed to convert * containers to /dev/sd device names */ spin_unlock_irq(&io_request_lock); fsa_dev_ptr->devno[cid] = DEVICE_NR(scsicmd->request.rq_dev); ret = aac_read(scsicmd, cid); spin_lock_irq(&io_request_lock); return ret; case SS_WRITE: case SM_WRITE: spin_unlock_irq(&io_request_lock); ret = aac_write(scsicmd, cid); spin_lock_irq(&io_request_lock); return ret; default: /* * Unhandled commands */ printk(KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | CHECK_CONDITION; set_sense((u8 *) &sense_data[cid], SENKEY_ILLEGAL, SENCODE_INVALID_COMMAND, ASENCODE_INVALID_COMMAND, 0, 0, 0, 0); __aac_io_done(scsicmd); return 0; } } static int query_disk(struct aac_dev *dev, void *arg) { struct aac_query_disk qd; struct fsa_scsi_hba *fsa_dev_ptr; fsa_dev_ptr = &(dev->fsa_dev); if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) return -EFAULT; if (qd.cnum == -1) qd.cnum = TARGET_LUN_TO_CONTAINER(qd.target, qd.lun); else if ((qd.bus == -1) && (qd.target == -1) && (qd.lun == -1)) { if (qd.cnum < 0 || qd.cnum > MAXIMUM_NUM_CONTAINERS) return -EINVAL; qd.instance = dev->scsi_host_ptr->host_no; qd.bus = 0; qd.target = CONTAINER_TO_TARGET(qd.cnum); qd.lun = CONTAINER_TO_LUN(qd.cnum); } else return -EINVAL; qd.valid = fsa_dev_ptr->valid[qd.cnum]; qd.locked = fsa_dev_ptr->locked[qd.cnum]; qd.deleted = fsa_dev_ptr->deleted[qd.cnum]; if (fsa_dev_ptr->devno[qd.cnum] == -1) qd.unmapped = 1; else qd.unmapped = 0; get_sd_devname(fsa_dev_ptr->devno[qd.cnum], qd.name); if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) return -EFAULT; return 0; } static void get_sd_devname(int disknum, char *buffer) { if (disknum < 0) { sprintf(buffer, "%s", ""); return; } if (disknum < 26) sprintf(buffer, "sd%c", 'a' + disknum); else { unsigned int min1; unsigned int min2; /* * For larger numbers of disks, we need to go to a new * naming scheme. */ min1 = disknum / 26; min2 = disknum % 26; sprintf(buffer, "sd%c%c", 'a' + min1 - 1, 'a' + min2); } } static int force_delete_disk(struct aac_dev *dev, void *arg) { struct aac_delete_disk dd; struct fsa_scsi_hba *fsa_dev_ptr; fsa_dev_ptr = &(dev->fsa_dev); if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) return -EFAULT; if (dd.cnum > MAXIMUM_NUM_CONTAINERS) return -EINVAL; /* * Mark this container as being deleted. */ fsa_dev_ptr->deleted[dd.cnum] = 1; /* * Mark the container as no longer valid */ fsa_dev_ptr->valid[dd.cnum] = 0; return 0; } static int delete_disk(struct aac_dev *dev, void *arg) { struct aac_delete_disk dd; struct fsa_scsi_hba *fsa_dev_ptr; fsa_dev_ptr = &(dev->fsa_dev); if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) return -EFAULT; if (dd.cnum > MAXIMUM_NUM_CONTAINERS) return -EINVAL; /* * If the container is locked, it can not be deleted by the API. */ if (fsa_dev_ptr->locked[dd.cnum]) return -EBUSY; else { /* * Mark the container as no longer being valid. */ fsa_dev_ptr->valid[dd.cnum] = 0; fsa_dev_ptr->devno[dd.cnum] = -1; return 0; } } int aac_dev_ioctl(struct aac_dev *dev, int cmd, void *arg) { switch (cmd) { case FSACTL_QUERY_DISK: return query_disk(dev, arg); case FSACTL_DELETE_DISK: return delete_disk(dev, arg); case FSACTL_FORCE_DELETE_DISK: return force_delete_disk(dev, arg); case 2131: return aac_get_containers(dev); default: return -ENOTTY; } } /** * * aac_srb_callback * @context: the context set in the fib - here it is scsi cmd * @fibptr: pointer to the fib * * Handles the completion of a scsi command to a non dasd device * */ static void aac_srb_callback(void *context, struct fib * fibptr) { struct aac_dev *dev; struct aac_srb_reply *srbreply; Scsi_Cmnd *scsicmd; scsicmd = (Scsi_Cmnd *) context; dev = (struct aac_dev *)scsicmd->host->hostdata; if (fibptr == NULL) BUG(); srbreply = (struct aac_srb_reply *) fib_data(fibptr); scsicmd->sense_buffer[0] = '\0'; // initialize sense valid flag to false // calculate resid for sg scsicmd->resid = scsicmd->request_bufflen - srbreply->data_xfer_length; if(scsicmd->use_sg) pci_unmap_sg(dev->pdev, (struct scatterlist *)scsicmd->buffer, scsicmd->use_sg, scsi_to_pci_dma_dir(scsicmd->sc_data_direction)); else if(scsicmd->request_bufflen) pci_unmap_single(dev->pdev, (ulong)scsicmd->SCp.ptr, scsicmd->request_bufflen, scsi_to_pci_dma_dir(scsicmd->sc_data_direction)); /* * First check the fib status */ if (le32_to_cpu(srbreply->status) != ST_OK){ int len; printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status)); len = (srbreply->sense_data_size > sizeof(scsicmd->sense_buffer))? sizeof(scsicmd->sense_buffer):srbreply->sense_data_size; scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | CHECK_CONDITION; memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); } /* * Next check the srb status */ switch( (le32_to_cpu(srbreply->srb_status))&0x3f){ case SRB_STATUS_ERROR_RECOVERY: case SRB_STATUS_PENDING: case SRB_STATUS_SUCCESS: if(scsicmd->cmnd[0] == INQUIRY ){ u8 b; u8 b1; /* We can't expose disk devices because we can't tell whether they * are the raw container drives or stand alone drives. If they have * the removable bit set then we should expose them though. */ b = (*(u8*)scsicmd->buffer)&0x1f; b1 = ((u8*)scsicmd->buffer)[1]; if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER || (b==TYPE_DISK && (b1&0x80)) ){ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; /* * We will allow disk devices if in RAID/SCSI mode and * the channel is 2 */ } else if((dev->raid_scsi_mode)&&(scsicmd->channel == 2)){ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; } else { scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; } } else { scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; } break; case SRB_STATUS_DATA_OVERRUN: switch(scsicmd->cmnd[0]){ case READ_6: case WRITE_6: case READ_10: case WRITE_10: case READ_12: case WRITE_12: if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) { printk(KERN_WARNING"aacraid: SCSI CMD underflow\n"); } else { printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n"); } scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; break; case INQUIRY: { u8 b; u8 b1; /* We can't expose disk devices because we can't tell whether they * are the raw container drives or stand alone drives */ b = (*(u8*)scsicmd->buffer)&0x0f; b1 = ((u8*)scsicmd->buffer)[1]; if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER || (b==TYPE_DISK && (b1&0x80)) ){ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; /* * We will allow disk devices if in RAID/SCSI mode and * the channel is 2 */ } else if((dev->raid_scsi_mode)&&(scsicmd->channel == 2)){ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; } else { scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; } break; } default: scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; break; } break; case SRB_STATUS_ABORTED: scsicmd->result = DID_ABORT << 16 | ABORT << 8; break; case SRB_STATUS_ABORT_FAILED: // Not sure about this one - but assuming the hba was trying to abort for some reason scsicmd->result = DID_ERROR << 16 | ABORT << 8; break; case SRB_STATUS_PARITY_ERROR: scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8; break; case SRB_STATUS_NO_DEVICE: case SRB_STATUS_INVALID_PATH_ID: case SRB_STATUS_INVALID_TARGET_ID: case SRB_STATUS_INVALID_LUN: case SRB_STATUS_SELECTION_TIMEOUT: scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_COMMAND_TIMEOUT: case SRB_STATUS_TIMEOUT: scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_BUSY: scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_BUS_RESET: scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_MESSAGE_REJECTED: scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; break; case SRB_STATUS_REQUEST_FLUSHED: case SRB_STATUS_ERROR: case SRB_STATUS_INVALID_REQUEST: case SRB_STATUS_REQUEST_SENSE_FAILED: case SRB_STATUS_NO_HBA: case SRB_STATUS_UNEXPECTED_BUS_FREE: case SRB_STATUS_PHASE_SEQUENCE_FAILURE: case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: case SRB_STATUS_DELAYED_RETRY: case SRB_STATUS_BAD_FUNCTION: case SRB_STATUS_NOT_STARTED: case SRB_STATUS_NOT_IN_USE: case SRB_STATUS_FORCE_ABORT: case SRB_STATUS_DOMAIN_VALIDATION_FAIL: default: printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",le32_to_cpu(srbreply->srb_status&0x3f),aac_get_status_string(le32_to_cpu(srbreply->srb_status)), scsicmd->cmnd[0], le32_to_cpu(srbreply->scsi_status) ); scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; break; } if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition int len; scsicmd->result |= CHECK_CONDITION; len = (srbreply->sense_data_size > sizeof(scsicmd->sense_buffer))? sizeof(scsicmd->sense_buffer):srbreply->sense_data_size; printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n", le32_to_cpu(srbreply->status), len); memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); } /* * OR in the scsi status (already shifted up a bit) */ scsicmd->result |= le32_to_cpu(srbreply->scsi_status); fib_complete(fibptr); fib_free(fibptr); aac_io_done(scsicmd); } /** * * aac_send_scb_fib * @scsicmd: the scsi command block * * This routine will form a FIB and fill in the aac_srb from the * scsicmd passed in. */ static int aac_send_srb_fib(Scsi_Cmnd* scsicmd) { struct fib* cmd_fibcontext; struct aac_dev* dev; int status; struct aac_srb *srbcmd; u16 fibsize; u32 flag; u32 timeout; if( scsicmd->target > 15 || scsicmd->lun > 7) { scsicmd->result = DID_NO_CONNECT << 16; __aac_io_done(scsicmd); return 0; } dev = (struct aac_dev *)scsicmd->host->hostdata; switch(scsicmd->sc_data_direction){ case SCSI_DATA_WRITE: flag = SRB_DataOut; break; case SCSI_DATA_UNKNOWN: flag = SRB_DataIn | SRB_DataOut; break; case SCSI_DATA_READ: flag = SRB_DataIn; break; case SCSI_DATA_NONE: default: flag = SRB_NoDataXfer; break; } /* * Allocate and initialize a Fib then setup a BlockWrite command */ if (!(cmd_fibcontext = fib_alloc(dev))) { scsicmd->result = DID_ERROR << 16; __aac_io_done(scsicmd); return -1; } fib_init(cmd_fibcontext); srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext); srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scsicmd->channel)); srbcmd->target = cpu_to_le32(scsicmd->target); srbcmd->lun = cpu_to_le32(scsicmd->lun); srbcmd->flags = cpu_to_le32(flag); timeout = (scsicmd->timeout-jiffies)/HZ; if(timeout == 0){ timeout = 1; } srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds srbcmd->retry_limit =cpu_to_le32(0); // Obsolete parameter srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len); if( dev->pae_support ==1 ) { aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg); srbcmd->count = cpu_to_le32(scsicmd->request_bufflen); memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len); /* * Build Scatter/Gather list */ fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + ((srbcmd->sg.count & 0xff) * sizeof (struct sgentry64)); /* * Now send the Fib to the adapter */ status = fib_send(ScsiPortCommand64, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) aac_srb_callback, (void *) scsicmd); } else { aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg); srbcmd->count = cpu_to_le32(scsicmd->request_bufflen); memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len); /* * Build Scatter/Gather list */ fibsize = sizeof (struct aac_srb) + (((srbcmd->sg.count & 0xff) - 1) * sizeof (struct sgentry)); /* * Now send the Fib to the adapter */ status = fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) aac_srb_callback, (void *) scsicmd); } /* * Check that the command queued to the controller */ if (status == -EINPROGRESS){ return 0; } printk(KERN_WARNING "aac_srb: fib_send failed with status: %d\n", status); /* * For some reason, the Fib didn't queue, return QUEUE_FULL */ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | QUEUE_FULL; __aac_io_done(scsicmd); fib_complete(cmd_fibcontext); fib_free(cmd_fibcontext); return -1; } static unsigned long aac_build_sg(Scsi_Cmnd* scsicmd, struct sgmap* psg) { struct aac_dev *dev; unsigned long byte_count = 0; dev = (struct aac_dev *)scsicmd->host->hostdata; // Get rid of old data psg->count = cpu_to_le32(0); psg->sg[0].addr = cpu_to_le32(NULL); psg->sg[0].count = cpu_to_le32(0); if (scsicmd->use_sg) { struct scatterlist *sg; int i; int sg_count; sg = (struct scatterlist *) scsicmd->request_buffer; sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg, scsi_to_pci_dma_dir(scsicmd->sc_data_direction)); psg->count = cpu_to_le32(sg_count); byte_count = 0; for (i = 0; i < sg_count; i++) { psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); byte_count += sg_dma_len(sg); sg++; } /* hba wants the size to be exact */ if(byte_count > scsicmd->request_bufflen){ psg->sg[i-1].count -= (byte_count - scsicmd->request_bufflen); byte_count = scsicmd->request_bufflen; } /* Check for command underflow */ if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", byte_count, scsicmd->underflow); } } else if(scsicmd->request_bufflen) { dma_addr_t addr; addr = pci_map_single(dev->pdev, scsicmd->request_buffer, scsicmd->request_bufflen, scsi_to_pci_dma_dir(scsicmd->sc_data_direction)); psg->count = cpu_to_le32(1); psg->sg[0].addr = cpu_to_le32(addr); psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen); /* Cast to pointer from integer of different size */ scsicmd->SCp.ptr = (void *)addr; byte_count = scsicmd->request_bufflen; } return byte_count; } static unsigned long aac_build_sg64(Scsi_Cmnd* scsicmd, struct sgmap64* psg) { struct aac_dev *dev; unsigned long byte_count = 0; u64 le_addr; dev = (struct aac_dev *)scsicmd->host->hostdata; // Get rid of old data psg->count = cpu_to_le32(0); psg->sg[0].addr[0] = cpu_to_le32(NULL); psg->sg[0].addr[1] = cpu_to_le32(NULL); psg->sg[0].count = cpu_to_le32(0); if (scsicmd->use_sg) { struct scatterlist *sg; int i; int sg_count; sg = (struct scatterlist *) scsicmd->request_buffer; sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg, scsi_to_pci_dma_dir(scsicmd->sc_data_direction)); psg->count = cpu_to_le32(sg_count); byte_count = 0; for (i = 0; i < sg_count; i++) { le_addr = cpu_to_le64(sg_dma_address(sg)); psg->sg[i].addr[1] = (u32)(le_addr>>32); psg->sg[i].addr[0] = (u32)(le_addr & 0xffffffff); psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); byte_count += sg_dma_len(sg); sg++; } /* hba wants the size to be exact */ if(byte_count > scsicmd->request_bufflen){ psg->sg[i-1].count -= (byte_count - scsicmd->request_bufflen); byte_count = scsicmd->request_bufflen; } /* Check for command underflow */ if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", byte_count, scsicmd->underflow); } } else if(scsicmd->request_bufflen) { dma_addr_t addr; addr = pci_map_single(dev->pdev, scsicmd->request_buffer, scsicmd->request_bufflen, scsi_to_pci_dma_dir(scsicmd->sc_data_direction)); psg->count = cpu_to_le32(1); le_addr = cpu_to_le64(addr); psg->sg[0].addr[1] = (u32)(le_addr>>32); psg->sg[0].addr[0] = (u32)(le_addr & 0xffffffff); psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen); /* Cast to pointer from integer of different size */ scsicmd->SCp.ptr = (void *)addr; byte_count = scsicmd->request_bufflen; } return byte_count; } struct aac_srb_status_info { u32 status; char *str; }; static struct aac_srb_status_info srb_status_info[] = { { SRB_STATUS_PENDING, "Pending Status"}, { SRB_STATUS_SUCCESS, "Success"}, { SRB_STATUS_ABORTED, "Aborted Command"}, { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, { SRB_STATUS_ERROR, "Error Event"}, { SRB_STATUS_BUSY, "Device Busy"}, { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, { SRB_STATUS_NO_DEVICE, "No Device"}, { SRB_STATUS_TIMEOUT, "Timeout"}, { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, { SRB_STATUS_BUS_RESET, "Bus Reset"}, { SRB_STATUS_PARITY_ERROR, "Parity Error"}, { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, { SRB_STATUS_NO_HBA, "No HBA"}, { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, { SRB_STATUS_NOT_STARTED, "Not Started"}, { SRB_STATUS_NOT_IN_USE, "Not In Use"}, { SRB_STATUS_FORCE_ABORT, "Force Abort"}, { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, { 0xff, "Unknown Error"} }; char *aac_get_status_string(u32 status) { int i; for(i=0; i < (sizeof(srb_status_info)/sizeof(struct aac_srb_status_info)); i++ ){ if(srb_status_info[i].status == status){ return srb_status_info[i].str; } } return "Bad Status Code"; }