/* $Id: su.c,v 1.54 2001/11/07 14:52:30 davem Exp $ * su.c: Small serial driver for keyboard/mouse interface on sparc32/PCI * * Copyright (C) 1997 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1998-1999 Pete Zaitcev (zaitcev@yahoo.com) * * This is mainly a variation of drivers/char/serial.c, * credits go to authors mentioned therein. * * Fixed to use tty_get_baud_rate(). * Theodore Ts'o , 2001-Oct-12 */ /* * Configuration section. */ #undef SERIAL_PARANOIA_CHECK #define CONFIG_SERIAL_NOPAUSE_IO /* Unused on sparc */ #define SERIAL_DO_RESTART /* Set of debugging defines */ #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #undef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT #undef SERIAL_DEBUG_THROTTLE #define RS_ISR_PASS_LIMIT 256 /* * 0x20 is sun4m thing, Dave Redman heritage. * See arch/sparc/kernel/irq.c. */ #define IRQ_4M(n) ((n)|0x20) #if defined(MODULE) && defined(SERIAL_DEBUG_MCOUNT) #define DBG_CNT(s) \ do { \ printk("(%s): [%x] refc=%d, serc=%d, ttyc=%d -> %s\n", \ kdevname(tty->device), (info->flags), serial_refcount, \ info->count,tty->count,s); \ } while (0) #else #define DBG_CNT(s) #endif /* * End of serial driver configuration section. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SERIAL_CONSOLE #include #include #endif #include #include #include #include #include #ifdef CONFIG_SPARC64 #include #endif #include #include #include #include "sunserial.h" #include "sunkbd.h" #include "sunmouse.h" /* We are on a NS PC87303 clocked with 24.0 MHz, which results * in a UART clock of 1.8462 MHz. */ #define BAUD_BASE (1846200 / 16) #ifdef CONFIG_SERIAL_CONSOLE extern int serial_console; static struct console sercons; int su_serial_console_init(void); #endif enum su_type { SU_PORT_NONE, SU_PORT_MS, SU_PORT_KBD, SU_PORT_PORT }; static char *su_typev[] = { "???", "mouse", "kbd", "serial" }; #define SU_PROPSIZE 128 /* * serial.c saves memory when it allocates async_info upon first open. * We have parts of state structure together because we do call startup * for keyboard and mouse. */ struct su_struct { int magic; unsigned long port; int baud_base; int type; /* Hardware type: e.g. 16550 */ int irq; int flags; int line; int cflag; enum su_type port_type; /* Hookup type: e.g. mouse */ int is_console; int port_node; char name[16]; int xmit_fifo_size; int custom_divisor; unsigned short close_delay; unsigned short closing_wait; /* time to wait before closing */ struct tty_struct *tty; int read_status_mask; int ignore_status_mask; int timeout; int quot; int x_char; /* xon/xoff character */ int IER; /* Interrupt Enable Register */ int MCR; /* Modem control register */ unsigned long event; int blocked_open; /* # of blocked opens */ long session; /* Session of opening process */ long pgrp; /* pgrp of opening process */ unsigned char *xmit_buf; int xmit_head; int xmit_tail; int xmit_cnt; struct tq_struct tqueue; wait_queue_head_t open_wait; wait_queue_head_t close_wait; wait_queue_head_t delta_msr_wait; int count; struct async_icount icount; struct termios normal_termios, callout_termios; unsigned long last_active; /* For async_struct, to be */ }; /* * Scan status structure. * "prop" is a local variable but it eats stack to keep it in each * stack frame of a recursive procedure. */ struct su_probe_scan { int msnode, kbnode; /* PROM nodes for mouse and keyboard */ int msx, kbx; /* minors for mouse and keyboard */ int devices; /* scan index */ char prop[SU_PROPSIZE]; }; static char *serial_name = "PCIO serial driver"; static char serial_version[16]; static DECLARE_TASK_QUEUE(tq_serial); static struct tty_driver serial_driver, callout_driver; static int serial_refcount; /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 static void autoconfig(struct su_struct *info); static void change_speed(struct su_struct *info, struct termios *old); static void su_wait_until_sent(struct tty_struct *tty, int timeout); /* * Here we define the default xmit fifo size used for each type of * UART */ static struct serial_uart_config uart_config[] = { { "unknown", 1, 0 }, { "8250", 1, 0 }, { "16450", 1, 0 }, { "16550", 1, 0 }, { "16550A", 16, UART_CLEAR_FIFO | UART_USE_FIFO }, { "cirrus", 1, 0 }, { "ST16650", 1, UART_CLEAR_FIFO |UART_STARTECH }, { "ST16650V2", 32, UART_CLEAR_FIFO | UART_USE_FIFO | UART_STARTECH }, { "TI16750", 64, UART_CLEAR_FIFO | UART_USE_FIFO}, { 0, 0} }; #define NR_PORTS 4 static struct su_struct su_table[NR_PORTS]; static struct tty_struct *serial_table[NR_PORTS]; static struct termios *serial_termios[NR_PORTS]; static struct termios *serial_termios_locked[NR_PORTS]; #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif /* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the copy_from_user blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */ static unsigned char *tmp_buf; static DECLARE_MUTEX(tmp_buf_sem); static inline int serial_paranoia_check(struct su_struct *info, kdev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = KERN_WARNING "Warning: bad magic number for serial struct (%s) in %s\n"; static const char *badinfo = KERN_WARNING "Warning: null su_struct for (%s) in %s\n"; if (!info) { printk(badinfo, kdevname(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, kdevname(device), routine); return 1; } #endif return 0; } static inline unsigned int su_inb(struct su_struct *info, unsigned long offset) { return inb(info->port + offset); } static inline void su_outb(struct su_struct *info, unsigned long offset, int value) { #ifndef __sparc_v9__ /* * MrCoffee has weird schematics: IRQ4 & P10(?) pins of SuperIO are * connected with a gate then go to SlavIO. When IRQ4 goes tristated * gate outputs a logical one. Since we use level triggered interrupts * we have lockup and watchdog reset. We cannot mask IRQ because * keyboard shares IRQ with us (Word has it as Bob Smelik's design). * This problem is similar to what Alpha people suffer, see serial.c. */ if (offset == UART_MCR) value |= UART_MCR_OUT2; #endif outb(value, info->port + offset); } #define serial_in(info, off) su_inb(info, off) #define serial_inp(info, off) su_inb(info, off) #define serial_out(info, off, val) su_outb(info, off, val) #define serial_outp(info, off, val) su_outb(info, off, val) /* * ------------------------------------------------------------ * su_stop() and su_start() * * This routines are called before setting or resetting tty->stopped. * They enable or disable transmitter interrupts, as necessary. * ------------------------------------------------------------ */ static void su_stop(struct tty_struct *tty) { struct su_struct *info = (struct su_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "su_stop")) return; save_flags(flags); cli(); if (info->IER & UART_IER_THRI) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } restore_flags(flags); } static void su_start(struct tty_struct *tty) { struct su_struct *info = (struct su_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "su_start")) return; save_flags(flags); cli(); if (info->xmit_cnt && info->xmit_buf && !(info->IER & UART_IER_THRI)) { info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); } restore_flags(flags); } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * su_interrupt(). They were separated out for readability's sake. * * Note: rs_interrupt() is a "fast" interrupt, which means that it * runs with interrupts turned off. People who may want to modify * rs_interrupt() should try to keep the interrupt handler as fast as * possible. After you are done making modifications, it is not a bad * idea to do: * * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c * * and look at the resulting assemble code in serial.s. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static void su_sched_event(struct su_struct *info, int event) { info->event |= 1 << event; queue_task(&info->tqueue, &tq_serial); mark_bh(SERIAL_BH); } static void receive_kbd_ms_chars(struct su_struct *info, struct pt_regs *regs, int is_brk) { unsigned char status = 0; unsigned char ch; do { ch = serial_inp(info, UART_RX); if (info->port_type == SU_PORT_KBD) { if (ch == SUNKBD_RESET) { l1a_state.kbd_id = 1; l1a_state.l1_down = 0; } else if (l1a_state.kbd_id) { l1a_state.kbd_id = 0; } else if (ch == SUNKBD_L1) { l1a_state.l1_down = 1; } else if (ch == (SUNKBD_L1|SUNKBD_UP)) { l1a_state.l1_down = 0; } else if (ch == SUNKBD_A && l1a_state.l1_down) { /* whee... */ batten_down_hatches(); /* Continue execution... */ l1a_state.l1_down = 0; l1a_state.kbd_id = 0; return; } sunkbd_inchar(ch, regs); } else { sun_mouse_inbyte(ch, is_brk); } status = su_inb(info, UART_LSR); } while (status & UART_LSR_DR); } static void receive_serial_chars(struct su_struct *info, int *status, struct pt_regs *regs) { struct tty_struct *tty = info->tty; unsigned char ch; int ignored = 0, saw_console_brk = 0; struct async_icount *icount; icount = &info->icount; do { ch = serial_inp(info, UART_RX); if (info->is_console && (ch == 0 || (*status &UART_LSR_BI))) saw_console_brk = 1; if (tty->flip.count >= TTY_FLIPBUF_SIZE) break; *tty->flip.char_buf_ptr = ch; icount->rx++; #ifdef SERIAL_DEBUG_INTR printk("D%02x:%02x.", ch, *status); #endif *tty->flip.flag_buf_ptr = 0; if (*status & (UART_LSR_BI | UART_LSR_PE | UART_LSR_FE | UART_LSR_OE)) { /* * For statistics only */ if (*status & UART_LSR_BI) { *status &= ~(UART_LSR_FE | UART_LSR_PE); icount->brk++; } else if (*status & UART_LSR_PE) icount->parity++; else if (*status & UART_LSR_FE) icount->frame++; if (*status & UART_LSR_OE) icount->overrun++; /* * Now check to see if character should be * ignored, and mask off conditions which * should be ignored. */ if (*status & info->ignore_status_mask) { if (++ignored > 100) { #ifdef SERIAL_DEBUG_INTR printk("ign100.."); #endif break; } goto ignore_char; } *status &= info->read_status_mask; if (*status & (UART_LSR_BI)) { #ifdef SERIAL_DEBUG_INTR printk("handling break...."); #endif *tty->flip.flag_buf_ptr = TTY_BREAK; if (info->flags & ASYNC_SAK) do_SAK(tty); } else if (*status & UART_LSR_PE) *tty->flip.flag_buf_ptr = TTY_PARITY; else if (*status & UART_LSR_FE) *tty->flip.flag_buf_ptr = TTY_FRAME; if (*status & UART_LSR_OE) { /* * Overrun is special, since it's * reported immediately, and doesn't * affect the current character */ if (tty->flip.count < TTY_FLIPBUF_SIZE) { tty->flip.count++; tty->flip.flag_buf_ptr++; tty->flip.char_buf_ptr++; *tty->flip.flag_buf_ptr = TTY_OVERRUN; } } } tty->flip.flag_buf_ptr++; tty->flip.char_buf_ptr++; tty->flip.count++; ignore_char: *status = serial_inp(info, UART_LSR); } while (*status & UART_LSR_DR); #ifdef SERIAL_DEBUG_INTR printk("E%02x.R%d", *status, tty->flip.count); #endif tty_flip_buffer_push(tty); if (saw_console_brk != 0) batten_down_hatches(); } static void transmit_chars(struct su_struct *info, int *intr_done) { int count; if (info->x_char) { serial_outp(info, UART_TX, info->x_char); info->icount.tx++; info->x_char = 0; if (intr_done) *intr_done = 0; return; } if ((info->xmit_cnt <= 0) || info->tty->stopped || info->tty->hw_stopped) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); return; } count = info->xmit_fifo_size; do { serial_out(info, UART_TX, info->xmit_buf[info->xmit_tail++]); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->icount.tx++; if (--info->xmit_cnt <= 0) break; } while (--count > 0); if (info->xmit_cnt < WAKEUP_CHARS) su_sched_event(info, RS_EVENT_WRITE_WAKEUP); #ifdef SERIAL_DEBUG_INTR printk("T%d...", info->xmit_cnt); #endif if (intr_done) *intr_done = 0; if (info->xmit_cnt <= 0) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } } static void check_modem_status(struct su_struct *info) { int status; struct async_icount *icount; status = serial_in(info, UART_MSR); if (status & UART_MSR_ANY_DELTA) { icount = &info->icount; /* update input line counters */ if (status & UART_MSR_TERI) icount->rng++; if (status & UART_MSR_DDSR) icount->dsr++; if (status & UART_MSR_DDCD) { icount->dcd++; #ifdef CONFIG_HARD_PPS if ((info->flags & ASYNC_HARDPPS_CD) && (status & UART_MSR_DCD)) hardpps(); #endif } if (status & UART_MSR_DCTS) icount->cts++; wake_up_interruptible(&info->delta_msr_wait); } if ((info->flags & ASYNC_CHECK_CD) && (status & UART_MSR_DDCD)) { #if (defined(SERIAL_DEBUG_OPEN) || defined(SERIAL_DEBUG_INTR)) printk("ttys%d CD now %s...", info->line, (status & UART_MSR_DCD) ? "on" : "off"); #endif if (status & UART_MSR_DCD) wake_up_interruptible(&info->open_wait); else if (!((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_CALLOUT_NOHUP))) { #ifdef SERIAL_DEBUG_OPEN printk("doing serial hangup..."); #endif if (info->tty) tty_hangup(info->tty); } } if (info->flags & ASYNC_CTS_FLOW) { if (info->tty->hw_stopped) { if (status & UART_MSR_CTS) { #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) printk("CTS tx start..."); #endif info->tty->hw_stopped = 0; info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); su_sched_event(info, RS_EVENT_WRITE_WAKEUP); return; } } else { if (!(status & UART_MSR_CTS)) { #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) printk("CTS tx stop..."); #endif info->tty->hw_stopped = 1; info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } } } } /* * This is the kbd/mouse serial driver's interrupt routine */ static void su_kbd_ms_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct su_struct *info = (struct su_struct *)dev_id; unsigned char status; #ifdef SERIAL_DEBUG_INTR printk("su_kbd_ms_interrupt(%s)...", __irq_itoa(irq)); #endif if (!info) return; if (serial_in(info, UART_IIR) & UART_IIR_NO_INT) return; status = serial_inp(info, UART_LSR); #ifdef SERIAL_DEBUG_INTR printk("status = %x...", status); #endif if ((status & UART_LSR_DR) || (status & UART_LSR_BI)) receive_kbd_ms_chars(info, regs, (status & UART_LSR_BI) != 0); #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } /* * This is the serial driver's generic interrupt routine */ static void su_serial_interrupt(int irq, void *dev_id, struct pt_regs * regs) { int status; struct su_struct *info; int pass_counter = 0; #ifdef SERIAL_DEBUG_INTR printk("su_serial_interrupt(%s)...", __irq_itoa(irq)); #endif info = (struct su_struct *)dev_id; if (!info || !info->tty) { #ifdef SERIAL_DEBUG_INTR printk("strain\n"); #endif return; } do { status = serial_inp(info, UART_LSR); #ifdef SERIAL_DEBUG_INTR printk("status = %x...", status); #endif if (status & UART_LSR_DR) receive_serial_chars(info, &status, regs); check_modem_status(info); if (status & UART_LSR_THRE) transmit_chars(info, 0); if (pass_counter++ > RS_ISR_PASS_LIMIT) { #ifdef SERIAL_DEBUG_INTR printk("rs loop break"); #endif break; /* Prevent infinite loops */ } } while (!(serial_in(info, UART_IIR) & UART_IIR_NO_INT)); info->last_active = jiffies; #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * su_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using su_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&tq_serial); } static void do_softint(void *private_) { struct su_struct *info = (struct su_struct *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { tty_wakeup(tty); } } /* * --------------------------------------------------------------- * Low level utility subroutines for the serial driver: routines to * figure out the appropriate timeout for an interrupt chain, routines * to initialize and startup a serial port, and routines to shutdown a * serial port. Useful stuff like that. * --------------------------------------------------------------- */ static int startup(struct su_struct *info) { unsigned long flags; int retval=0; unsigned long page; save_flags(flags); if (info->tty) { page = get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; cli(); if (info->flags & ASYNC_INITIALIZED) { free_page(page); goto errout; } if (info->port == 0 || info->type == PORT_UNKNOWN) { set_bit(TTY_IO_ERROR, &info->tty->flags); free_page(page); goto errout; } if (info->xmit_buf) free_page(page); else info->xmit_buf = (unsigned char *) page; } cli(); #ifdef SERIAL_DEBUG_OPEN printk("starting up ttys%d (irq %s)...", info->line, __irq_itoa(info->irq)); #endif if (uart_config[info->type].flags & UART_STARTECH) { /* Wake up UART */ serial_outp(info, UART_LCR, 0xBF); serial_outp(info, UART_EFR, UART_EFR_ECB); serial_outp(info, UART_IER, 0); serial_outp(info, UART_EFR, 0); serial_outp(info, UART_LCR, 0); } if (info->type == PORT_16750) { /* Wake up UART */ serial_outp(info, UART_IER, 0); } /* * Clear the FIFO buffers and disable them * (they will be reenabled in change_speed()) */ if (uart_config[info->type].flags & UART_CLEAR_FIFO) serial_outp(info, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); /* * At this point there's no way the LSR could still be 0xFF; * if it is, then bail out, because there's likely no UART * here. */ if (serial_inp(info, UART_LSR) == 0xff) { if (capable(CAP_SYS_ADMIN)) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); } else retval = -ENODEV; goto errout; } /* * Allocate the IRQ if necessary */ if (info->port_type != SU_PORT_PORT) { retval = request_irq(info->irq, su_kbd_ms_interrupt, SA_SHIRQ, info->name, info); } else { retval = request_irq(info->irq, su_serial_interrupt, SA_SHIRQ, info->name, info); } if (retval) { if (capable(CAP_SYS_ADMIN)) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); retval = 0; } goto errout; } /* * Clear the interrupt registers. */ (void) serial_inp(info, UART_RX); (void) serial_inp(info, UART_IIR); (void) serial_inp(info, UART_MSR); /* * Now, initialize the UART */ serial_outp(info, UART_LCR, UART_LCR_WLEN8); /* reset DLAB */ info->MCR = 0; if (info->tty && info->tty->termios->c_cflag & CBAUD) info->MCR = UART_MCR_DTR | UART_MCR_RTS; if (info->irq != 0) info->MCR |= UART_MCR_OUT2; serial_outp(info, UART_MCR, info->MCR); /* * Finally, enable interrupts */ info->IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI; serial_outp(info, UART_IER, info->IER); /* enable interrupts */ /* * And clear the interrupt registers again for luck. */ (void)serial_inp(info, UART_LSR); (void)serial_inp(info, UART_RX); (void)serial_inp(info, UART_IIR); (void)serial_inp(info, UART_MSR); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; /* * Set up the tty->alt_speed kludge */ if (info->tty) { if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) info->tty->alt_speed = 57600; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) info->tty->alt_speed = 115200; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI) info->tty->alt_speed = 230400; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP) info->tty->alt_speed = 460800; } /* * and set the speed of the serial port */ change_speed(info, 0); info->flags |= ASYNC_INITIALIZED; restore_flags(flags); return 0; errout: restore_flags(flags); return retval; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct su_struct *info) { unsigned long flags; if (!(info->flags & ASYNC_INITIALIZED)) return; save_flags(flags); cli(); /* Disable interrupts */ /* * clear delta_msr_wait queue to avoid mem leaks: we may free the irq * here so the queue might never be waken up */ wake_up_interruptible(&info->delta_msr_wait); /* * Free the IRQ, if necessary */ free_irq(info->irq, info); if (info->xmit_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; } info->IER = 0; serial_outp(info, UART_IER, 0x00); /* disable all intrs */ info->MCR &= ~UART_MCR_OUT2; /* disable break condition */ serial_out(info, UART_LCR, serial_inp(info, UART_LCR) & ~UART_LCR_SBC); if (!info->tty || (info->tty->termios->c_cflag & HUPCL)) info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); serial_outp(info, UART_MCR, info->MCR); /* disable FIFO's */ serial_outp(info, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); (void)serial_in(info, UART_RX); /* read data port to reset things */ if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); if (uart_config[info->type].flags & UART_STARTECH) { /* Arrange to enter sleep mode */ serial_outp(info, UART_LCR, 0xBF); serial_outp(info, UART_EFR, UART_EFR_ECB); serial_outp(info, UART_IER, UART_IERX_SLEEP); serial_outp(info, UART_LCR, 0); } if (info->type == PORT_16750) { /* Arrange to enter sleep mode */ serial_outp(info, UART_IER, UART_IERX_SLEEP); } info->flags &= ~ASYNC_INITIALIZED; restore_flags(flags); } static int su_get_baud_rate(struct su_struct *info) { static struct tty_struct c_tty; static struct termios c_termios; if (info->tty) return tty_get_baud_rate(info->tty); memset(&c_tty, 0, sizeof(c_tty)); memset(&c_termios, 0, sizeof(c_termios)); c_tty.termios = &c_termios; c_termios.c_cflag = info->cflag; return tty_get_baud_rate(&c_tty); } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct su_struct *info, struct termios *old_termios) { int quot = 0, baud; unsigned int cval, fcr = 0; int bits; unsigned long flags; if (info->port_type == SU_PORT_PORT) { if (!info->tty || !info->tty->termios) return; if (!info->port) return; info->cflag = info->tty->termios->c_cflag; } /* byte size and parity */ switch (info->cflag & CSIZE) { case CS5: cval = 0x00; bits = 7; break; case CS6: cval = 0x01; bits = 8; break; case CS7: cval = 0x02; bits = 9; break; case CS8: cval = 0x03; bits = 10; break; /* Never happens, but GCC is too dumb to figure it out */ default: cval = 0x00; bits = 7; break; } if (info->cflag & CSTOPB) { cval |= 0x04; bits++; } if (info->cflag & PARENB) { cval |= UART_LCR_PARITY; bits++; } if (!(info->cflag & PARODD)) cval |= UART_LCR_EPAR; #ifdef CMSPAR if (info->cflag & CMSPAR) cval |= UART_LCR_SPAR; #endif /* Determine divisor based on baud rate */ baud = su_get_baud_rate(info); if (baud == 38400 && ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)) quot = info->custom_divisor; else { if (baud == 134) /* Special case since 134 is really 134.5 */ quot = (2 * info->baud_base / 269); else if (baud) quot = info->baud_base / baud; } /* If the quotient is zero refuse the change */ if (!quot && old_termios) { info->tty->termios->c_cflag &= ~CBAUD; info->tty->termios->c_cflag |= (old_termios->c_cflag & CBAUD); baud = tty_get_baud_rate(info->tty); if (!baud) baud = 9600; if (baud == 38400 && ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)) quot = info->custom_divisor; else { if (baud == 134) /* Special case since 134 is really 134.5 */ quot = (2*info->baud_base / 269); else if (baud) quot = info->baud_base / baud; } } /* As a last resort, if the quotient is zero, default to 9600 bps */ if (!quot) quot = info->baud_base / 9600; info->timeout = ((info->xmit_fifo_size*HZ*bits*quot) / info->baud_base); info->timeout += HZ/50; /* Add .02 seconds of slop */ /* Set up FIFO's */ if (uart_config[info->type].flags & UART_USE_FIFO) { if ((info->baud_base / quot) < 9600) fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1; else fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_8; } if (info->type == PORT_16750) fcr |= UART_FCR7_64BYTE; /* CTS flow control flag and modem status interrupts */ info->IER &= ~UART_IER_MSI; if (info->flags & ASYNC_HARDPPS_CD) info->IER |= UART_IER_MSI; if (info->cflag & CRTSCTS) { info->flags |= ASYNC_CTS_FLOW; info->IER |= UART_IER_MSI; } else info->flags &= ~ASYNC_CTS_FLOW; if (info->cflag & CLOCAL) info->flags &= ~ASYNC_CHECK_CD; else { info->flags |= ASYNC_CHECK_CD; info->IER |= UART_IER_MSI; } serial_out(info, UART_IER, info->IER); /* * Set up parity check flag */ if (info->tty) { #define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK)) info->read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR; if (I_INPCK(info->tty)) info->read_status_mask |= UART_LSR_FE | UART_LSR_PE; if (I_BRKINT(info->tty) || I_PARMRK(info->tty)) info->read_status_mask |= UART_LSR_BI; /* * Characters to ignore */ info->ignore_status_mask = 0; if (I_IGNPAR(info->tty)) info->ignore_status_mask |= UART_LSR_PE | UART_LSR_FE; if (I_IGNBRK(info->tty)) { info->ignore_status_mask |= UART_LSR_BI; /* * If we're ignore parity and break indicators, ignore * overruns too. (For real raw support). */ if (I_IGNPAR(info->tty)) info->ignore_status_mask |= UART_LSR_OE; } /* * !!! ignore all characters if CREAD is not set */ if ((info->cflag & CREAD) == 0) info->ignore_status_mask |= UART_LSR_DR; } save_flags(flags); cli(); if (uart_config[info->type].flags & UART_STARTECH) { serial_outp(info, UART_LCR, 0xBF); serial_outp(info, UART_EFR, (info->cflag & CRTSCTS) ? UART_EFR_CTS : 0); } serial_outp(info, UART_LCR, cval | UART_LCR_DLAB); /* set DLAB */ serial_outp(info, UART_DLL, quot & 0xff); /* LS of divisor */ serial_outp(info, UART_DLM, quot >> 8); /* MS of divisor */ if (info->type == PORT_16750) serial_outp(info, UART_FCR, fcr); /* set fcr */ serial_outp(info, UART_LCR, cval); /* reset DLAB */ if (info->type != PORT_16750) serial_outp(info, UART_FCR, fcr); /* set fcr */ restore_flags(flags); info->quot = quot; } static void su_put_char(struct tty_struct *tty, unsigned char ch) { struct su_struct *info = (struct su_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "su_put_char")) return; if (!tty || !info->xmit_buf) return; save_flags(flags); cli(); if (info->xmit_cnt >= SERIAL_XMIT_SIZE - 1) { restore_flags(flags); return; } info->xmit_buf[info->xmit_head++] = ch; info->xmit_head &= SERIAL_XMIT_SIZE-1; info->xmit_cnt++; restore_flags(flags); } static void su_put_char_kbd(unsigned char c) { struct su_struct *info = su_table; int lsr; if (info->port_type != SU_PORT_KBD) ++info; if (info->port_type != SU_PORT_KBD) return; do { lsr = serial_in(info, UART_LSR); } while (!(lsr & UART_LSR_THRE)); /* Send the character out. */ su_outb(info, UART_TX, c); } static void su_change_mouse_baud(int baud) { struct su_struct *info = su_table; if (info->port_type != SU_PORT_MS) ++info; if (info->port_type != SU_PORT_MS) return; info->cflag &= ~CBAUD; switch (baud) { case 1200: info->cflag |= B1200; break; case 2400: info->cflag |= B2400; break; case 4800: info->cflag |= B4800; break; case 9600: info->cflag |= B9600; break; default: printk("su_change_mouse_baud: unknown baud rate %d, " "defaulting to 1200\n", baud); info->cflag |= 1200; break; } change_speed(info, 0); } static void su_flush_chars(struct tty_struct *tty) { struct su_struct *info = (struct su_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "su_flush_chars")) return; if (info->xmit_cnt <= 0 || tty->stopped || tty->hw_stopped || !info->xmit_buf) return; save_flags(flags); cli(); info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); restore_flags(flags); } static int su_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { int c, ret = 0; struct su_struct *info = (struct su_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "su_write")) return 0; if (!tty || !info->xmit_buf || !tmp_buf) return 0; save_flags(flags); if (from_user) { down(&tmp_buf_sem); while (1) { c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) break; c -= copy_from_user(tmp_buf, buf, c); if (!c) { if (!ret) ret = -EFAULT; break; } cli(); c = MIN(c, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); memcpy(info->xmit_buf + info->xmit_head, tmp_buf, c); info->xmit_head = ((info->xmit_head + c) & (SERIAL_XMIT_SIZE-1)); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; ret += c; } up(&tmp_buf_sem); } else { while (1) { cli(); c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) { restore_flags(flags); break; } memcpy(info->xmit_buf + info->xmit_head, buf, c); info->xmit_head = ((info->xmit_head + c) & (SERIAL_XMIT_SIZE-1)); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; ret += c; } } if (info->xmit_cnt && !tty->stopped && !tty->hw_stopped && !(info->IER & UART_IER_THRI)) { info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); } return ret; } static int su_write_room(struct tty_struct *tty) { struct su_struct *info = (struct su_struct *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->device, "su_write_room")) return 0; ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; if (ret < 0) ret = 0; return ret; } static int su_chars_in_buffer(struct tty_struct *tty) { struct su_struct *info = (struct su_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "su_chars_in_buffer")) return 0; return info->xmit_cnt; } static void su_flush_buffer(struct tty_struct *tty) { struct su_struct *info = (struct su_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "su_flush_buffer")) return; save_flags(flags); cli(); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; restore_flags(flags); tty_wakeup(tty); } /* * This function is used to send a high-priority XON/XOFF character to * the device */ static void su_send_xchar(struct tty_struct *tty, char ch) { struct su_struct *info = (struct su_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "su_send_char")) return; if (!(info->flags & ASYNC_INITIALIZED)) return; info->x_char = ch; if (ch) { /* Make sure transmit interrupts are on */ info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); } } /* * ------------------------------------------------------------ * su_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void su_throttle(struct tty_struct * tty) { struct su_struct *info = (struct su_struct *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "su_throttle")) return; if (I_IXOFF(tty)) su_send_xchar(tty, STOP_CHAR(tty)); if (tty->termios->c_cflag & CRTSCTS) info->MCR &= ~UART_MCR_RTS; save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); } static void su_unthrottle(struct tty_struct * tty) { struct su_struct *info = (struct su_struct *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "su_unthrottle")) return; if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else su_send_xchar(tty, START_CHAR(tty)); } if (tty->termios->c_cflag & CRTSCTS) info->MCR |= UART_MCR_RTS; save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); } /* * ------------------------------------------------------------ * su_ioctl() and friends * ------------------------------------------------------------ */ /* * get_serial_info - handle TIOCGSERIAL ioctl() * * Purpose: Return standard serial struct information about * a serial port handled by this driver. * * Added: 11-May-2001 Lars Kellogg-Stedman */ static int get_serial_info(struct su_struct * info, struct serial_struct * retinfo) { struct serial_struct tmp; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = info->type; tmp.line = info->line; tmp.port = info->port; tmp.irq = info->irq; tmp.flags = info->flags; tmp.xmit_fifo_size = info->xmit_fifo_size; tmp.baud_base = info->baud_base; tmp.close_delay = info->close_delay; tmp.closing_wait = info->closing_wait; tmp.custom_divisor = info->custom_divisor; tmp.hub6 = 0; if (copy_to_user(retinfo,&tmp,sizeof(*retinfo))) return -EFAULT; return 0; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct su_struct * info, unsigned int *value) { unsigned char status; unsigned int result; unsigned long flags; save_flags(flags); cli(); status = serial_in(info, UART_LSR); restore_flags(flags); result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0); return put_user(result,value); } static int get_modem_info(struct su_struct * info, unsigned int *value) { unsigned char control, status; unsigned int result; unsigned long flags; control = info->MCR; save_flags(flags); cli(); status = serial_in(info, UART_MSR); restore_flags(flags); result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0) | ((control & UART_MCR_DTR) ? TIOCM_DTR : 0) #ifdef TIOCM_OUT1 | ((control & UART_MCR_OUT1) ? TIOCM_OUT1 : 0) | ((control & UART_MCR_OUT2) ? TIOCM_OUT2 : 0) #endif | ((status & UART_MSR_DCD) ? TIOCM_CAR : 0) | ((status & UART_MSR_RI) ? TIOCM_RNG : 0) | ((status & UART_MSR_DSR) ? TIOCM_DSR : 0) | ((status & UART_MSR_CTS) ? TIOCM_CTS : 0); return put_user(result,value); } static int set_modem_info(struct su_struct * info, unsigned int cmd, unsigned int *value) { unsigned int arg; unsigned long flags; if (get_user(arg, value)) return -EFAULT; switch (cmd) { case TIOCMBIS: if (arg & TIOCM_RTS) info->MCR |= UART_MCR_RTS; if (arg & TIOCM_DTR) info->MCR |= UART_MCR_DTR; #ifdef TIOCM_OUT1 if (arg & TIOCM_OUT1) info->MCR |= UART_MCR_OUT1; if (arg & TIOCM_OUT2) info->MCR |= UART_MCR_OUT2; #endif break; case TIOCMBIC: if (arg & TIOCM_RTS) info->MCR &= ~UART_MCR_RTS; if (arg & TIOCM_DTR) info->MCR &= ~UART_MCR_DTR; #ifdef TIOCM_OUT1 if (arg & TIOCM_OUT1) info->MCR &= ~UART_MCR_OUT1; if (arg & TIOCM_OUT2) info->MCR &= ~UART_MCR_OUT2; #endif break; case TIOCMSET: info->MCR = ((info->MCR & ~(UART_MCR_RTS | #ifdef TIOCM_OUT1 UART_MCR_OUT1 | UART_MCR_OUT2 | #endif UART_MCR_DTR)) | ((arg & TIOCM_RTS) ? UART_MCR_RTS : 0) #ifdef TIOCM_OUT1 | ((arg & TIOCM_OUT1) ? UART_MCR_OUT1 : 0) | ((arg & TIOCM_OUT2) ? UART_MCR_OUT2 : 0) #endif | ((arg & TIOCM_DTR) ? UART_MCR_DTR : 0)); break; default: return -EINVAL; } save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); return 0; } /* * su_break() --- routine which turns the break handling on or off */ static void su_break(struct tty_struct *tty, int break_state) { struct su_struct * info = (struct su_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "su_break")) return; if (!info->port) return; save_flags(flags); cli(); if (break_state == -1) serial_out(info, UART_LCR, serial_inp(info, UART_LCR) | UART_LCR_SBC); else serial_out(info, UART_LCR, serial_inp(info, UART_LCR) & ~UART_LCR_SBC); restore_flags(flags); } static int su_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { struct su_struct * info = (struct su_struct *)tty->driver_data; struct async_icount cprev, cnow; /* kernel counter temps */ struct serial_icounter_struct *p_cuser; /* user space */ if (serial_paranoia_check(info, tty->device, "su_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGSTRUCT) && (cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TIOCMGET: return get_modem_info(info, (unsigned int *) arg); case TIOCMBIS: case TIOCMBIC: case TIOCMSET: return set_modem_info(info, cmd, (unsigned int *) arg); case TIOCGSERIAL: return get_serial_info(info, (struct serial_struct *)arg); case TIOCSERGETLSR: /* Get line status register */ return get_lsr_info(info, (unsigned int *) arg); #if 0 case TIOCSERGSTRUCT: if (copy_to_user((struct async_struct *) arg, info, sizeof(struct async_struct))) return -EFAULT; return 0; #endif /* * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change * - mask passed in arg for lines of interest * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) * Caller should use TIOCGICOUNT to see which one it was */ case TIOCMIWAIT: cli(); /* note the counters on entry */ cprev = info->icount; sti(); while (1) { interruptible_sleep_on(&info->delta_msr_wait); /* see if a signal did it */ if (signal_pending(current)) return -ERESTARTSYS; cli(); cnow = info->icount; /* atomic copy */ sti(); if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) return -EIO; /* no change => error */ if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) { return 0; } cprev = cnow; } /* NOTREACHED */ /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ case TIOCGICOUNT: cli(); cnow = info->icount; sti(); p_cuser = (struct serial_icounter_struct *) arg; if (put_user(cnow.cts, &p_cuser->cts) || put_user(cnow.dsr, &p_cuser->dsr) || put_user(cnow.rng, &p_cuser->rng) || put_user(cnow.dcd, &p_cuser->dcd)) return -EFAULT; return 0; default: return -ENOIOCTLCMD; } /* return 0; */ /* Trigger warnings if fall through by a chance. */ } static void su_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct su_struct *info = (struct su_struct *)tty->driver_data; unsigned long flags; if ( (tty->termios->c_cflag == old_termios->c_cflag) && ( RELEVANT_IFLAG(tty->termios->c_iflag) == RELEVANT_IFLAG(old_termios->c_iflag))) return; change_speed(info, old_termios); /* Handle transition to B0 status */ if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) { info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); } /* Handle transition away from B0 status */ if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) { info->MCR |= UART_MCR_DTR; if (!(tty->termios->c_cflag & CRTSCTS) || !test_bit(TTY_THROTTLED, &tty->flags)) { info->MCR |= UART_MCR_RTS; } save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); } /* Handle turning off CRTSCTS */ if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { tty->hw_stopped = 0; su_start(tty); } #if 0 /* * No need to wake up processes in open wait, since they * sample the CLOCAL flag once, and don't recheck it. * XXX It's not clear whether the current behavior is correct * or not. Hence, this may change..... */ if (!(old_termios->c_cflag & CLOCAL) && (tty->termios->c_cflag & CLOCAL)) wake_up_interruptible(&info->open_wait); #endif } /* * ------------------------------------------------------------ * su_close() * * This routine is called when the serial port gets closed. First, we * wait for the last remaining data to be sent. Then, we unlink its * async structure from the interrupt chain if necessary, and we free * that IRQ if nothing is left in the chain. * ------------------------------------------------------------ */ static void su_close(struct tty_struct *tty, struct file * filp) { struct su_struct *info = (struct su_struct *)tty->driver_data; unsigned long flags; if (!info || serial_paranoia_check(info, tty->device, "su_close")) return; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { DBG_CNT("before DEC-hung"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("su_close ttys%d, count = %d\n", info->line, info->count); #endif if ((tty->count == 1) && (info->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. info->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("su_close: bad serial port count; tty->count is 1, " "info->count is %d\n", info->count); info->count = 1; } if (--info->count < 0) { printk("su_close: bad serial port count for ttys%d: %d\n", info->line, info->count); info->count = 0; } if (info->count) { DBG_CNT("before DEC-2"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } info->flags |= ASYNC_CLOSING; /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ASYNC_NORMAL_ACTIVE) info->normal_termios = *tty->termios; if (info->flags & ASYNC_CALLOUT_ACTIVE) info->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receive line status interrupts, and tell the * interrupt driver to stop checking the data ready bit in the * line status register. */ info->IER &= ~UART_IER_RLSI; info->read_status_mask &= ~UART_LSR_DR; if (info->flags & ASYNC_INITIALIZED) { serial_out(info, UART_IER, info->IER); /* * Before we drop DTR, make sure the UART transmitter * has completely drained; this is especially * important if there is a transmit FIFO! */ su_wait_until_sent(tty, info->timeout); } shutdown(info); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); tty_ldisc_flush(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (info->blocked_open) { if (info->close_delay) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(info->close_delay); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE| ASYNC_CLOSING); wake_up_interruptible(&info->close_wait); MOD_DEC_USE_COUNT; restore_flags(flags); } /* * su_wait_until_sent() --- wait until the transmitter is empty */ static void su_wait_until_sent(struct tty_struct *tty, int timeout) { struct su_struct * info = (struct su_struct *)tty->driver_data; unsigned long orig_jiffies, char_time; int lsr; if (serial_paranoia_check(info, tty->device, "su_wait_until_sent")) return; if (info->type == PORT_UNKNOWN) return; if (info->xmit_fifo_size == 0) return; /* Just in case ... */ orig_jiffies = jiffies; /* * Set the check interval to be 1/5 of the estimated time to * send a single character, and make it at least 1. The check * interval should also be less than the timeout. * * Note: we have to use pretty tight timings here to satisfy * the NIST-PCTS. */ char_time = (info->timeout - HZ/50) / info->xmit_fifo_size; char_time = char_time / 5; if (char_time == 0) char_time = 1; if (timeout) char_time = MIN(char_time, timeout); #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("In su_wait_until_sent(%d) check=%lu...", timeout, char_time); printk("jiff=%lu...", jiffies); #endif while (!((lsr = serial_inp(info, UART_LSR)) & UART_LSR_TEMT)) { #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("lsr = %d (jiff=%lu)...", lsr, jiffies); #endif current->state = TASK_INTERRUPTIBLE; schedule_timeout(char_time); if (signal_pending(current)) break; if (timeout && time_after(jiffies, orig_jiffies + timeout)) break; } #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies); #endif } /* * su_hangup() --- called by tty_hangup() when a hangup is signaled. */ static void su_hangup(struct tty_struct *tty) { struct su_struct * info = (struct su_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "su_hangup")) return; su_flush_buffer(tty); shutdown(info); info->event = 0; info->count = 0; info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * su_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct su_struct *info) { DECLARE_WAITQUEUE(wait, current); int retval; int do_clocal = 0, extra_count = 0; unsigned long flags; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (tty_hung_up_p(filp) || (info->flags & ASYNC_CLOSING)) { if (info->flags & ASYNC_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ASYNC_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ASYNC_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { if (info->flags & ASYNC_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } if (info->flags & ASYNC_CALLOUT_ACTIVE) { if (info->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, info->count is dropped by one, so that * su_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttys%d, count = %d\n", info->line, info->count); #endif save_flags(flags); cli(); if (!tty_hung_up_p(filp)) { extra_count = 1; info->count--; } restore_flags(flags); info->blocked_open++; while (1) { save_flags(flags); cli(); if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && (tty->termios->c_cflag & CBAUD)) serial_out(info, UART_MCR, serial_inp(info, UART_MCR) | (UART_MCR_DTR | UART_MCR_RTS)); restore_flags(flags); set_current_state(TASK_INTERRUPTIBLE); if (tty_hung_up_p(filp) || !(info->flags & ASYNC_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && !(info->flags & ASYNC_CLOSING) && (do_clocal || (serial_in(info, UART_MSR) & UART_MSR_DCD))) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, info->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (extra_count) info->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, info->count); #endif if (retval) return retval; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its async structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ static int su_open(struct tty_struct *tty, struct file * filp) { struct su_struct *info; int retval, line; unsigned long page; line = MINOR(tty->device) - tty->driver.minor_start; if ((line < 0) || (line >= NR_PORTS)) return -ENODEV; info = su_table + line; info->count++; tty->driver_data = info; info->tty = tty; if (serial_paranoia_check(info, tty->device, "su_open")) { info->count--; return -ENODEV; } #ifdef SERIAL_DEBUG_OPEN printk("su_open %s%d, count = %d\n", tty->driver.name, info->line, info->count); #endif info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0; if (!tmp_buf) { page = get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; if (tmp_buf) free_page(page); else tmp_buf = (unsigned char *) page; } /* * If the port is the middle of closing, bail out now */ if (tty_hung_up_p(filp) || (info->flags & ASYNC_CLOSING)) { if (info->flags & ASYNC_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * Start up serial port */ retval = startup(info); if (retval) return retval; MOD_INC_USE_COUNT; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("su_open returning after block_til_ready with %d\n", retval); #endif return retval; } if ((info->count == 1) && (info->flags & ASYNC_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->normal_termios; else *tty->termios = info->callout_termios; change_speed(info, 0); } #ifdef CONFIG_SERIAL_CONSOLE if (sercons.cflag && sercons.index == line) { tty->termios->c_cflag = sercons.cflag; sercons.cflag = 0; change_speed(info, 0); } #endif info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN printk("su_open ttys%d successful...", info->line); #endif return 0; } /* * /proc fs routines.... */ static int line_info(char *buf, struct su_struct *info) { char stat_buf[30], control, status; int ret; unsigned long flags; if (info->port == 0 || info->type == PORT_UNKNOWN) return 0; ret = sprintf(buf, "%u: uart:%s port:%lX irq:%s", info->line, uart_config[info->type].name, (unsigned long)info->port, __irq_itoa(info->irq)); /* * Figure out the current RS-232 lines */ save_flags(flags); cli(); status = serial_in(info, UART_MSR); control = info ? info->MCR : serial_in(info, UART_MCR); restore_flags(flags); stat_buf[0] = 0; stat_buf[1] = 0; if (control & UART_MCR_RTS) strcat(stat_buf, "|RTS"); if (status & UART_MSR_CTS) strcat(stat_buf, "|CTS"); if (control & UART_MCR_DTR) strcat(stat_buf, "|DTR"); if (status & UART_MSR_DSR) strcat(stat_buf, "|DSR"); if (status & UART_MSR_DCD) strcat(stat_buf, "|CD"); if (status & UART_MSR_RI) strcat(stat_buf, "|RI"); if (info->quot) { ret += sprintf(buf+ret, " baud:%u", info->baud_base / info->quot); } ret += sprintf(buf+ret, " tx:%u rx:%u", info->icount.tx, info->icount.rx); if (info->icount.frame) ret += sprintf(buf+ret, " fe:%u", info->icount.frame); if (info->icount.parity) ret += sprintf(buf+ret, " pe:%u", info->icount.parity); if (info->icount.brk) ret += sprintf(buf+ret, " brk:%u", info->icount.brk); if (info->icount.overrun) ret += sprintf(buf+ret, " oe:%u", info->icount.overrun); /* * Last thing is the RS-232 status lines */ ret += sprintf(buf+ret, " %s\n", stat_buf+1); return ret; } int su_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int i, len = 0; off_t begin = 0; len += sprintf(page, "serinfo:1.0 driver:%s\n", serial_version); for (i = 0; i < NR_PORTS && len < 4000; i++) { len += line_info(page + len, &su_table[i]); if (len+begin > off+count) goto done; if (len+begin < off) { begin += len; len = 0; } } *eof = 1; done: if (off >= len+begin) return 0; *start = page + (off-begin); return ((count < begin+len-off) ? count : begin+len-off); } /* * --------------------------------------------------------------------- * su_XXX_init() and friends * * su_XXX_init() is called at boot-time to initialize the serial driver. * --------------------------------------------------------------------- */ /* * This routine prints out the appropriate serial driver version * number, and identifies which options were configured into this * driver. */ static __inline__ void __init show_su_version(void) { char *revision = "$Revision: 1.54 $"; char *version, *p; version = strchr(revision, ' '); strcpy(serial_version, ++version); p = strchr(serial_version, ' '); *p = '\0'; printk(KERN_INFO "%s version %s\n", serial_name, serial_version); } /* * This routine is called by su_{serial|kbd_ms}_init() to initialize a specific * serial port. It determines what type of UART chip this serial port is * using: 8250, 16450, 16550, 16550A. The important question is * whether or not this UART is a 16550A, since this will determine * whether or not we can use its FIFO features. */ static void autoconfig(struct su_struct *info) { unsigned char status1, status2, scratch, scratch2; struct linux_ebus_device *dev = 0; struct linux_ebus *ebus; #ifdef CONFIG_SPARC64 struct isa_bridge *isa_br; struct isa_device *isa_dev; #endif #ifndef __sparc_v9__ struct linux_prom_registers reg0; #endif unsigned long flags; if (!info->port_node || !info->port_type) return; /* * First we look for Ebus-bases su's */ for_each_ebus(ebus) { for_each_ebusdev(dev, ebus) { if (dev->prom_node == info->port_node) { info->port = dev->resource[0].start; info->irq = dev->irqs[0]; goto ebus_done; } } } #ifdef CONFIG_SPARC64 for_each_isa(isa_br) { for_each_isadev(isa_dev, isa_br) { if (isa_dev->prom_node == info->port_node) { info->port = isa_dev->resource.start; info->irq = isa_dev->irq; goto ebus_done; } } } #endif #ifdef __sparc_v9__ /* * Not on Ebus, bailing. */ return; #else /* * Not on Ebus, must be OBIO. */ if (prom_getproperty(info->port_node, "reg", (char *)®0, sizeof(reg0)) == -1) { prom_printf("su: no \"reg\" property\n"); return; } prom_apply_obio_ranges(®0, 1); if (reg0.which_io != 0) { /* Just in case... */ prom_printf("su: bus number nonzero: 0x%x:%x\n", reg0.which_io, reg0.phys_addr); return; } if ((info->port = (unsigned long) ioremap(reg0.phys_addr, reg0.reg_size)) == 0) { prom_printf("su: cannot map\n"); return; } /* * There is no intr property on MrCoffee, so hardwire it. */ info->irq = IRQ_4M(13); #endif ebus_done: #ifdef SERIAL_DEBUG_OPEN printk("Found 'su' at %016lx IRQ %s\n", info->port, __irq_itoa(info->irq)); #endif info->magic = SERIAL_MAGIC; save_flags(flags); cli(); /* * Do a simple existence test first; if we fail this, there's * no point trying anything else. * * 0x80 is used as a nonsense port to prevent against false * positives due to ISA bus float. The assumption is that * 0x80 is a non-existent port; which should be safe since * include/asm/io.h also makes this assumption. */ scratch = serial_inp(info, UART_IER); serial_outp(info, UART_IER, 0); scratch2 = serial_inp(info, UART_IER); serial_outp(info, UART_IER, scratch); if (scratch2) { restore_flags(flags); return; /* We failed; there's nothing here */ } scratch = serial_inp(info, UART_MCR); serial_outp(info, UART_MCR, UART_MCR_LOOP | scratch); serial_outp(info, UART_MCR, UART_MCR_LOOP | 0x0A); status1 = serial_inp(info, UART_MSR) & 0xF0; serial_outp(info, UART_MCR, scratch); if (status1 != 0x90) { /* * This code fragment used to fail, now it fixed itself. * We keep the printout for a case. */ printk("su: loopback returned status 0x%02x\n", status1); restore_flags(flags); return; } scratch2 = serial_in(info, UART_LCR); serial_outp(info, UART_LCR, 0xBF); /* set up for StarTech test */ serial_outp(info, UART_EFR, 0); /* EFR is the same as FCR */ serial_outp(info, UART_LCR, 0); serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO); scratch = serial_in(info, UART_IIR) >> 6; switch (scratch) { case 0: info->type = PORT_16450; break; case 1: info->type = PORT_UNKNOWN; break; case 2: info->type = PORT_16550; break; case 3: info->type = PORT_16550A; break; } if (info->type == PORT_16550A) { /* Check for Startech UART's */ serial_outp(info, UART_LCR, scratch2 | UART_LCR_DLAB); if (serial_in(info, UART_EFR) == 0) { info->type = PORT_16650; } else { serial_outp(info, UART_LCR, 0xBF); if (serial_in(info, UART_EFR) == 0) info->type = PORT_16650V2; } } if (info->type == PORT_16550A) { /* Check for TI 16750 */ serial_outp(info, UART_LCR, scratch2 | UART_LCR_DLAB); serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE); scratch = serial_in(info, UART_IIR) >> 5; if (scratch == 7) { serial_outp(info, UART_LCR, 0); serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO); scratch = serial_in(info, UART_IIR) >> 5; if (scratch == 6) info->type = PORT_16750; } serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO); } serial_outp(info, UART_LCR, scratch2); if (info->type == PORT_16450) { scratch = serial_in(info, UART_SCR); serial_outp(info, UART_SCR, 0xa5); status1 = serial_in(info, UART_SCR); serial_outp(info, UART_SCR, 0x5a); status2 = serial_in(info, UART_SCR); serial_outp(info, UART_SCR, scratch); if ((status1 != 0xa5) || (status2 != 0x5a)) info->type = PORT_8250; } info->xmit_fifo_size = uart_config[info->type].dfl_xmit_fifo_size; if (info->type == PORT_UNKNOWN) { restore_flags(flags); return; } sprintf(info->name, "su(%s)", su_typev[info->port_type]); /* * Reset the UART. */ serial_outp(info, UART_MCR, 0x00); serial_outp(info, UART_FCR, (UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT)); (void)serial_in(info, UART_RX); serial_outp(info, UART_IER, 0x00); restore_flags(flags); } /* This is used by the SAB driver to adjust where its minor * numbers start, we always are probed for first. */ int su_num_ports = 0; EXPORT_SYMBOL(su_num_ports); /* * The serial driver boot-time initialization code! */ int __init su_serial_init(void) { int i; struct su_struct *info; init_bh(SERIAL_BH, do_serial_bh); show_su_version(); /* Initialize the tty_driver structure */ memset(&serial_driver, 0, sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; serial_driver.driver_name = "su"; #ifdef CONFIG_DEVFS_FS serial_driver.name = "tts/%d"; #else serial_driver.name = "ttyS"; #endif serial_driver.major = TTY_MAJOR; serial_driver.minor_start = 64; serial_driver.num = NR_PORTS; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW; serial_driver.refcount = &serial_refcount; serial_driver.table = serial_table; serial_driver.termios = serial_termios; serial_driver.termios_locked = serial_termios_locked; serial_driver.open = su_open; serial_driver.close = su_close; serial_driver.write = su_write; serial_driver.put_char = su_put_char; serial_driver.flush_chars = su_flush_chars; serial_driver.write_room = su_write_room; serial_driver.chars_in_buffer = su_chars_in_buffer; serial_driver.flush_buffer = su_flush_buffer; serial_driver.ioctl = su_ioctl; serial_driver.throttle = su_throttle; serial_driver.unthrottle = su_unthrottle; serial_driver.send_xchar = su_send_xchar; serial_driver.set_termios = su_set_termios; serial_driver.stop = su_stop; serial_driver.start = su_start; serial_driver.hangup = su_hangup; serial_driver.break_ctl = su_break; serial_driver.wait_until_sent = su_wait_until_sent; serial_driver.read_proc = su_read_proc; /* * The callout device is just like normal device except for * major number and the subtype code. */ callout_driver = serial_driver; #ifdef CONFIG_DEVFS_FS callout_driver.name = "cua/%d"; #else callout_driver.name = "cua"; #endif callout_driver.major = TTYAUX_MAJOR; callout_driver.subtype = SERIAL_TYPE_CALLOUT; callout_driver.read_proc = 0; callout_driver.proc_entry = 0; if (tty_register_driver(&serial_driver)) panic("Couldn't register regular su\n"); if (tty_register_driver(&callout_driver)) panic("Couldn't register callout su\n"); for (i = 0, info = su_table; i < NR_PORTS; i++, info++) { info->line = i; info->type = PORT_UNKNOWN; info->baud_base = BAUD_BASE; /* info->flags = 0; */ info->custom_divisor = 0; info->close_delay = 5*HZ/10; info->closing_wait = 30*HZ; info->callout_termios = callout_driver.init_termios; info->normal_termios = serial_driver.init_termios; info->icount.cts = info->icount.dsr = info->icount.rng = info->icount.dcd = 0; info->icount.rx = info->icount.tx = 0; info->icount.frame = info->icount.parity = 0; info->icount.overrun = info->icount.brk = 0; info->tqueue.routine = do_softint; info->tqueue.data = info; info->cflag = serial_driver.init_termios.c_cflag; init_waitqueue_head(&info->open_wait); init_waitqueue_head(&info->close_wait); init_waitqueue_head(&info->delta_msr_wait); autoconfig(info); if (info->type == PORT_UNKNOWN) continue; printk(KERN_INFO "%s at 0x%lx (tty %d irq %s) is a %s\n", info->name, (long)info->port, i, __irq_itoa(info->irq), uart_config[info->type].name); } for (i = 0, info = su_table; i < NR_PORTS; i++, info++) if (info->type == PORT_UNKNOWN) break; su_num_ports = i; serial_driver.num = callout_driver.num = i; return 0; } int __init su_kbd_ms_init(void) { int i; struct su_struct *info; show_su_version(); for (i = 0, info = su_table; i < 2; i++, info++) { info->line = i; info->type = PORT_UNKNOWN; info->baud_base = BAUD_BASE; if (info->port_type == SU_PORT_KBD) info->cflag = B1200 | CS8 | CLOCAL | CREAD; else info->cflag = B4800 | CS8 | CLOCAL | CREAD; init_waitqueue_head(&info->open_wait); init_waitqueue_head(&info->close_wait); init_waitqueue_head(&info->delta_msr_wait); autoconfig(info); if (info->type == PORT_UNKNOWN) continue; printk(KERN_INFO "%s at 0x%lx (irq = %s) is a %s\n", info->name, info->port, __irq_itoa(info->irq), uart_config[info->type].name); startup(info); if (info->port_type == SU_PORT_KBD) keyboard_zsinit(su_put_char_kbd); else sun_mouse_zsinit(); } return 0; } static int su_node_ok(int node, char *name, int namelen) { if (strncmp(name, "su", namelen) == 0 || strncmp(name, "su_pnp", namelen) == 0) return 1; if (strncmp(name, "serial", namelen) == 0) { char compat[32]; int clen; /* Is it _really_ a 'su' device? */ clen = prom_getproperty(node, "compatible", compat, sizeof(compat)); if (clen > 0) { if (strncmp(compat, "sab82532", 8) == 0) { /* Nope, Siemens serial, not for us. */ return 0; } } return 1; } return 0; } /* * We got several platforms which present 'su' in different parts * of device tree. 'su' may be found under obio, ebus, isa and pci. * We walk over the tree and find them wherever PROM hides them. */ void __init su_probe_any(struct su_probe_scan *t, int sunode) { struct su_struct *info; int len; if (t->devices >= NR_PORTS) return; for (; sunode != 0; sunode = prom_getsibling(sunode)) { len = prom_getproperty(sunode, "name", t->prop, SU_PROPSIZE); if (len <= 1) continue; /* Broken PROM node */ if (su_node_ok(sunode, t->prop, len)) { info = &su_table[t->devices]; if (t->kbnode != 0 && sunode == t->kbnode) { t->kbx = t->devices; info->port_type = SU_PORT_KBD; } else if (t->msnode != 0 && sunode == t->msnode) { t->msx = t->devices; info->port_type = SU_PORT_MS; } else { #ifdef __sparc_v9__ /* * Do not attempt to use the truncated * keyboard/mouse ports as serial ports * on Ultras with PC keyboard attached. */ if (prom_getbool(sunode, "mouse")) continue; if (prom_getbool(sunode, "keyboard")) continue; #endif info->port_type = SU_PORT_PORT; } info->is_console = 0; info->port_node = sunode; ++t->devices; } else { su_probe_any(t, prom_getchild(sunode)); } } } int __init su_probe(void) { int node; int len; struct su_probe_scan scan; /* * First, we scan the tree. */ scan.devices = 0; scan.msx = -1; scan.kbx = -1; scan.kbnode = 0; scan.msnode = 0; /* * Get the nodes for keyboard and mouse from 'aliases'... */ node = prom_getchild(prom_root_node); node = prom_searchsiblings(node, "aliases"); if (node != 0) { len = prom_getproperty(node, "keyboard", scan.prop,SU_PROPSIZE); if (len > 0) { scan.prop[len] = 0; scan.kbnode = prom_finddevice(scan.prop); } len = prom_getproperty(node, "mouse", scan.prop, SU_PROPSIZE); if (len > 0) { scan.prop[len] = 0; scan.msnode = prom_finddevice(scan.prop); } } su_probe_any(&scan, prom_getchild(prom_root_node)); /* * Second, we process the special case of keyboard and mouse. * * Currently if we got keyboard and mouse hooked to "su" ports * we do not use any possible remaining "su" as a serial port. * Thus, we ignore values of .msx and .kbx, then compact ports. * Those who want to address this issue need to merge * su_serial_init() and su_ms_kbd_init(). */ if (scan.msx != -1 && scan.kbx != -1) { su_table[0].port_type = SU_PORT_MS; su_table[0].is_console = 0; su_table[0].port_node = scan.msnode; su_table[1].port_type = SU_PORT_KBD; su_table[1].is_console = 0; su_table[1].port_node = scan.kbnode; sunserial_setinitfunc(su_kbd_ms_init); rs_ops.rs_change_mouse_baud = su_change_mouse_baud; sunkbd_setinitfunc(sun_kbd_init); kbd_ops.compute_shiftstate = sun_compute_shiftstate; kbd_ops.setledstate = sun_setledstate; kbd_ops.getledstate = sun_getledstate; kbd_ops.setkeycode = sun_setkeycode; kbd_ops.getkeycode = sun_getkeycode; #ifdef CONFIG_PCI sunkbd_install_keymaps(sun_key_maps, sun_keymap_count, sun_func_buf, sun_func_table, sun_funcbufsize, sun_funcbufleft, sun_accent_table, sun_accent_table_size); #endif return 0; } if (scan.msx != -1 || scan.kbx != -1) { printk("su_probe: cannot match keyboard and mouse, confused\n"); return -ENODEV; } if (scan.devices == 0) return -ENODEV; #ifdef CONFIG_SERIAL_CONSOLE /* * Console must be initiated after the generic initialization. * sunserial_setinitfunc inverts order, so call this before next one. */ sunserial_setinitfunc(su_serial_console_init); #endif sunserial_setinitfunc(su_serial_init); return 0; } /* * ------------------------------------------------------------ * Serial console driver * ------------------------------------------------------------ */ #ifdef CONFIG_SERIAL_CONSOLE #define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE) /* * Wait for transmitter & holding register to empty */ static __inline__ void wait_for_xmitr(struct su_struct *info) { int lsr; unsigned int tmout = 1000000; do { lsr = su_inb(info, UART_LSR); if (--tmout == 0) break; } while ((lsr & BOTH_EMPTY) != BOTH_EMPTY); } /* * Print a string to the serial port trying not to disturb * any possible real use of the port... */ static void serial_console_write(struct console *co, const char *s, unsigned count) { struct su_struct *info; int ier; unsigned i; info = su_table + co->index; /* * First save the IER then disable the interrupts */ ier = su_inb(info, UART_IER); su_outb(info, UART_IER, 0x00); /* * Now, do each character */ for (i = 0; i < count; i++, s++) { wait_for_xmitr(info); /* * Send the character out. * If a LF, also do CR... */ su_outb(info, UART_TX, *s); if (*s == 10) { wait_for_xmitr(info); su_outb(info, UART_TX, 13); } } /* * Finally, Wait for transmitter & holding register to empty * and restore the IER */ wait_for_xmitr(info); su_outb(info, UART_IER, ier); } static kdev_t serial_console_device(struct console *c) { return MKDEV(TTY_MAJOR, 64 + c->index); } /* * Setup initial baud/bits/parity. We do two things here: * - construct a cflag setting for the first su_open() * - initialize the serial port * Return non-zero if we didn't find a serial port. */ static int __init serial_console_setup(struct console *co, char *options) { struct su_struct *info; unsigned cval; int baud = 9600; int bits = 8; int parity = 'n'; int cflag = CREAD | HUPCL | CLOCAL; int quot = 0; char *s; if (options) { baud = simple_strtoul(options, NULL, 10); s = options; while (*s >= '0' && *s <= '9') s++; if (*s) parity = *s++; if (*s) bits = *s - '0'; } /* * Now construct a cflag setting. */ switch (baud) { case 1200: cflag |= B1200; break; case 2400: cflag |= B2400; break; case 4800: cflag |= B4800; break; case 19200: cflag |= B19200; break; case 38400: cflag |= B38400; break; case 57600: cflag |= B57600; break; case 115200: cflag |= B115200; break; case 9600: default: cflag |= B9600; baud = 9600; break; } switch (bits) { case 7: cflag |= CS7; break; default: case 8: cflag |= CS8; break; } switch (parity) { case 'o': case 'O': cflag |= PARODD; break; case 'e': case 'E': cflag |= PARENB; break; } co->cflag = cflag; /* * Divisor, bytesize and parity */ info = su_table + co->index; quot = BAUD_BASE / baud; cval = cflag & (CSIZE | CSTOPB); #if defined(__powerpc__) || defined(__alpha__) cval >>= 8; #else /* !__powerpc__ && !__alpha__ */ cval >>= 4; #endif /* !__powerpc__ && !__alpha__ */ if (cflag & PARENB) cval |= UART_LCR_PARITY; if (!(cflag & PARODD)) cval |= UART_LCR_EPAR; /* * Disable UART interrupts, set DTR and RTS high * and set speed. */ su_outb(info, UART_IER, 0); su_outb(info, UART_MCR, UART_MCR_DTR | UART_MCR_RTS); su_outb(info, UART_LCR, cval | UART_LCR_DLAB); /* set DLAB */ su_outb(info, UART_DLL, quot & 0xff); /* LS of divisor */ su_outb(info, UART_DLM, quot >> 8); /* MS of divisor */ su_outb(info, UART_LCR, cval); /* reset DLAB */ info->quot = quot; /* * If we read 0xff from the LSR, there is no UART here. */ if (su_inb(info, UART_LSR) == 0xff) return -1; info->is_console = 1; return 0; } static struct console sercons = { name: "ttyS", write: serial_console_write, device: serial_console_device, setup: serial_console_setup, flags: CON_PRINTBUFFER, index: -1, }; int su_console_registered = 0; /* * Register console. */ int __init su_serial_console_init(void) { extern int con_is_present(void); int index; if (con_is_present()) return 0; if (serial_console == 0) return 0; index = serial_console - 1; if (su_table[index].port == 0 || su_table[index].port_node == 0) return 0; sercons.index = index; register_console(&sercons); su_console_registered = 1; return 0; } #endif /* CONFIG_SERIAL_CONSOLE */