/* * sonic.c * * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de) * * This driver is based on work from Andreas Busse, but most of * the code is rewritten. * * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de) * * Core code included by system sonic drivers */ /* * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook, * National Semiconductors data sheet for the DP83932B Sonic Ethernet * controller, and the files "8390.c" and "skeleton.c" in this directory. */ /* * Open/initialize the SONIC controller. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int sonic_open(struct net_device *dev) { if (sonic_debug > 2) printk("sonic_open: initializing sonic driver.\n"); /* * We don't need to deal with auto-irq stuff since we * hardwire the sonic interrupt. */ /* * XXX Horrible work around: We install sonic_interrupt as fast interrupt. * This means that during execution of the handler interrupt are disabled * covering another bug otherwise corrupting data. This doesn't mean * this glue works ok under all situations. */ // if (sonic_request_irq(dev->irq, &sonic_interrupt, 0, "sonic", dev)) { if (sonic_request_irq(dev->irq, &sonic_interrupt, SA_INTERRUPT, "sonic", dev)) { printk("\n%s: unable to get IRQ %d .\n", dev->name, dev->irq); return -EAGAIN; } /* * Initialize the SONIC */ sonic_init(dev); netif_start_queue(dev); if (sonic_debug > 2) printk("sonic_open: Initialization done.\n"); return 0; } /* * Close the SONIC device */ static int sonic_close(struct net_device *dev) { unsigned int base_addr = dev->base_addr; if (sonic_debug > 2) printk("sonic_close\n"); netif_stop_queue(dev); /* * stop the SONIC, disable interrupts */ SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); sonic_free_irq(dev->irq, dev); /* release the IRQ */ return 0; } static void sonic_tx_timeout(struct net_device *dev) { struct sonic_local *lp = (struct sonic_local *) dev->priv; printk("%s: transmit timed out.\n", dev->name); /* Try to restart the adaptor. */ sonic_init(dev); lp->stats.tx_errors++; dev->trans_start = jiffies; netif_wake_queue(dev); } /* * transmit packet */ static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev) { struct sonic_local *lp = (struct sonic_local *) dev->priv; unsigned int base_addr = dev->base_addr; unsigned int laddr; int entry, length; netif_stop_queue(dev); if (sonic_debug > 2) printk("sonic_send_packet: skb=%p, dev=%p\n", skb, dev); /* * Map the packet data into the logical DMA address space */ if ((laddr = vdma_alloc(PHYSADDR(skb->data), skb->len)) == ~0UL) { printk("%s: no VDMA entry for transmit available.\n", dev->name); dev_kfree_skb(skb); netif_start_queue(dev); return 1; } entry = lp->cur_tx & SONIC_TDS_MASK; lp->tx_laddr[entry] = laddr; lp->tx_skb[entry] = skb; length = (skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len; flush_cache_all(); /* * Setup the transmit descriptor and issue the transmit command. */ lp->tda[entry].tx_status = 0; /* clear status */ lp->tda[entry].tx_frag_count = 1; /* single fragment */ lp->tda[entry].tx_pktsize = length; /* length of packet */ lp->tda[entry].tx_frag_ptr_l = laddr & 0xffff; lp->tda[entry].tx_frag_ptr_h = laddr >> 16; lp->tda[entry].tx_frag_size = length; lp->cur_tx++; lp->stats.tx_bytes += length; if (sonic_debug > 2) printk("sonic_send_packet: issueing Tx command\n"); SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP); dev->trans_start = jiffies; if (lp->cur_tx < lp->dirty_tx + SONIC_NUM_TDS) netif_start_queue(dev); else lp->tx_full = 1; return 0; } /* * The typical workload of the driver: * Handle the network interface interrupts. */ static void sonic_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) dev_id; unsigned int base_addr = dev->base_addr; struct sonic_local *lp; int status; if (dev == NULL) { printk("sonic_interrupt: irq %d for unknown device.\n", irq); return; } lp = (struct sonic_local *) dev->priv; status = SONIC_READ(SONIC_ISR); SONIC_WRITE(SONIC_ISR, 0x7fff); /* clear all bits */ if (sonic_debug > 2) printk("sonic_interrupt: ISR=%x\n", status); if (status & SONIC_INT_PKTRX) { sonic_rx(dev); /* got packet(s) */ } if (status & SONIC_INT_TXDN) { int dirty_tx = lp->dirty_tx; while (dirty_tx < lp->cur_tx) { int entry = dirty_tx & SONIC_TDS_MASK; int status = lp->tda[entry].tx_status; if (sonic_debug > 3) printk ("sonic_interrupt: status %d, cur_tx %d, dirty_tx %d\n", status, lp->cur_tx, lp->dirty_tx); if (status == 0) { /* It still hasn't been Txed, kick the sonic again */ SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP); break; } /* put back EOL and free descriptor */ lp->tda[entry].tx_frag_count = 0; lp->tda[entry].tx_status = 0; if (status & 0x0001) lp->stats.tx_packets++; else { lp->stats.tx_errors++; if (status & 0x0642) lp->stats.tx_aborted_errors++; if (status & 0x0180) lp->stats.tx_carrier_errors++; if (status & 0x0020) lp->stats.tx_window_errors++; if (status & 0x0004) lp->stats.tx_fifo_errors++; } /* We must free the original skb */ if (lp->tx_skb[entry]) { dev_kfree_skb_irq(lp->tx_skb[entry]); lp->tx_skb[entry] = 0; } /* and the VDMA address */ vdma_free(lp->tx_laddr[entry]); dirty_tx++; } if (lp->tx_full && dirty_tx + SONIC_NUM_TDS > lp->cur_tx + 2) { /* The ring is no longer full, clear tbusy. */ lp->tx_full = 0; netif_wake_queue(dev); } lp->dirty_tx = dirty_tx; } /* * check error conditions */ if (status & SONIC_INT_RFO) { printk("%s: receive fifo underrun\n", dev->name); lp->stats.rx_fifo_errors++; } if (status & SONIC_INT_RDE) { printk("%s: receive descriptors exhausted\n", dev->name); lp->stats.rx_dropped++; } if (status & SONIC_INT_RBE) { printk("%s: receive buffer exhausted\n", dev->name); lp->stats.rx_dropped++; } if (status & SONIC_INT_RBAE) { printk("%s: receive buffer area exhausted\n", dev->name); lp->stats.rx_dropped++; } /* counter overruns; all counters are 16bit wide */ if (status & SONIC_INT_FAE) lp->stats.rx_frame_errors += 65536; if (status & SONIC_INT_CRC) lp->stats.rx_crc_errors += 65536; if (status & SONIC_INT_MP) lp->stats.rx_missed_errors += 65536; /* transmit error */ if (status & SONIC_INT_TXER) lp->stats.tx_errors++; /* * clear interrupt bits and return */ SONIC_WRITE(SONIC_ISR, status); } /* * We have a good packet(s), get it/them out of the buffers. */ static void sonic_rx(struct net_device *dev) { unsigned int base_addr = dev->base_addr; struct sonic_local *lp = (struct sonic_local *) dev->priv; sonic_rd_t *rd = &lp->rda[lp->cur_rx & SONIC_RDS_MASK]; int status; while (rd->in_use == 0) { struct sk_buff *skb; int pkt_len; unsigned char *pkt_ptr; status = rd->rx_status; if (sonic_debug > 3) printk("status %x, cur_rx %d, cur_rra %x\n", status, lp->cur_rx, lp->cur_rra); if (status & SONIC_RCR_PRX) { pkt_len = rd->rx_pktlen; pkt_ptr = (char *) sonic_chiptomem((rd->rx_pktptr_h << 16) + rd->rx_pktptr_l); if (sonic_debug > 3) printk ("pktptr %p (rba %p) h:%x l:%x, bsize h:%x l:%x\n", pkt_ptr, lp->rba, rd->rx_pktptr_h, rd->rx_pktptr_l, SONIC_READ(SONIC_RBWC1), SONIC_READ(SONIC_RBWC0)); /* Malloc up new buffer. */ skb = dev_alloc_skb(pkt_len + 2); if (skb == NULL) { printk ("%s: Memory squeeze, dropping packet.\n", dev->name); lp->stats.rx_dropped++; break; } skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align */ skb_put(skb, pkt_len); /* Make room */ eth_copy_and_sum(skb, pkt_ptr, pkt_len, 0); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); /* pass the packet to upper layers */ dev->last_rx = jiffies; lp->stats.rx_packets++; lp->stats.rx_bytes += pkt_len; } else { /* This should only happen, if we enable accepting broken packets. */ lp->stats.rx_errors++; if (status & SONIC_RCR_FAER) lp->stats.rx_frame_errors++; if (status & SONIC_RCR_CRCR) lp->stats.rx_crc_errors++; } rd->in_use = 1; rd = &lp->rda[(++lp->cur_rx) & SONIC_RDS_MASK]; /* now give back the buffer to the receive buffer area */ if (status & SONIC_RCR_LPKT) { /* * this was the last packet out of the current receice buffer * give the buffer back to the SONIC */ lp->cur_rra += sizeof(sonic_rr_t); if (lp->cur_rra > (lp->rra_laddr + (SONIC_NUM_RRS - 1) * sizeof(sonic_rr_t))) lp->cur_rra = lp->rra_laddr; SONIC_WRITE(SONIC_RWP, lp->cur_rra & 0xffff); } else printk ("%s: rx desc without RCR_LPKT. Shouldn't happen !?\n", dev->name); } /* * If any worth-while packets have been received, dev_rint() * has done a mark_bh(NET_BH) for us and will work on them * when we get to the bottom-half routine. */ } /* * Get the current statistics. * This may be called with the device open or closed. */ static struct net_device_stats *sonic_get_stats(struct net_device *dev) { struct sonic_local *lp = (struct sonic_local *) dev->priv; unsigned int base_addr = dev->base_addr; /* read the tally counter from the SONIC and reset them */ lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT); SONIC_WRITE(SONIC_CRCT, 0xffff); lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET); SONIC_WRITE(SONIC_FAET, 0xffff); lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT); SONIC_WRITE(SONIC_MPT, 0xffff); return &lp->stats; } /* * Set or clear the multicast filter for this adaptor. */ static void sonic_multicast_list(struct net_device *dev) { struct sonic_local *lp = (struct sonic_local *) dev->priv; unsigned int base_addr = dev->base_addr; unsigned int rcr; struct dev_mc_list *dmi = dev->mc_list; unsigned char *addr; int i; rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC); rcr |= SONIC_RCR_BRD; /* accept broadcast packets */ if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */ rcr |= SONIC_RCR_PRO; } else { if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) { rcr |= SONIC_RCR_AMC; } else { if (sonic_debug > 2) printk ("sonic_multicast_list: mc_count %d\n", dev->mc_count); lp->cda.cam_enable = 1; /* always enable our own address */ for (i = 1; i <= dev->mc_count; i++) { addr = dmi->dmi_addr; dmi = dmi->next; lp->cda.cam_desc[i].cam_cap0 = addr[1] << 8 | addr[0]; lp->cda.cam_desc[i].cam_cap1 = addr[3] << 8 | addr[2]; lp->cda.cam_desc[i].cam_cap2 = addr[5] << 8 | addr[4]; lp->cda.cam_enable |= (1 << i); } SONIC_WRITE(SONIC_CDC, 16); /* issue Load CAM command */ SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM); } } if (sonic_debug > 2) printk("sonic_multicast_list: setting RCR=%x\n", rcr); SONIC_WRITE(SONIC_RCR, rcr); } /* * Initialize the SONIC ethernet controller. */ static int sonic_init(struct net_device *dev) { unsigned int base_addr = dev->base_addr; unsigned int cmd; struct sonic_local *lp = (struct sonic_local *) dev->priv; unsigned int rra_start; unsigned int rra_end; int i; /* * put the Sonic into software-reset mode and * disable all interrupts */ SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); /* * clear software reset flag, disable receiver, clear and * enable interrupts, then completely initialize the SONIC */ SONIC_WRITE(SONIC_CMD, 0); SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS); /* * initialize the receive resource area */ if (sonic_debug > 2) printk("sonic_init: initialize receive resource area\n"); rra_start = lp->rra_laddr & 0xffff; rra_end = (rra_start + (SONIC_NUM_RRS * sizeof(sonic_rr_t))) & 0xffff; for (i = 0; i < SONIC_NUM_RRS; i++) { lp->rra[i].rx_bufadr_l = (lp->rba_laddr + i * SONIC_RBSIZE) & 0xffff; lp->rra[i].rx_bufadr_h = (lp->rba_laddr + i * SONIC_RBSIZE) >> 16; lp->rra[i].rx_bufsize_l = SONIC_RBSIZE >> 1; lp->rra[i].rx_bufsize_h = 0; } /* initialize all RRA registers */ SONIC_WRITE(SONIC_RSA, rra_start); SONIC_WRITE(SONIC_REA, rra_end); SONIC_WRITE(SONIC_RRP, rra_start); SONIC_WRITE(SONIC_RWP, rra_end); SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16); SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE - 2) >> 1); lp->cur_rra = lp->rra_laddr + (SONIC_NUM_RRS - 1) * sizeof(sonic_rr_t); /* load the resource pointers */ if (sonic_debug > 3) printk("sonic_init: issueing RRRA command\n"); SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA); i = 0; while (i++ < 100) { if (SONIC_READ(SONIC_CMD) & SONIC_CR_RRRA) break; } if (sonic_debug > 2) printk("sonic_init: status=%x\n", SONIC_READ(SONIC_CMD)); /* * Initialize the receive descriptors so that they * become a circular linked list, ie. let the last * descriptor point to the first again. */ if (sonic_debug > 2) printk("sonic_init: initialize receive descriptors\n"); for (i = 0; i < SONIC_NUM_RDS; i++) { lp->rda[i].rx_status = 0; lp->rda[i].rx_pktlen = 0; lp->rda[i].rx_pktptr_l = 0; lp->rda[i].rx_pktptr_h = 0; lp->rda[i].rx_seqno = 0; lp->rda[i].in_use = 1; lp->rda[i].link = lp->rda_laddr + (i + 1) * sizeof(sonic_rd_t); } /* fix last descriptor */ lp->rda[SONIC_NUM_RDS - 1].link = lp->rda_laddr; lp->cur_rx = 0; SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16); SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff); /* * initialize transmit descriptors */ if (sonic_debug > 2) printk("sonic_init: initialize transmit descriptors\n"); for (i = 0; i < SONIC_NUM_TDS; i++) { lp->tda[i].tx_status = 0; lp->tda[i].tx_config = 0; lp->tda[i].tx_pktsize = 0; lp->tda[i].tx_frag_count = 0; lp->tda[i].link = (lp->tda_laddr + (i + 1) * sizeof(sonic_td_t)) | SONIC_END_OF_LINKS; } lp->tda[SONIC_NUM_TDS - 1].link = (lp->tda_laddr & 0xffff) | SONIC_END_OF_LINKS; SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16); SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff); lp->cur_tx = lp->dirty_tx = 0; /* * put our own address to CAM desc[0] */ lp->cda.cam_desc[0].cam_cap0 = dev->dev_addr[1] << 8 | dev->dev_addr[0]; lp->cda.cam_desc[0].cam_cap1 = dev->dev_addr[3] << 8 | dev->dev_addr[2]; lp->cda.cam_desc[0].cam_cap2 = dev->dev_addr[5] << 8 | dev->dev_addr[4]; lp->cda.cam_enable = 1; for (i = 0; i < 16; i++) lp->cda.cam_desc[i].cam_entry_pointer = i; /* * initialize CAM registers */ SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); SONIC_WRITE(SONIC_CDC, 16); /* * load the CAM */ SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM); i = 0; while (i++ < 100) { if (SONIC_READ(SONIC_ISR) & SONIC_INT_LCD) break; } if (sonic_debug > 2) { printk("sonic_init: CMD=%x, ISR=%x\n", SONIC_READ(SONIC_CMD), SONIC_READ(SONIC_ISR)); } /* * enable receiver, disable loopback * and enable all interrupts */ SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN | SONIC_CR_STP); SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT); SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT); SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT); cmd = SONIC_READ(SONIC_CMD); if ((cmd & SONIC_CR_RXEN) == 0 || (cmd & SONIC_CR_STP) == 0) printk("sonic_init: failed, status=%x\n", cmd); if (sonic_debug > 2) printk("sonic_init: new status=%x\n", SONIC_READ(SONIC_CMD)); return 0; } MODULE_LICENSE("GPL");