/********************************************************************* * * Filename: via-ircc.h * Version: 1.0 * Description: Driver for the VIA VT8231/VT8233 IrDA chipsets * Author: VIA Technologies, inc * Date : 08/06/2003 Copyright (c) 1998-2003 VIA Technologies, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTIES OR REPRESENTATIONS; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * Comment: * jul/08/2002 : Rx buffer length should use Rx ring ptr. * Oct/28/2002 : Add SB id for 3147 and 3177. * jul/09/2002 : only implement two kind of dongle currently. * Oct/02/2002 : work on VT8231 and VT8233 . * Aug/06/2003 : change driver format to pci driver . ********************************************************************/ #ifndef via_IRCC_H #define via_IRCC_H #include #include #include #include #define MAX_TX_WINDOW 7 #define MAX_RX_WINDOW 7 struct st_fifo_entry { int status; int len; }; struct st_fifo { struct st_fifo_entry entries[MAX_RX_WINDOW + 2]; int pending_bytes; int head; int tail; int len; }; struct frame_cb { void *start; /* Start of frame in DMA mem */ int len; /* Lenght of frame in DMA mem */ }; struct tx_fifo { struct frame_cb queue[MAX_TX_WINDOW + 2]; /* Info about frames in queue */ int ptr; /* Currently being sent */ int len; /* Lenght of queue */ int free; /* Next free slot */ void *tail; /* Next free start in DMA mem */ }; struct eventflag // for keeping track of Interrupt Events { //--------tx part unsigned char TxFIFOUnderRun; unsigned char EOMessage; unsigned char TxFIFOReady; unsigned char EarlyEOM; //--------rx part unsigned char PHYErr; unsigned char CRCErr; unsigned char RxFIFOOverRun; unsigned char EOPacket; unsigned char RxAvail; unsigned char TooLargePacket; unsigned char SIRBad; //--------unknown unsigned char Unknown; //---------- unsigned char TimeOut; unsigned char RxDMATC; unsigned char TxDMATC; }; /* Private data for each instance */ struct via_ircc_cb { struct st_fifo st_fifo; /* Info about received frames */ struct tx_fifo tx_fifo; /* Info about frames to be transmitted */ struct net_device *netdev; /* Yes! we are some kind of netdevice */ struct net_device_stats stats; struct irlap_cb *irlap; /* The link layer we are binded to */ struct qos_info qos; /* QoS capabilities for this device */ chipio_t io; /* IrDA controller information */ iobuff_t tx_buff; /* Transmit buffer */ iobuff_t rx_buff; /* Receive buffer */ __u8 ier; /* Interrupt enable register */ struct timeval stamp; struct timeval now; spinlock_t lock; /* For serializing operations */ __u32 flags; /* Interface flags */ __u32 new_speed; int index; /* Instance index */ struct eventflag EventFlag; struct pm_dev *dev; unsigned int chip_id; /* to remember chip id */ unsigned int RetryCount; unsigned int RxDataReady; unsigned int RxLastCount; }; //---------I=Infrared, H=Host, M=Misc, T=Tx, R=Rx, ST=Status, // CF=Config, CT=Control, L=Low, H=High, C=Count #define I_CF_L_0 0x10 #define I_CF_H_0 0x11 #define I_SIR_BOF 0x12 #define I_SIR_EOF 0x13 #define I_ST_CT_0 0x15 #define I_ST_L_1 0x16 #define I_ST_H_1 0x17 #define I_CF_L_1 0x18 #define I_CF_H_1 0x19 #define I_CF_L_2 0x1a #define I_CF_H_2 0x1b #define I_CF_3 0x1e #define H_CT 0x20 #define H_ST 0x21 #define M_CT 0x22 #define TX_CT_1 0x23 #define TX_CT_2 0x24 #define TX_ST 0x25 #define RX_CT 0x26 #define RX_ST 0x27 #define RESET 0x28 #define P_ADDR 0x29 #define RX_C_L 0x2a #define RX_C_H 0x2b #define RX_P_L 0x2c #define RX_P_H 0x2d #define TX_C_L 0x2e #define TX_C_H 0x2f #define TIMER 0x32 #define I_CF_4 0x33 #define I_T_C_L 0x34 #define I_T_C_H 0x35 #define VERSION 0x3f //------------------------------- #define StartAddr 0x10 // the first register address #define EndAddr 0x3f // the last register address #define GetBit(val,bit) val = (unsigned char) ((val>>bit) & 0x1) // Returns the bit #define SetBit(val,bit) val= (unsigned char ) (val | (0x1 << bit)) // Sets bit to 1 #define ResetBit(val,bit) val= (unsigned char ) (val & ~(0x1 << bit)) // Sets bit to 0 #define PCI_CONFIG_ADDRESS 0xcf8 #define PCI_CONFIG_DATA 0xcfc #define VenderID 0x1106 #define DeviceID1 0x8231 #define DeviceID2 0x3109 #define DeviceID3 0x3074 //F01_S #define DeviceID4 0x3147 #define DeviceID5 0x3177 //F01_E #define OFF 0 #define ON 1 #define DMA_TX_MODE 0x08 #define DMA_RX_MODE 0x04 #define DMA1 0 #define DMA2 0xc0 #define MASK1 DMA1+0x0a #define MASK2 DMA2+0x14 #define Clk_bit 0x40 #define Tx_bit 0x01 #define Rd_Valid 0x08 #define RxBit 0x08 __u8 ReadPCIByte(__u8, __u8, __u8, __u8); __u32 ReadPCI(__u8, __u8, __u8, __u8); void WritePCI(__u8, __u8, __u8, __u8, __u32); void WritePCIByte(__u8, __u8, __u8, __u8, __u8); int mySearchPCI(__u8 *, __u16, __u16); void DisableDmaChannel(unsigned int channel) { switch (channel) { // 8 Bit DMA channels DMAC1 case 0: outb(4, MASK1); //mask channel 0 break; case 1: outb(5, MASK1); //Mask channel 1 break; case 2: outb(6, MASK1); //Mask channel 2 break; case 3: outb(7, MASK1); //Mask channel 3 break; case 5: outb(5, MASK2); //Mask channel 5 break; case 6: outb(6, MASK2); //Mask channel 6 break; case 7: outb(7, MASK2); //Mask channel 7 break; default: break; }; //Switch } unsigned char ReadLPCReg(int iRegNum) { unsigned char iVal; outb(0x87, 0x2e); outb(0x87, 0x2e); outb(iRegNum, 0x2e); iVal = inb(0x2f); outb(0xaa, 0x2e); return iVal; } void WriteLPCReg(int iRegNum, unsigned char iVal) { outb(0x87, 0x2e); outb(0x87, 0x2e); outb(iRegNum, 0x2e); outb(iVal, 0x2f); outb(0xAA, 0x2e); } __u8 ReadReg(unsigned int BaseAddr, int iRegNum) { return ((__u8) inb(BaseAddr + iRegNum)); } void WriteReg(unsigned int BaseAddr, int iRegNum, unsigned char iVal) { outb(iVal, BaseAddr + iRegNum); } int WriteRegBit(unsigned int BaseAddr, unsigned char RegNum, unsigned char BitPos, unsigned char value) { __u8 Rtemp, Wtemp; if (BitPos > 7) { return -1; } if ((RegNum < StartAddr) || (RegNum > EndAddr)) return -1; Rtemp = ReadReg(BaseAddr, RegNum); if (value == 0) Wtemp = ResetBit(Rtemp, BitPos); else { if (value == 1) Wtemp = SetBit(Rtemp, BitPos); else return -1; } WriteReg(BaseAddr, RegNum, Wtemp); return 0; } __u8 CheckRegBit(unsigned int BaseAddr, unsigned char RegNum, unsigned char BitPos) { __u8 temp; if (BitPos > 7) return 0xff; if ((RegNum < StartAddr) || (RegNum > EndAddr)) { // printf("what is the register %x!\n",RegNum); } temp = ReadReg(BaseAddr, RegNum); return GetBit(temp, BitPos); } __u8 ReadPCIByte(__u8 bus, __u8 device, __u8 fun, __u8 reg) { __u32 dTmp; __u8 bData, bTmp; bTmp = reg & ~0x03; dTmp = ReadPCI(bus, device, fun, bTmp); bTmp = reg & 0x03; bData = (__u8) (dTmp >> bTmp); return bData; } __u32 ReadPCI(__u8 bus, __u8 device, __u8 fun, __u8 reg) { __u32 CONFIG_ADDR, temp, data; if ((bus == 0xff) || (device == 0xff) || (fun == 0xff)) return 0xffffffff; CONFIG_ADDR = 0x80000000; temp = (__u32) reg << 2; CONFIG_ADDR = CONFIG_ADDR | temp; temp = (__u32) fun << 8; CONFIG_ADDR = CONFIG_ADDR | temp; temp = (__u32) device << 11; CONFIG_ADDR = CONFIG_ADDR | temp; temp = (__u32) bus << 16; CONFIG_ADDR = CONFIG_ADDR | temp; outl(PCI_CONFIG_ADDRESS, CONFIG_ADDR); data = inl(PCI_CONFIG_DATA); return data; } void WritePCIByte(__u8 bus, __u8 device, __u8 fun, __u8 reg, __u8 CONFIG_DATA) { __u32 dTmp, dTmp1 = 0; __u8 bTmp; bTmp = reg & ~0x03; dTmp = ReadPCI(bus, device, fun, bTmp); switch (reg & 0x03) { case 0: dTmp1 = (dTmp & ~0xff) | CONFIG_DATA; break; case 1: dTmp = (dTmp & ~0x00ff00); dTmp1 = CONFIG_DATA; dTmp1 = dTmp1 << 8; dTmp1 = dTmp1 | dTmp; break; case 2: dTmp = (dTmp & ~0xff0000); dTmp1 = CONFIG_DATA; dTmp1 = dTmp1 << 16; dTmp1 = dTmp1 | dTmp; break; case 3: dTmp = (dTmp & ~0xff000000); dTmp1 = CONFIG_DATA; dTmp1 = dTmp1 << 24; dTmp1 = dTmp1 | dTmp; break; } WritePCI(bus, device, fun, bTmp, dTmp1); } //------------------ void WritePCI(__u8 bus, __u8 device, __u8 fun, __u8 reg, __u32 CONFIG_DATA) { __u32 CONFIG_ADDR, temp; if ((bus == 0xff) || (device == 0xff) || (fun == 0xff)) return; CONFIG_ADDR = 0x80000000; temp = (__u32) reg << 2; CONFIG_ADDR = CONFIG_ADDR | temp; temp = (__u32) fun << 8; CONFIG_ADDR = CONFIG_ADDR | temp; temp = (__u32) device << 11; CONFIG_ADDR = CONFIG_ADDR | temp; temp = (__u32) bus << 16; CONFIG_ADDR = CONFIG_ADDR | temp; outl(PCI_CONFIG_ADDRESS, CONFIG_ADDR); outl(PCI_CONFIG_DATA, CONFIG_DATA); } // find device with DeviceID and VenderID // if match return three byte buffer (bus,device,function) // no found, address={99,99,99} int mySearchPCI(__u8 * SBridpos, __u16 VID, __u16 DID) { __u8 i, j, k; __u16 FindDeviceID, FindVenderID; for (k = 0; k < 8; k++) { //scan function i = 0; j = 0x11; k = 0; if (ReadPCI(i, j, k, 0) < 0xffffffff) { // not empty FindDeviceID = (__u16) (ReadPCI(i, j, k, 0) >> 16); FindVenderID = (__u16) (ReadPCI(i, j, k, 0) & 0x0000ffff); if ((VID == FindVenderID) && (DID == FindDeviceID)) { SBridpos[0] = i; // bus SBridpos[1] = j; //device SBridpos[2] = k; //func return 1; } } } return 0; } void SetMaxRxPacketSize(__u16 iobase, __u16 size) { __u16 low, high; if ((size & 0xe000) == 0) { low = size & 0x00ff; high = (size & 0x1f00) >> 8; WriteReg(iobase, I_CF_L_2, low); WriteReg(iobase, I_CF_H_2, high); } } //for both Rx and Tx void SetFIFO(__u16 iobase, __u16 value) { switch (value) { case 128: WriteRegBit(iobase, 0x11, 0, 0); WriteRegBit(iobase, 0x11, 7, 1); break; case 64: WriteRegBit(iobase, 0x11, 0, 0); WriteRegBit(iobase, 0x11, 7, 0); break; case 32: WriteRegBit(iobase, 0x11, 0, 1); WriteRegBit(iobase, 0x11, 7, 0); break; default: WriteRegBit(iobase, 0x11, 0, 0); WriteRegBit(iobase, 0x11, 7, 0); } } #define CRC16(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,7,val) //0 for 32 CRC /* #define SetVFIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,5,val) #define SetFIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,6,val) #define SetMIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,5,val) #define SetSIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,4,val) */ #define SIRFilter(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,3,val) #define Filter(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,2,val) #define InvertTX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,1,val) #define InvertRX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,0,val) //****************************I_CF_H_0 #define EnableTX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,4,val) #define EnableRX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,3,val) #define EnableDMA(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,2,val) #define SIRRecvAny(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,1,val) #define DiableTrans(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,0,val) //***************************I_SIR_BOF,I_SIR_EOF #define SetSIRBOF(BaseAddr,val) WriteReg(BaseAddr,I_SIR_BOF,val) #define SetSIREOF(BaseAddr,val) WriteReg(BaseAddr,I_SIR_EOF,val) #define GetSIRBOF(BaseAddr) ReadReg(BaseAddr,I_SIR_BOF) #define GetSIREOF(BaseAddr) ReadReg(BaseAddr,I_SIR_EOF) //*******************I_ST_CT_0 #define EnPhys(BaseAddr,val) WriteRegBit(BaseAddr,I_ST_CT_0,7,val) #define IsModeError(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,6) //RO #define IsVFIROn(BaseAddr) CheckRegBit(BaseAddr,0x14,0) //RO for VT1211 only #define IsFIROn(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,5) //RO #define IsMIROn(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,4) //RO #define IsSIROn(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,3) //RO #define IsEnableTX(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,2) //RO #define IsEnableRX(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,1) //RO #define Is16CRC(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,0) //RO //***************************I_CF_3 #define DisableAdjacentPulseWidth(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,5,val) //1 disable #define DisablePulseWidthAdjust(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,4,val) //1 disable #define UseOneRX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,1,val) //0 use two RX #define SlowIRRXLowActive(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,0,val) //0 show RX high=1 in SIR //***************************H_CT #define EnAllInt(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,7,val) #define TXStart(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,6,val) #define RXStart(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,5,val) #define ClearRXInt(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,4,val) // 1 clear //*****************H_ST #define IsRXInt(BaseAddr) CheckRegBit(BaseAddr,H_ST,4) #define GetIntIndentify(BaseAddr) ((ReadReg(BaseAddr,H_ST)&0xf1) >>1) #define IsHostBusy(BaseAddr) CheckRegBit(BaseAddr,H_ST,0) #define GetHostStatus(BaseAddr) ReadReg(BaseAddr,H_ST) //RO //**************************M_CT #define EnTXDMA(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,7,val) #define EnRXDMA(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,6,val) #define SwapDMA(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,5,val) #define EnInternalLoop(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,4,val) #define EnExternalLoop(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,3,val) //**************************TX_CT_1 #define EnTXFIFOHalfLevelInt(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_1,4,val) //half empty int (1 half) #define EnTXFIFOUnderrunEOMInt(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_1,5,val) #define EnTXFIFOReadyInt(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_1,6,val) //int when reach it threshold (setting by bit 4) //**************************TX_CT_2 #define ForceUnderrun(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,7,val) // force an underrun int #define EnTXCRC(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,6,val) //1 for FIR,MIR...0 (not SIR) #define ForceBADCRC(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,5,val) //force an bad CRC #define SendSIP(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,4,val) //send indication pulse for prevent SIR disturb #define ClearEnTX(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,3,val) // opposite to EnTX //*****************TX_ST #define GetTXStatus(BaseAddr) ReadReg(BaseAddr,TX_ST) //RO //**************************RX_CT #define EnRXSpecInt(BaseAddr,val) WriteRegBit(BaseAddr,RX_CT,0,val) #define EnRXFIFOReadyInt(BaseAddr,val) WriteRegBit(BaseAddr,RX_CT,1,val) //enable int when reach it threshold (setting by bit 7) #define EnRXFIFOHalfLevelInt(BaseAddr,val) WriteRegBit(BaseAddr,RX_CT,7,val) //enable int when (1) half full...or (0) just not full //*****************RX_ST #define GetRXStatus(BaseAddr) ReadReg(BaseAddr,RX_ST) //RO //***********************P_ADDR #define SetPacketAddr(BaseAddr,addr) WriteReg(BaseAddr,P_ADDR,addr) //***********************I_CF_4 #define EnGPIOtoRX2(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_4,7,val) #define EnTimerInt(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_4,1,val) #define ClearTimerInt(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_4,0,val) //***********************I_T_C_L #define WriteGIO(BaseAddr,val) WriteRegBit(BaseAddr,I_T_C_L,7,val) #define ReadGIO(BaseAddr) CheckRegBit(BaseAddr,I_T_C_L,7) #define ReadRX(BaseAddr) CheckRegBit(BaseAddr,I_T_C_L,3) //RO #define WriteTX(BaseAddr,val) WriteRegBit(BaseAddr,I_T_C_L,0,val) //***********************I_T_C_H #define EnRX2(BaseAddr,val) WriteRegBit(BaseAddr,I_T_C_H,7,val) #define ReadRX2(BaseAddr) CheckRegBit(BaseAddr,I_T_C_H,7) //**********************Version #define GetFIRVersion(BaseAddr) ReadReg(BaseAddr,VERSION) void SetTimer(__u16 iobase, __u8 count) { EnTimerInt(iobase, OFF); WriteReg(iobase, TIMER, count); EnTimerInt(iobase, ON); } void SetSendByte(__u16 iobase, __u32 count) { __u32 low, high; if ((count & 0xf000) == 0) { low = count & 0x00ff; high = (count & 0x0f00) >> 8; WriteReg(iobase, TX_C_L, low); WriteReg(iobase, TX_C_H, high); } } void ResetChip(__u16 iobase, __u8 type) { __u8 value; value = (type + 2) << 4; WriteReg(iobase, RESET, type); } void SetAddrMode(__u16 iobase, __u8 mode) { __u8 bTmp = 0; if (mode < 3) { bTmp = (ReadReg(iobase, RX_CT) & 0xcf) | (mode << 4); WriteReg(iobase, RX_CT, bTmp); } } int CkRxRecv(__u16 iobase, struct via_ircc_cb *self) { __u8 low, high; __u16 wTmp = 0, wTmp1 = 0, wTmp_new = 0; low = ReadReg(iobase, RX_C_L); high = ReadReg(iobase, RX_C_H); wTmp1 = high; wTmp = (wTmp1 << 8) | low; udelay(10); low = ReadReg(iobase, RX_C_L); high = ReadReg(iobase, RX_C_H); wTmp1 = high; wTmp_new = (wTmp1 << 8) | low; if (wTmp_new != wTmp) return 1; else return 0; } __u16 RxCurCount(__u16 iobase, struct via_ircc_cb * self) { __u8 low, high; __u16 wTmp = 0, wTmp1 = 0; low = ReadReg(iobase, RX_P_L); high = ReadReg(iobase, RX_P_H); wTmp1 = high; wTmp = (wTmp1 << 8) | low; return wTmp; } /* This Routine can only use in recevie_complete * for it will update last count. */ __u16 GetRecvByte(__u16 iobase, struct via_ircc_cb * self) { __u8 low, high; __u16 wTmp, wTmp1, ret; low = ReadReg(iobase, RX_P_L); high = ReadReg(iobase, RX_P_H); wTmp1 = high; wTmp = (wTmp1 << 8) | low; if (wTmp >= self->RxLastCount) ret = wTmp - self->RxLastCount; else ret = (0x8000 - self->RxLastCount) + wTmp; self->RxLastCount = wTmp; /* RX_P is more actually the RX_C low=ReadReg(iobase,RX_C_L); high=ReadReg(iobase,RX_C_H); if(!(high&0xe000)) { temp=(high<<8)+low; return temp; } else return 0; */ return ret; } __u16 GetRecvLen(__u16 iobase) { __u8 low, high; __u16 temp; low = ReadReg(iobase, RX_P_L); high = ReadReg(iobase, RX_P_H); if (!(high & 0xe000)) { temp = (high << 8) + low; return temp; } else return 0; } void Sdelay(__u16 scale) { __u8 bTmp; int i, j; for (j = 0; j < scale; j++) { for (i = 0; i < 0x20; i++) { bTmp = inb(0xeb); outb(bTmp, 0xeb); } } } void Tdelay(__u16 scale) { __u8 bTmp; int i, j; for (j = 0; j < scale; j++) { for (i = 0; i < 0x50; i++) { bTmp = inb(0xeb); outb(bTmp, 0xeb); } } } void ActClk(__u16 iobase, __u8 value) { __u8 bTmp; bTmp = ReadReg(iobase, 0x34); if (value) WriteReg(iobase, 0x34, bTmp | Clk_bit); else WriteReg(iobase, 0x34, bTmp & ~Clk_bit); } void ActTx(__u16 iobase, __u8 value) { __u8 bTmp; bTmp = ReadReg(iobase, 0x34); if (value) WriteReg(iobase, 0x34, bTmp | Tx_bit); else WriteReg(iobase, 0x34, bTmp & ~Tx_bit); } void ClkTx(__u16 iobase, __u8 Clk, __u8 Tx) { __u8 bTmp; bTmp = ReadReg(iobase, 0x34); if (Clk == 0) bTmp &= ~Clk_bit; else { if (Clk == 1) bTmp |= Clk_bit; } WriteReg(iobase, 0x34, bTmp); Sdelay(1); if (Tx == 0) bTmp &= ~Tx_bit; else { if (Tx == 1) bTmp |= Tx_bit; } WriteReg(iobase, 0x34, bTmp); } void Wr_Byte(__u16 iobase, __u8 data) { __u8 bData = data; // __u8 btmp; int i; ClkTx(iobase, 0, 1); Tdelay(2); ActClk(iobase, 1); Tdelay(1); for (i = 0; i < 8; i++) { //LDN if ((bData >> i) & 0x01) { ClkTx(iobase, 0, 1); //bit data = 1; } else { ClkTx(iobase, 0, 0); //bit data = 1; } Tdelay(2); Sdelay(1); ActClk(iobase, 1); //clk hi Tdelay(1); } } __u8 Rd_Indx(__u16 iobase, __u8 addr, __u8 index) { __u8 data = 0, bTmp, data_bit; int i; bTmp = addr | (index << 1) | 0; ClkTx(iobase, 0, 0); Tdelay(2); ActClk(iobase, 1); udelay(1); Wr_Byte(iobase, bTmp); Sdelay(1); ClkTx(iobase, 0, 0); Tdelay(2); for (i = 0; i < 10; i++) { ActClk(iobase, 1); Tdelay(1); ActClk(iobase, 0); Tdelay(1); ClkTx(iobase, 0, 1); Tdelay(1); bTmp = ReadReg(iobase, 0x34); if (!(bTmp & Rd_Valid)) break; } if (!(bTmp & Rd_Valid)) { for (i = 0; i < 8; i++) { ActClk(iobase, 1); Tdelay(1); ActClk(iobase, 0); bTmp = ReadReg(iobase, 0x34); data_bit = 1 << i; if (bTmp & RxBit) data |= data_bit; else data &= ~data_bit; Tdelay(2); } } else { for (i = 0; i < 2; i++) { ActClk(iobase, 1); Tdelay(1); ActClk(iobase, 0); Tdelay(2); } bTmp = ReadReg(iobase, 0x34); } for (i = 0; i < 1; i++) { ActClk(iobase, 1); Tdelay(1); ActClk(iobase, 0); Tdelay(2); } ClkTx(iobase, 0, 0); Tdelay(1); for (i = 0; i < 3; i++) { ActClk(iobase, 1); Tdelay(1); ActClk(iobase, 0); Tdelay(2); } return data; } void Wr_Indx(__u16 iobase, __u8 addr, __u8 index, __u8 data) { int i; __u8 bTmp; ClkTx(iobase, 0, 0); udelay(2); ActClk(iobase, 1); udelay(1); bTmp = addr | (index << 1) | 1; Wr_Byte(iobase, bTmp); Wr_Byte(iobase, data); for (i = 0; i < 2; i++) { ClkTx(iobase, 0, 0); Tdelay(2); ActClk(iobase, 1); Tdelay(1); } ActClk(iobase, 0); } void ResetDongle(__u16 iobase) { int i; ClkTx(iobase, 0, 0); Tdelay(1); for (i = 0; i < 30; i++) { ActClk(iobase, 1); Tdelay(1); ActClk(iobase, 0); Tdelay(1); } ActClk(iobase, 0); } void SetSITmode(__u16 iobase) { __u8 bTmp; bTmp = ReadLPCReg(0x28); WriteLPCReg(0x28, bTmp | 0x10); //select ITMOFF bTmp = ReadReg(iobase, 0x35); WriteReg(iobase, 0x35, bTmp | 0x40); // Driver ITMOFF WriteReg(iobase, 0x28, bTmp | 0x80); // enable All interrupt } void SI_SetMode(__u16 iobase, int mode) { //__u32 dTmp; __u8 bTmp; WriteLPCReg(0x28, 0x70); // S/W Reset SetSITmode(iobase); ResetDongle(iobase); udelay(10); Wr_Indx(iobase, 0x40, 0x0, 0x17); //RX ,APEN enable,Normal power Wr_Indx(iobase, 0x40, 0x1, mode); //Set Mode Wr_Indx(iobase, 0x40, 0x2, 0xff); //Set power to FIR VFIR > 1m bTmp = Rd_Indx(iobase, 0x40, 1); } void InitCard(__u16 iobase) { ResetChip(iobase, 5); WriteReg(iobase, I_ST_CT_0, 0x00); // open CHIP on SetSIRBOF(iobase, 0xc0); // hardware default value SetSIREOF(iobase, 0xc1); } void CommonShutDown(__u16 iobase, __u8 TxDMA) { DisableDmaChannel(TxDMA); } void CommonInit(__u16 iobase) { // EnTXCRC(iobase,0); SwapDMA(iobase, OFF); SetMaxRxPacketSize(iobase, 0x0fff); //set to max:4095 EnRXFIFOReadyInt(iobase, OFF); EnRXFIFOHalfLevelInt(iobase, OFF); EnTXFIFOHalfLevelInt(iobase, OFF); EnTXFIFOUnderrunEOMInt(iobase, ON); // EnTXFIFOReadyInt(iobase,ON); InvertTX(iobase, OFF); InvertRX(iobase, OFF); // WriteLPCReg(0xF0,0); //(if VT1211 then do this) if (IsSIROn(iobase)) { SIRFilter(iobase, ON); SIRRecvAny(iobase, ON); } else { SIRFilter(iobase, OFF); SIRRecvAny(iobase, OFF); } EnRXSpecInt(iobase, ON); WriteReg(iobase, I_ST_CT_0, 0x80); EnableDMA(iobase, ON); } void SetBaudRate(__u16 iobase, __u32 rate) { __u8 value = 11, temp; if (IsSIROn(iobase)) { switch (rate) { case (__u32) (2400L): value = 47; break; case (__u32) (9600L): value = 11; break; case (__u32) (19200L): value = 5; break; case (__u32) (38400L): value = 2; break; case (__u32) (57600L): value = 1; break; case (__u32) (115200L): value = 0; break; default: break; }; } else if (IsMIROn(iobase)) { value = 0; // will automatically be fixed in 1.152M } else if (IsFIROn(iobase)) { value = 0; // will automatically be fixed in 4M } temp = (ReadReg(iobase, I_CF_H_1) & 0x03); temp = temp | (value << 2); WriteReg(iobase, I_CF_H_1, temp); } void SetPulseWidth(__u16 iobase, __u8 width) { __u8 temp, temp1, temp2; temp = (ReadReg(iobase, I_CF_L_1) & 0x1f); temp1 = (ReadReg(iobase, I_CF_H_1) & 0xfc); temp2 = (width & 0x07) << 5; temp = temp | temp2; temp2 = (width & 0x18) >> 3; temp1 = temp1 | temp2; WriteReg(iobase, I_CF_L_1, temp); WriteReg(iobase, I_CF_H_1, temp1); } void SetSendPreambleCount(__u16 iobase, __u8 count) { __u8 temp; temp = ReadReg(iobase, I_CF_L_1) & 0xe0; temp = temp | count; WriteReg(iobase, I_CF_L_1, temp); } void SetVFIR(__u16 BaseAddr, __u8 val) { __u8 tmp; tmp = ReadReg(BaseAddr, I_CF_L_0); WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f); WriteRegBit(BaseAddr, I_CF_H_0, 5, val); } void SetFIR(__u16 BaseAddr, __u8 val) { __u8 tmp; WriteRegBit(BaseAddr, I_CF_H_0, 5, 0); tmp = ReadReg(BaseAddr, I_CF_L_0); WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f); WriteRegBit(BaseAddr, I_CF_L_0, 6, val); } void SetMIR(__u16 BaseAddr, __u8 val) { __u8 tmp; WriteRegBit(BaseAddr, I_CF_H_0, 5, 0); tmp = ReadReg(BaseAddr, I_CF_L_0); WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f); WriteRegBit(BaseAddr, I_CF_L_0, 5, val); } void SetSIR(__u16 BaseAddr, __u8 val) { __u8 tmp; WriteRegBit(BaseAddr, I_CF_H_0, 5, 0); tmp = ReadReg(BaseAddr, I_CF_L_0); WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f); WriteRegBit(BaseAddr, I_CF_L_0, 4, val); } void ClrHBusy(__u16 iobase) { EnableDMA(iobase, OFF); EnableDMA(iobase, ON); RXStart(iobase, OFF); RXStart(iobase, ON); RXStart(iobase, OFF); EnableDMA(iobase, OFF); EnableDMA(iobase, ON); } void SetFifo64(__u16 iobase) { WriteRegBit(iobase, I_CF_H_0, 0, 0); WriteRegBit(iobase, I_CF_H_0, 7, 0); } #endif /* via_IRCC_H */