/* * ibm_ocp_enet.c * * Ethernet driver for the built in ethernet on the IBM 4xx PowerPC * processors. * * (c) 2003 Benjamin Herrenschmidt * * Based on original work by * * Armin Kuster * Johnnie Peters * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * * TODO * - Check for races in the "remove" code path * - Add some Power Management to the MAC and the PHY * - Audit remaining of non-rewritten code (--BenH) * - Cleanup message display using msglevel mecanism * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ibm_ocp_enet.h" //#define MDIO_DEBUG(fmt) printk fmt #define MDIO_DEBUG(fmt) //#define LINK_DEBUG(fmt) printk fmt #define LINK_DEBUG(fmt) //#define PKT_DEBUG(fmt) printk fmt #define PKT_DEBUG(fmt) #define DRV_NAME "emac" #define DRV_VERSION "2.0" #define DRV_AUTHOR "Benjamin Herrenschmidt " #define DRV_DESC "IBM OCP EMAC Ethernet driver" MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESC); MODULE_LICENSE("GPL"); static int skb_res = SKB_RES; MODULE_PARM(skb_res, "i"); MODULE_PARM_DESC(skb_res, "Amount of data to reserve on skb buffs\n" "The 405 handles a misaligned IP header fine but\n" "this can help if you are routing to a tunnel or a\n" "device that needs aligned data. 0..2"); #define ZMII_PRIV(ocpdev) ((struct ibm_ocp_zmii*)ocp_get_drvdata(ocpdev)) static unsigned int zmii_enable[][4] = { {ZMII_SMII0, ZMII_RMII0, ZMII_MII0, ~(ZMII_MDI1 | ZMII_MDI2 | ZMII_MDI3)}, {ZMII_SMII1, ZMII_RMII1, ZMII_MII1, ~(ZMII_MDI0 | ZMII_MDI2 | ZMII_MDI3)}, {ZMII_SMII2, ZMII_RMII2, ZMII_MII2, ~(ZMII_MDI0 | ZMII_MDI1 | ZMII_MDI3)}, {ZMII_SMII3, ZMII_RMII3, ZMII_MII3, ~(ZMII_MDI0 | ZMII_MDI1 | ZMII_MDI2)} }; static unsigned int mdi_enable[] = { ZMII_MDI0, ZMII_MDI1, ZMII_MDI2, ZMII_MDI3 }; static unsigned int zmii_speed = 0x0; static unsigned int zmii_speed100[] = { ZMII_MII0_100MB, ZMII_MII1_100MB }; /* Since multiple EMACs share MDIO lines in various ways, we need * to avoid re-using the same PHY ID in cases where the arch didn't * setup precise emac_phy_map entries */ static u32 busy_phy_map = 0; static struct net_device_stats * emac_stats(struct net_device *dev) { struct ocp_enet_private *fep = dev->priv; return &fep->stats; } static int emac_init_zmii(struct ocp_device *ocpdev, int mode) { struct ibm_ocp_zmii *zmii = ZMII_PRIV(ocpdev); struct zmii_regs *zmiip; const char *mode_name[] = { "SMII", "RMII", "MII" }; if (zmii){ /* We have already initialized ZMII device, so just increment refcount and return */ zmii->users++; return 0; } zmii = kmalloc(sizeof(struct ibm_ocp_zmii), GFP_KERNEL); if (zmii == NULL) { printk(KERN_ERR "zmii%d: Out of memory allocating ZMII structure!\n", ocpdev->def->index); return -ENOMEM; } memset(zmii, 0, sizeof(*zmii)); zmiip = (struct zmii_regs *)ioremap(ocpdev->def->paddr, sizeof(*zmiip)); if (zmiip == NULL){ printk(KERN_ERR "zmii%d: Cannot ioremap bridge registers!\n", ocpdev->def->index); kfree(zmii); return -ENOMEM; } if (mode == ZMII_AUTO) { if (zmiip->fer & (ZMII_MII0 | ZMII_MII1 | ZMII_MII2 | ZMII_MII3)) mode = MII; if (zmiip->fer & (ZMII_RMII0 | ZMII_RMII1 | ZMII_RMII2 | ZMII_RMII3)) mode = RMII; if (zmiip->fer & (ZMII_SMII0 | ZMII_SMII1 | ZMII_SMII2 | ZMII_SMII3)) mode = SMII; /* Failsafe: ZMII_AUTO is invalid index into the arrays, so force SMII if all else fails. */ if (mode == ZMII_AUTO) mode = SMII; } zmii->base = zmiip; zmii->mode = mode; zmii->users++; ocp_set_drvdata(ocpdev, zmii); printk(KERN_NOTICE "zmii%d: bridge in %s mode\n", ocpdev->def->index, mode_name[mode]); return 0; } static void emac_enable_zmii_port(struct ocp_device *ocpdev, int input) { u32 mask; struct ibm_ocp_zmii *zmii = ZMII_PRIV(ocpdev); mask = in_be32(&zmii->base->fer); mask &= zmii_enable[input][MDI]; /* turn all non enabled MDI's off */ mask |= zmii_enable[input][zmii->mode] | mdi_enable[input]; out_be32(&zmii->base->fer, mask); } static void emac_zmii_port_speed(struct ocp_device *ocpdev, int input, int speed) { struct ibm_ocp_zmii *zmii = ZMII_PRIV(ocpdev); if (speed == 100) zmii_speed |= zmii_speed100[input]; else zmii_speed &= ~zmii_speed100[input]; out_be32(&zmii->base->ssr, zmii_speed); } static void emac_fini_zmii(struct ocp_device *ocpdev) { struct ibm_ocp_zmii *zmii = ZMII_PRIV(ocpdev); BUG_ON(!zmii || zmii->users == 0); if (!--zmii->users){ ocp_set_drvdata(ocpdev, NULL); iounmap((void*)zmii->base); kfree(zmii); } } int emac_phy_read(struct net_device *dev, int mii_id, int reg) { register int i; uint32_t stacr; struct ocp_enet_private *fep = dev->priv; volatile emac_t *emacp = fep->emacp; MDIO_DEBUG(("%s: phy_read, id: 0x%x, reg: 0x%x\n", dev->name, mii_id, reg)); /* Enable proper ZMII port */ if (fep->zmii_dev) emac_enable_zmii_port(fep->zmii_dev, fep->zmii_input); /* Use the EMAC that has the MDIO port */ if (fep->mdio_dev) { dev = fep->mdio_dev; fep = dev->priv; } /* Wait for data transfer complete bit */ for (i = 0; i < OCP_RESET_DELAY; ++i) { if (emacp->em0stacr & EMAC_STACR_OC) break; udelay(MDIO_DELAY); /* changed to 2 with new scheme -armin */ } if ((emacp->em0stacr & EMAC_STACR_OC) == 0) { printk(KERN_WARNING "%s: PHY read timeout #1!\n", dev->name); return -1; } /* Clear the speed bits and make a read request to the PHY */ stacr = ((EMAC_STACR_READ | (reg & 0x1f)) & ~EMAC_STACR_CLK_100MHZ); stacr |= ((mii_id & 0x1F) << 5); out_be32(&emacp->em0stacr, stacr); stacr = in_be32(&emacp->em0stacr); /* Wait for data transfer complete bit */ for (i = 0; i < OCP_RESET_DELAY; ++i) { if ((stacr = in_be32(&emacp->em0stacr)) & EMAC_STACR_OC) break; udelay(MDIO_DELAY); } if ((stacr & EMAC_STACR_OC) == 0) { printk(KERN_WARNING "%s: PHY read timeout #2!\n", dev->name); return -1; } /* Check for a read error */ if (stacr & EMAC_STACR_PHYE) { MDIO_DEBUG(("OCP MDIO PHY error !\n")); return -1; } MDIO_DEBUG((" -> 0x%x\n", stacr >> 16)); return (stacr >> 16); } void emac_phy_write(struct net_device *dev, int mii_id, int reg, int data) { register int i = 0; uint32_t stacr; struct ocp_enet_private *fep = dev->priv; volatile emac_t *emacp = fep->emacp; MDIO_DEBUG(("%s phy_write, id: 0x%x, reg: 0x%x, data: 0x%x\n", dev->name, mii_id, reg, data)); /* Enable proper ZMII port */ if (fep->zmii_dev) emac_enable_zmii_port(fep->zmii_dev, fep->zmii_input); /* Use the EMAC that has the MDIO port */ if (fep->mdio_dev) { dev = fep->mdio_dev; fep = dev->priv; } /* Wait for data transfer complete bit */ for (i = 0; i < OCP_RESET_DELAY; ++i) { if (emacp->em0stacr & EMAC_STACR_OC) break; udelay(MDIO_DELAY); /* changed to 2 with new scheme -armin */ } if ((emacp->em0stacr & EMAC_STACR_OC) == 0) { printk(KERN_WARNING "%s: PHY write timeout #2!\n", dev->name); return; } /* Clear the speed bits and make a read request to the PHY */ stacr = ((EMAC_STACR_WRITE | (reg & 0x1f)) & ~EMAC_STACR_CLK_100MHZ); stacr |= ((mii_id & 0x1f) << 5) | ((data & 0xffff) << 16); out_be32(&emacp->em0stacr, stacr); /* Wait for data transfer complete bit */ for (i = 0; i < OCP_RESET_DELAY; ++i) { if ((stacr = emacp->em0stacr) & EMAC_STACR_OC) break; udelay(MDIO_DELAY); } if ((emacp->em0stacr & EMAC_STACR_OC) == 0) printk(KERN_WARNING "%s: PHY write timeout #2!\n", dev->name); /* Check for a write error */ if ((stacr & EMAC_STACR_PHYE) != 0) { MDIO_DEBUG(("OCP MDIO PHY error !\n")); } } static void emac_wakeup_irq(int irq, void *param, struct pt_regs *regs) { struct net_device *dev = param; /* On Linux the 405 ethernet will always be active if configured * in. This interrupt should never occur. */ printk(KERN_INFO "%s: WakeUp interrupt !\n", dev->name); } static void emac_txeob_dev(void *param, u32 chanmask) { struct net_device *dev = param; struct ocp_enet_private *fep = dev->priv; unsigned long flags; spin_lock_irqsave(&fep->lock, flags); PKT_DEBUG(("emac_txeob_dev() entry, tx_cnt: %d\n", fep->tx_cnt)); while (fep->tx_cnt && !(fep->tx_desc[fep->ack_slot].ctrl & MAL_TX_CTRL_READY)) { /* Tell the system the transmit completed. */ dev_kfree_skb_irq(fep->tx_skb[fep->ack_slot]); if (fep->tx_desc[fep->ack_slot].ctrl & (EMAC_TX_ST_EC | EMAC_TX_ST_MC | EMAC_TX_ST_SC)) fep->stats.collisions++; fep->tx_skb[fep->ack_slot] = (struct sk_buff *) NULL; if (++fep->ack_slot == NUM_TX_BUFF) fep->ack_slot = 0; fep->tx_cnt--; } if (fep->tx_cnt < NUM_TX_BUFF) netif_wake_queue(dev); PKT_DEBUG(("emac_txeob_dev() exit, tx_cnt: %d\n", fep->tx_cnt)); spin_unlock_irqrestore(&fep->lock, flags); } /* Fill/Re-fill the rx chain with valid ctrl/ptrs. This function will fill from rx_slot up to the parm end. So to completely fill the chain pre-set rx_slot to 0 and pass in an end of 0. */ static void emac_rx_fill(struct net_device *dev, int end) { int i; struct ocp_enet_private *fep = dev->priv; unsigned char *ptr; i = fep->rx_slot; do { if (fep->rx_skb[i] != NULL) { /*We will trust the skb is still in a good state */ ptr = (char *) virt_to_phys(fep->rx_skb[i]->data); } else { /* We don't want the 16 bytes skb_reserve done by dev_alloc_skb, * it breaks our cache line alignement. However, we still allocate * +16 so that we end up allocating the exact same size as * dev_alloc_skb() would do. * Also, because of the skb_res, the max DMA size we give to EMAC * is slighly wrong, causing it to potentially DMA 2 more bytes * from a broken/oversized packet. These 16 bytes will take care * that we don't walk on somebody else toes with that. */ fep->rx_skb[i] = alloc_skb(DESC_RX_BUF_SIZE + 16, GFP_ATOMIC); if (fep->rx_skb[i] == NULL) { /* Keep rx_slot here, the next time clean/fill is called * we will try again before the MAL wraps back here * If the MAL tries to use this descriptor with * the EMPTY bit off it will cause the * rxde interrupt. That is where we will * try again to allocate an sk_buff. */ break; } if (skb_res) skb_reserve(fep->rx_skb[i], skb_res); /* We must NOT consistent_sync the cache line right after the * buffer, so we must crop our sync size to account for the * reserved space */ consistent_sync((void *) fep->rx_skb[i]-> data, (DESC_RX_BUF_SIZE-skb_res), PCI_DMA_FROMDEVICE); ptr = (char *) virt_to_phys(fep->rx_skb[i]->data); } fep->rx_desc[i].ctrl = MAL_RX_CTRL_EMPTY | MAL_RX_CTRL_INTR | /*could be smarter about this to avoid ints at high loads */ (i == (NUM_RX_BUFF - 1) ? MAL_RX_CTRL_WRAP : 0); fep->rx_desc[i].data_ptr = ptr; /* * 440GP uses the previously reserved bits in the * data_len to encode the upper 4-bits of the buffer * physical address (ERPN). Initialize these. */ fep->rx_desc[i].data_len = 0; } while ((i = (i + 1) % NUM_RX_BUFF) != end); fep->rx_slot = i; } static void emac_rx_clean(struct net_device *dev, int call_rx_fill) { int i; int error, frame_length; struct ocp_enet_private *fep = dev->priv; unsigned short ctrl; int slots_walked = 0; i = fep->rx_slot; PKT_DEBUG(("emac_rx_clean() entry, call_rx_fill: %d, rx_slot: %d\n", call_rx_fill, fep->rx_slot)); do { if (fep->rx_skb[i] == NULL) goto skip; /*we have already handled the packet but haved failed to alloc */ /* since rx_desc is in uncached mem we don't keep reading it directly we pull out a local copy of ctrl and do the checks on the copy. */ ctrl = fep->rx_desc[i].ctrl; if (ctrl & MAL_RX_CTRL_EMPTY) break; /*we don't have any more ready packets */ if (ctrl & EMAC_BAD_RX_PACKET) { fep->stats.rx_errors++; fep->stats.rx_dropped++; if (ctrl & EMAC_RX_ST_OE) fep->stats.rx_fifo_errors++; if (ctrl & EMAC_RX_ST_AE) fep->stats.rx_frame_errors++; if (ctrl & EMAC_RX_ST_BFCS) fep->stats.rx_crc_errors++; if (ctrl & (EMAC_RX_ST_RP | EMAC_RX_ST_PTL | EMAC_RX_ST_ORE | EMAC_RX_ST_IRE)) fep->stats.rx_length_errors++; } else { /* Send the skb up the chain. */ frame_length = fep->rx_desc[i].data_len - 4; skb_put(fep->rx_skb[i], frame_length); fep->rx_skb[i]->dev = dev; fep->rx_skb[i]->protocol = eth_type_trans(fep->rx_skb[i], dev); error = netif_rx(fep->rx_skb[i]); if ((error == NET_RX_DROP) || (error == NET_RX_BAD)) { fep->stats.rx_dropped++; } else { fep->stats.rx_packets++; fep->stats.rx_bytes += frame_length; } fep->rx_skb[i] = NULL; } skip: slots_walked = 1; } while ((i = (i + 1) % NUM_RX_BUFF) != fep->rx_slot); PKT_DEBUG(("emac_rx_clean() exit, rx_slot: %d\n", fep->rx_slot)); if (slots_walked && call_rx_fill) emac_rx_fill(dev, i); } static void emac_rxeob_dev(void *param, u32 chanmask) { struct net_device *dev = param; struct ocp_enet_private *fep = dev->priv; unsigned long flags; spin_lock_irqsave(&fep->lock, flags); emac_rx_clean(dev, 1); spin_unlock_irqrestore(&fep->lock, flags); } /* * This interrupt should never occurr, we don't program * the MAL for contiunous mode. */ static void emac_txde_dev(void *param, u32 chanmask) { struct net_device *dev = param; struct ocp_enet_private *fep = dev->priv; printk(KERN_WARNING "%s: transmit descriptor error\n", dev->name); emac_mac_dump(dev); emac_mal_dump(dev); /* Reenable the transmit channel */ mal_enable_tx_channels(fep->mal, fep->commac.tx_chan_mask); } /* * This interrupt should be very rare at best. This occurs when * the hardware has a problem with the receive descriptors. The manual * states that it occurs when the hardware cannot the receive descriptor * empty bit is not set. The recovery mechanism will be to * traverse through the descriptors, handle any that are marked to be * handled and reinitialize each along the way. At that point the driver * will be restarted. */ static void emac_rxde_dev(void *param, u32 chanmask) { struct net_device *dev = param; struct ocp_enet_private *fep = dev->priv; unsigned long flags; printk(KERN_WARNING "%s: receive descriptor error\n", fep->ndev->name); emac_mac_dump(dev); emac_mal_dump(dev); emac_desc_dump(dev); /* Disable RX channel */ spin_lock_irqsave(&fep->lock, flags); mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask); /* For now, charge the error against all emacs */ fep->stats.rx_errors++; /* so do we have any good packets still? */ emac_rx_clean(dev,0); /* When the interface is restarted it resets processing to the * first descriptor in the table. */ fep->rx_slot = 0; emac_rx_fill(dev, 0); set_mal_dcrn(fep->mal, DCRN_MALRXEOBISR, fep->commac.rx_chan_mask); set_mal_dcrn(fep->mal, DCRN_MALRXDEIR, fep->commac.rx_chan_mask); /* Reenable the receive channels */ mal_enable_rx_channels(fep->mal, fep->commac.rx_chan_mask); spin_unlock_irqrestore(&fep->lock, flags); } static void emac_mac_irq(int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *dev = dev_instance; struct ocp_enet_private *fep = dev->priv; volatile emac_t *emacp = fep->emacp; unsigned long tmp_em0isr; /* EMAC interrupt */ tmp_em0isr = in_be32(&emacp->em0isr); if (tmp_em0isr & (EMAC_ISR_TE0 | EMAC_ISR_TE1)) { /* This error is a hard transmit error - could retransmit */ fep->stats.tx_errors++; /* Reenable the transmit channel */ mal_enable_tx_channels(fep->mal, fep->commac.tx_chan_mask); } else { fep->stats.rx_errors++; } if (tmp_em0isr & EMAC_ISR_RP) fep->stats.rx_length_errors++; if (tmp_em0isr & EMAC_ISR_ALE) fep->stats.rx_frame_errors++; if (tmp_em0isr & EMAC_ISR_BFCS) fep->stats.rx_crc_errors++; if (tmp_em0isr & EMAC_ISR_PTLE) fep->stats.rx_length_errors++; if (tmp_em0isr & EMAC_ISR_ORE) fep->stats.rx_length_errors++; if (tmp_em0isr & EMAC_ISR_TE0) fep->stats.tx_aborted_errors++; emac_err_dump(dev, tmp_em0isr); out_be32(&emacp->em0isr, tmp_em0isr); } static int emac_start_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned short ctrl; unsigned long flags; struct ocp_enet_private *fep = dev->priv; volatile emac_t *emacp = fep->emacp; spin_lock_irqsave(&fep->lock, flags); PKT_DEBUG(("emac_start_xmit() entry, queue stopped: %d, fep->tx_cnt: %d\n", netif_queue_stopped(dev), fep->tx_cnt)); /* That shouldn't happen... */ if (netif_queue_stopped(dev) || (fep->tx_cnt == NUM_TX_BUFF)) { printk("%s: start_xmit called on full queue !\n", dev->name); BUG(); } if (++fep->tx_cnt == NUM_TX_BUFF) { PKT_DEBUG(("emac_start_xmit() stopping queue\n")); netif_stop_queue(dev); } /* Store the skb buffer for later ack by the transmit end of buffer * interrupt. */ fep->tx_skb[fep->tx_slot] = skb; consistent_sync((void *) skb->data, skb->len, PCI_DMA_TODEVICE); ctrl = EMAC_TX_CTRL_DFLT; if ((NUM_TX_BUFF - 1) == fep->tx_slot) ctrl |= MAL_TX_CTRL_WRAP; fep->tx_desc[fep->tx_slot].data_ptr = (char *) virt_to_phys(skb->data); fep->tx_desc[fep->tx_slot].data_len = (short) skb->len; fep->tx_desc[fep->tx_slot].ctrl = ctrl; /* Send the packet out. */ out_be32(&emacp->em0tmr0, EMAC_TMR0_XMIT); if (++fep->tx_slot == NUM_TX_BUFF) fep->tx_slot = 0; fep->stats.tx_packets++; fep->stats.tx_bytes += skb->len; PKT_DEBUG(("emac_start_xmit() exitn")); spin_unlock_irqrestore(&fep->lock, flags); return 0; } static int emac_adjust_to_link(struct ocp_enet_private *fep) { volatile emac_t *emacp = fep->emacp; unsigned long mode_reg; int full_duplex, speed; full_duplex = 0; speed = SPEED_10; /* set mode register 1 defaults */ mode_reg = EMAC_M1_DEFAULT; /* Read link mode on PHY */ if (fep->phy_mii.def->ops->read_link(&fep->phy_mii) == 0) { /* If an error occurred, we don't deal with it yet */ full_duplex = (fep->phy_mii.duplex == DUPLEX_FULL); speed = fep->phy_mii.speed; } /* set speed (default is 10Mb) */ if (speed == SPEED_100) { mode_reg |= EMAC_M1_MF_100MBPS; if (fep->zmii_dev) emac_zmii_port_speed(fep->zmii_dev, fep->zmii_input, 100); } else { mode_reg &= ~EMAC_M1_MF_100MBPS; if (fep->zmii_dev) emac_zmii_port_speed(fep->zmii_dev, fep->zmii_input, 10); } if (full_duplex) mode_reg |= EMAC_M1_FDE | EMAC_M1_EIFC | EMAC_M1_IST; else mode_reg &= ~(EMAC_M1_FDE | EMAC_M1_EIFC | EMAC_M1_ILE); LINK_DEBUG(("%s: adjust to link, speed: %d, duplex: %d, opened: %d\n", fep->ndev->name, speed, full_duplex, fep->opened)); printk(KERN_INFO "%s: Speed: %s, %s duplex.\n", fep->ndev->name, speed == SPEED_100 ? "100" : "10", full_duplex ? "Full" : "Half"); if (fep->opened) out_be32(&emacp->em0mr1, mode_reg); return 0; } static void __emac_set_multicast_list(struct net_device *dev) { struct ocp_enet_private *fep = dev->priv; volatile emac_t *emacp = fep->emacp; u32 rmr = in_be32(&emacp->em0rmr); /* First clear all special bits, they can be set later */ rmr &= ~(EMAC_RMR_PME | EMAC_RMR_PMME | EMAC_RMR_MAE); if (dev->flags & IFF_PROMISC) { rmr |= EMAC_RMR_PME; } else if (dev->flags & IFF_ALLMULTI || 32 < dev->mc_count) { /* Must be setting up to use multicast. Now check for promiscuous * multicast */ rmr |= EMAC_RMR_PMME; } else if (dev->flags & IFF_MULTICAST && 0 < dev->mc_count) { unsigned short em0gaht[4] = { 0, 0, 0, 0 }; struct dev_mc_list *dmi; /* Need to hash on the multicast address. */ for (dmi = dev->mc_list; dmi; dmi = dmi->next) { unsigned long mc_crc; unsigned int bit_number; mc_crc = ether_crc(6, (char *) dmi->dmi_addr); bit_number = 63 - (mc_crc >> 26); /* MSB: 0 LSB: 63 */ em0gaht[bit_number >> 4] |= 0x8000 >> (bit_number & 0x0f); } emacp->em0gaht1 = em0gaht[0]; emacp->em0gaht2 = em0gaht[1]; emacp->em0gaht3 = em0gaht[2]; emacp->em0gaht4 = em0gaht[3]; /* Turn on multicast addressing */ rmr |= EMAC_RMR_MAE; } out_be32(&emacp->em0rmr, rmr); } static void emac_init_rings(struct net_device *dev) { struct ocp_enet_private *ep = dev->priv; int loop; ep->tx_desc = (struct mal_descriptor *) ((char *) ep->mal->tx_virt_addr + (ep->mal_tx_chan * MAL_DT_ALIGN)); ep->rx_desc = (struct mal_descriptor *) ((char *) ep->mal->rx_virt_addr + (ep->mal_rx_chan * MAL_DT_ALIGN)); /* Fill in the transmit descriptor ring. */ for (loop = 0; loop < NUM_TX_BUFF; loop++) { if (ep->tx_skb[loop]) dev_kfree_skb_irq(ep->tx_skb[loop]); ep->tx_skb[loop] = NULL; ep->tx_desc[loop].ctrl = 0; ep->tx_desc[loop].data_len = 0; ep->tx_desc[loop].data_ptr = NULL; } ep->tx_desc[loop - 1].ctrl |= MAL_TX_CTRL_WRAP; /* Format the receive descriptor ring. */ ep->rx_slot = 0; emac_rx_fill(dev, 0); if (ep->rx_slot != 0) { printk(KERN_ERR "%s: Not enough mem for RxChain durning Open?\n", dev->name); /*We couldn't fill the ring at startup? *We could clean up and fail to open but right now we will try to *carry on. It may be a sign of a bad NUM_RX_BUFF value */ } ep->tx_cnt = 0; ep->tx_slot = 0; ep->ack_slot = 0; } static void emac_reset_configure(struct ocp_enet_private *fep) { volatile emac_t *emacp = fep->emacp; int i; mal_disable_tx_channels(fep->mal, fep->commac.tx_chan_mask); mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask); /* Reset the EMAC */ out_be32(&emacp->em0mr0, EMAC_M0_SRST); udelay(20); for (i=0; i<100; i++) { if ((in_be32(&emacp->em0mr0) & EMAC_M0_SRST) == 0) break; udelay(10); } if (i >= 100) { printk(KERN_ERR "%s: Cannot reset EMAC\n", fep->ndev->name); return; } /* Switch IRQs off for now */ out_be32(&emacp->em0iser, 0); /* Configure MAL rx channel */ mal_set_rcbs(fep->mal, fep->mal_rx_chan, DESC_BUF_SIZE_REG); /* set the high address */ out_be32(&emacp->em0iahr, (fep->ndev->dev_addr[0] << 8) | fep->ndev->dev_addr[1]); /* set the low address */ out_be32(&emacp->em0ialr, (fep->ndev->dev_addr[2] << 24) | (fep->ndev->dev_addr[3] << 16) | (fep->ndev->dev_addr[4] << 8) | fep->ndev->dev_addr[5]); /* Adjust to link */ if (netif_carrier_ok(fep->ndev)) emac_adjust_to_link(fep); /* enable broadcast/individual address and RX FIFO defaults */ out_be32(&emacp->em0rmr, EMAC_RMR_DEFAULT); /* set transmit request threshold register */ out_be32(&emacp->em0trtr, EMAC_TRTR_DEFAULT); /* Reconfigure multicast */ __emac_set_multicast_list(fep->ndev); /* Set receiver/transmitter defaults */ out_be32(&emacp->em0rwmr, EMAC_RWMR_DEFAULT); out_be32(&emacp->em0tmr0, EMAC_TMR0_DEFAULT); out_be32(&emacp->em0tmr1, EMAC_TMR1_DEFAULT); /* set frame gap */ out_be32(&emacp->em0ipgvr, CONFIG_IBM_OCP_ENET_GAP); /* Init ring buffers */ emac_init_rings(fep->ndev); } static void emac_kick(struct ocp_enet_private *fep) { volatile emac_t *emacp = fep->emacp; unsigned long emac_ier; emac_ier = EMAC_ISR_PP | EMAC_ISR_BP | EMAC_ISR_RP | EMAC_ISR_SE | EMAC_ISR_PTLE | EMAC_ISR_ALE | EMAC_ISR_BFCS | EMAC_ISR_ORE | EMAC_ISR_IRE; out_be32(&emacp->em0iser, emac_ier); /* enable all MAL transmit and receive channels */ mal_enable_tx_channels(fep->mal, fep->commac.tx_chan_mask); mal_enable_rx_channels(fep->mal, fep->commac.rx_chan_mask); /* set transmit and receive enable */ out_be32(&emacp->em0mr0, EMAC_M0_TXE | EMAC_M0_RXE); } static void emac_start_link(struct ocp_enet_private *fep, struct ethtool_cmd *ep) { u32 advertise; int autoneg; int forced_speed; int forced_duplex; /* Default advertise */ advertise = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; autoneg = fep->want_autoneg; forced_speed = fep->phy_mii.speed; forced_duplex = fep->phy_mii.duplex; /* Setup link parameters */ if (ep) { if (ep->autoneg == AUTONEG_ENABLE) { advertise = ep->advertising; autoneg = 1; } else { autoneg = 0; forced_speed = ep->speed; forced_duplex = ep->duplex; } } /* Configure PHY & start aneg */ fep->want_autoneg = autoneg; if (autoneg) { LINK_DEBUG(("%s: start link aneg, advertise: 0x%x\n", fep->ndev->name, advertise)); fep->phy_mii.def->ops->setup_aneg(&fep->phy_mii, advertise); } else { LINK_DEBUG(("%s: start link forced, speed: %d, duplex: %d\n", fep->ndev->name, forced_speed, forced_duplex)); fep->phy_mii.def->ops->setup_forced(&fep->phy_mii, forced_speed, forced_duplex); } fep->timer_ticks = 0; mod_timer(&fep->link_timer, jiffies + HZ); } static void emac_link_timer(unsigned long data) { struct ocp_enet_private *fep = (struct ocp_enet_private *)data; int link; if (fep->going_away) return; spin_lock_irq(&fep->lock); link = fep->phy_mii.def->ops->poll_link(&fep->phy_mii); LINK_DEBUG(("%s: poll_link: %d\n", fep->ndev->name, link)); if (link == netif_carrier_ok(fep->ndev)) { if (!link && fep->want_autoneg && (++fep->timer_ticks) > 10) emac_start_link(fep, NULL); goto out; } printk(KERN_INFO "%s: Link is %s\n", fep->ndev->name, link ? "Up" : "Down"); if (link) { netif_carrier_on(fep->ndev); /* Chip needs a full reset on config change. That sucks, so I * should ultimately move that to some tasklet to limit * latency peaks caused by this code */ emac_reset_configure(fep); if (fep->opened) emac_kick(fep); } else { fep->timer_ticks = 0; netif_carrier_off(fep->ndev); } out: mod_timer(&fep->link_timer, jiffies + HZ); spin_unlock_irq(&fep->lock); } static void emac_set_multicast_list(struct net_device *dev) { struct ocp_enet_private *fep = dev->priv; spin_lock_irq(&fep->lock); __emac_set_multicast_list(dev); spin_unlock_irq(&fep->lock); } static int emac_ethtool(struct net_device *dev, void* ep_user) { struct ocp_enet_private *fep = dev->priv; struct ethtool_cmd ecmd; unsigned long features = fep->phy_mii.def->features; if (copy_from_user(&ecmd, ep_user, sizeof(ecmd))) return -EFAULT; switch(ecmd.cmd) { case ETHTOOL_GDRVINFO: { struct ethtool_drvinfo info; memset(&info, 0, sizeof(info)); info.cmd = ETHTOOL_GDRVINFO; strncpy(info.driver, DRV_NAME, ETHTOOL_BUSINFO_LEN); strncpy(info.version, DRV_VERSION, ETHTOOL_BUSINFO_LEN); info.fw_version[0] = '\0'; sprintf(info.bus_info, "OCP EMAC %d", fep->ocpdev->def->index); info.regdump_len = 0; if (copy_to_user(ep_user, &info, sizeof(info))) return -EFAULT; return 0; } case ETHTOOL_GSET: ecmd.supported = features; ecmd.port = PORT_MII; ecmd.transceiver = XCVR_EXTERNAL; ecmd.phy_address = fep->mii_phy_addr; spin_lock_irq(&fep->lock); ecmd.autoneg = fep->want_autoneg; ecmd.speed = fep->phy_mii.speed; ecmd.duplex = fep->phy_mii.duplex; spin_unlock_irq(&fep->lock); if (copy_to_user(ep_user, &ecmd, sizeof(ecmd))) return -EFAULT; return 0; case ETHTOOL_SSET: if (!capable(CAP_NET_ADMIN)) return -EPERM; if (ecmd.autoneg != AUTONEG_ENABLE && ecmd.autoneg != AUTONEG_DISABLE) return -EINVAL; if (ecmd.autoneg == AUTONEG_ENABLE && ecmd.advertising == 0) return -EINVAL; if (ecmd.duplex != DUPLEX_HALF && ecmd.duplex != DUPLEX_FULL) return -EINVAL; if (ecmd.autoneg == AUTONEG_DISABLE) switch(ecmd.speed) { case SPEED_10: if (ecmd.duplex == DUPLEX_HALF && (features & SUPPORTED_10baseT_Half) == 0) return -EINVAL; if (ecmd.duplex == DUPLEX_FULL && (features & SUPPORTED_10baseT_Full) == 0) return -EINVAL; break; case SPEED_100: if (ecmd.duplex == DUPLEX_HALF && (features & SUPPORTED_100baseT_Half) == 0) return -EINVAL; if (ecmd.duplex == DUPLEX_FULL && (features & SUPPORTED_100baseT_Full) == 0) return -EINVAL; break; default: return -EINVAL; } else if ((features & SUPPORTED_Autoneg) == 0) return -EINVAL; spin_lock_irq(&fep->lock); emac_start_link(fep, &ecmd); spin_unlock_irq(&fep->lock); return 0; case ETHTOOL_NWAY_RST: if (!fep->want_autoneg) return -EINVAL; spin_lock_irq(&fep->lock); emac_start_link(fep, NULL); spin_unlock_irq(&fep->lock); return 0; case ETHTOOL_GLINK: { struct ethtool_value edata; memset(&edata, 0, sizeof(edata)); edata.cmd = ETHTOOL_GLINK; edata.data = netif_carrier_ok(dev); if (copy_to_user(ep_user, &edata, sizeof(edata))) return -EFAULT; return 0; } } return -EOPNOTSUPP; } static int emac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct ocp_enet_private *fep = dev->priv; uint *data = (uint *) & rq->ifr_data; switch (cmd) { case SIOCETHTOOL: return emac_ethtool(dev, rq->ifr_data); case SIOCDEVPRIVATE: case SIOCGMIIPHY: data[0] = fep->mii_phy_addr; /*FALLTHRU*/ case SIOCDEVPRIVATE + 1: case SIOCGMIIREG: data[3] = emac_phy_read(dev, fep->mii_phy_addr, data[1]); return 0; case SIOCDEVPRIVATE + 2: case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) return -EPERM; emac_phy_write(dev, fep->mii_phy_addr, data[1], data[2]); return 0; default: return -EOPNOTSUPP; } } static int emac_open(struct net_device *dev) { struct ocp_enet_private *fep = dev->priv; int rc; spin_lock_irq(&fep->lock); fep->opened = 1; /* Reset & configure the chip */ emac_reset_configure(fep); spin_unlock_irq(&fep->lock); /* Request our interrupt lines */ rc = request_irq(dev->irq, emac_mac_irq, 0, "OCP EMAC MAC", dev); if (rc != 0) goto bail; rc = request_irq(fep->wol_irq, emac_wakeup_irq, 0, "OCP EMAC Wakeup", dev); if (rc != 0) { free_irq(dev->irq, dev); goto bail; } /* Kick the chip rx & tx channels into life */ spin_lock_irq(&fep->lock); emac_kick(fep); spin_unlock_irq(&fep->lock); netif_start_queue(dev); bail: return rc; } static int emac_close(struct net_device *dev) { struct ocp_enet_private *fep = dev->priv; volatile emac_t *emacp = fep->emacp; /* XXX Stop IRQ emitting here */ spin_lock_irq(&fep->lock); fep->opened = 0; mal_disable_tx_channels(fep->mal, fep->commac.tx_chan_mask); mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask); netif_stop_queue(dev); out_be32(&emacp->em0mr0, EMAC_M0_SRST); udelay(10); if (emacp->em0mr0 & EMAC_M0_SRST) { /*not sure what to do here hopefully it clears before another open */ printk(KERN_ERR "%s: Phy SoftReset didn't clear, no link?\n", dev->name); } /* Free the irq's */ free_irq(dev->irq, dev); free_irq(fep->wol_irq, dev); spin_unlock_irq(&fep->lock); return 0; } static void emac_remove(struct ocp_device *ocpdev) { struct net_device *dev = ocp_get_drvdata(ocpdev); struct ocp_enet_private *ep = dev->priv; /* FIXME: locking, races, ... */ ep->going_away = 1; ocp_set_drvdata(ocpdev, NULL); if (ep->zmii_dev) emac_fini_zmii(ep->zmii_dev); unregister_netdev(dev); del_timer_sync(&ep->link_timer); mal_unregister_commac(ep->mal, &ep->commac); iounmap((void *)ep->emacp); kfree(dev); } struct mal_commac_ops emac_commac_ops = { .txeob = &emac_txeob_dev, .txde = &emac_txde_dev, .rxeob = &emac_rxeob_dev, .rxde = &emac_rxde_dev, }; static int emac_probe(struct ocp_device *ocpdev) { int rc = 0, i; bd_t *bd; struct net_device *ndev; struct ocp_enet_private *ep; struct ocp_device *maldev; struct ibm_ocp_mal *mal; struct ocp_func_emac_data *emacdata; struct ocp_device *mdiodev; struct net_device *mdio_ndev = NULL; int commac_reg = 0; u32 phy_map; emacdata = (struct ocp_func_emac_data *)ocpdev->def->additions; if (emacdata == NULL) { printk(KERN_ERR "emac%d: Missing additional datas !\n", ocpdev->def->index); return -ENODEV; } /* Wait for MAL to show up */ maldev = ocp_find_device(OCP_ANY_ID, OCP_FUNC_MAL, emacdata->mal_idx); if (maldev == NULL) return -EAGAIN; /* Check if MAL driver attached yet */ mal = (struct ibm_ocp_mal *)ocp_get_drvdata(maldev); if (mal == NULL) return -EAGAIN; /* If we depend on another EMAC for MDIO, wait for it to show up */ if (emacdata->mdio_idx >= 0 && emacdata->mdio_idx != ocpdev->def->index) { mdiodev = ocp_find_device(OCP_ANY_ID, OCP_FUNC_EMAC, emacdata->mdio_idx); if (mdiodev == NULL) return -EAGAIN; mdio_ndev = (struct net_device *)ocp_get_drvdata(mdiodev); if (mdio_ndev == NULL) return -EAGAIN; } /* Allocate our net_device structure */ ndev = alloc_etherdev(sizeof (struct ocp_enet_private)); if (ndev == NULL) { printk(KERN_ERR "emac%d: Could not allocate ethernet device.\n", ocpdev->def->index); return -ENOMEM; } ep = ndev->priv; memset(ep, 0, sizeof(*ep)); ep->ndev = ndev; ep->ocpdev = ocpdev; ndev->irq = ocpdev->def->irq; ep->wol_irq = emacdata->wol_irq; ep->mdio_dev = mdio_ndev; ocp_set_drvdata(ocpdev, ndev); spin_lock_init(&ep->lock); /* Fill out MAL informations and register commac */ ep->mal = mal; ep->mal_tx_chan = emacdata->mal_tx1_chan; ep->mal_rx_chan = emacdata->mal_rx_chan; ep->commac.ops = &emac_commac_ops; ep->commac.dev = ndev; ep->commac.tx_chan_mask = MAL_CHAN_MASK(ep->mal_tx_chan); ep->commac.rx_chan_mask = MAL_CHAN_MASK(ep->mal_rx_chan); rc = mal_register_commac(ep->mal, &ep->commac); if (rc != 0) goto bail; commac_reg = 1; /* Map our MMIOs */ ep->emacp = (volatile emac_t *)ioremap(ocpdev->def->paddr, sizeof (emac_t)); /* Check if we need to attach to a ZMII */ if (emacdata->zmii_idx >= 0) { ep->zmii_input = emacdata->zmii_mux; ep->zmii_dev = ocp_find_device(OCP_ANY_ID, OCP_FUNC_ZMII, emacdata->zmii_idx); if (ep->zmii_dev == NULL) printk(KERN_WARNING "emac%d: ZMII %d requested but not found !\n", ocpdev->def->index, emacdata->zmii_idx); else if ((rc = emac_init_zmii(ep->zmii_dev, ZMII_AUTO)) != 0) goto bail; } /* Reset the EMAC */ out_be32(&ep->emacp->em0mr0, EMAC_M0_SRST); udelay(20); for (i=0; i<100; i++) { if ((in_be32(&ep->emacp->em0mr0) & EMAC_M0_SRST) == 0) break; udelay(10); } if (i >= 100) { printk(KERN_ERR "emac%d: Cannot reset EMAC\n", ocpdev->def->index); rc = -ENXIO; goto bail; } /* Init link monitoring timer */ init_timer(&ep->link_timer); ep->link_timer.function = emac_link_timer; ep->link_timer.data = (unsigned long) ep; ep->timer_ticks = 0; /* Fill up the mii_phy structure */ ep->phy_mii.dev = ndev; ep->phy_mii.mdio_read = emac_phy_read; ep->phy_mii.mdio_write = emac_phy_write; /* Find PHY */ phy_map = emac_phy_map[ocpdev->def->index] | busy_phy_map; for (i = 0; i <= 0x1f; i++, phy_map >>= 1) { if ((phy_map & 0x1) == 0) { int val = emac_phy_read(ndev, i, MII_BMCR); if (val != 0xffff && val != -1) break; } } if (i == 0x20) { printk(KERN_WARNING "emac%d: Can't find PHY.\n", ocpdev->def->index); rc = -ENODEV; goto bail; } busy_phy_map |= 1 << i; ep->mii_phy_addr = i; rc = mii_phy_probe(&ep->phy_mii, i); if (rc) { printk(KERN_WARNING "emac%d: Failed to probe PHY type.\n", ocpdev->def->index); rc = -ENODEV; goto bail; } /* Setup initial PHY config & startup aneg */ if (ep->phy_mii.def->ops->init) ep->phy_mii.def->ops->init(&ep->phy_mii); netif_carrier_off(ndev); if (ep->phy_mii.def->features & SUPPORTED_Autoneg) ep->want_autoneg = 1; emac_start_link(ep, NULL); /* read the MAC Address */ bd = (bd_t *) __res; for (i = 0; i < 6; i++) ndev->dev_addr[i] = bd->BD_EMAC_ADDR(ocpdev->def->index, i); /* Marco to disques array */ /* Fill in the driver function table */ ndev->open = &emac_open; ndev->hard_start_xmit = &emac_start_xmit; ndev->stop = &emac_close; ndev->get_stats = &emac_stats; ndev->set_multicast_list = &emac_set_multicast_list; ndev->do_ioctl = &emac_ioctl; SET_MODULE_OWNER(ndev); rc = register_netdev(ndev); if (rc != 0) goto bail; printk("%s: IBM emac, MAC %02x:%02x:%02x:%02x:%02x:%02x\n", ndev->name, ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]); printk(KERN_INFO "%s: Found %s PHY (0x%02x)\n", ndev->name, ep->phy_mii.def->name, ep->mii_phy_addr); bail: if (rc && commac_reg) mal_unregister_commac(ep->mal, &ep->commac); if (rc && ndev) kfree(ndev); return rc; } /* Structure for a device driver */ static struct ocp_device_id emac_ids[] = { { .vendor = OCP_ANY_ID, .function = OCP_FUNC_EMAC }, { .vendor = OCP_VENDOR_INVALID } }; static struct ocp_driver emac_driver = { .name = "emac", .id_table = emac_ids, .probe = emac_probe, .remove = emac_remove, }; static int __init emac_init(void) { int rc; printk(KERN_INFO DRV_NAME ": " DRV_DESC ", version " DRV_VERSION "\n"); printk(KERN_INFO "Maintained by " DRV_AUTHOR "\n"); if (skb_res > 2) { printk(KERN_WARNING "Invalid skb_res: %d, cropping to 2\n", skb_res); skb_res = 2; } rc = ocp_register_driver(&emac_driver); if (rc == 0) { ocp_unregister_driver(&emac_driver); return -ENODEV; } return 0; } static void __exit emac_exit(void) { ocp_unregister_driver(&emac_driver); } module_init(emac_init); module_exit(emac_exit);