/* depca.c: A DIGITAL DEPCA & EtherWORKS ethernet driver for linux. Written 1994, 1995 by David C. Davies. Copyright 1994 David C. Davies and United States Government (as represented by the Director, National Security Agency). Copyright 1995 Digital Equipment Corporation. This software may be used and distributed according to the terms of the GNU General Public License, incorporated herein by reference. This driver is written for the Digital Equipment Corporation series of DEPCA and EtherWORKS ethernet cards: DEPCA (the original) DE100 DE101 DE200 Turbo DE201 Turbo DE202 Turbo (TP BNC) DE210 DE422 (EISA) The driver has been tested on DE100, DE200 and DE202 cards in a relatively busy network. The DE422 has been tested a little. This driver will NOT work for the DE203, DE204 and DE205 series of cards, since they have a new custom ASIC in place of the AMD LANCE chip. See the 'ewrk3.c' driver in the Linux source tree for running those cards. I have benchmarked the driver with a DE100 at 595kB/s to (542kB/s from) a DECstation 5000/200. The author may be reached at davies@maniac.ultranet.com ========================================================================= The driver was originally based on the 'lance.c' driver from Donald Becker which is included with the standard driver distribution for linux. V0.4 is a complete re-write with only the kernel interface remaining from the original code. 1) Lance.c code in /linux/drivers/net/ 2) "Ethernet/IEEE 802.3 Family. 1992 World Network Data Book/Handbook", AMD, 1992 [(800) 222-9323]. 3) "Am79C90 CMOS Local Area Network Controller for Ethernet (C-LANCE)", AMD, Pub. #17881, May 1993. 4) "Am79C960 PCnet-ISA(tm), Single-Chip Ethernet Controller for ISA", AMD, Pub. #16907, May 1992 5) "DEC EtherWORKS LC Ethernet Controller Owners Manual", Digital Equipment corporation, 1990, Pub. #EK-DE100-OM.003 6) "DEC EtherWORKS Turbo Ethernet Controller Owners Manual", Digital Equipment corporation, 1990, Pub. #EK-DE200-OM.003 7) "DEPCA Hardware Reference Manual", Pub. #EK-DEPCA-PR Digital Equipment Corporation, 1989 8) "DEC EtherWORKS Turbo_(TP BNC) Ethernet Controller Owners Manual", Digital Equipment corporation, 1991, Pub. #EK-DE202-OM.001 Peter Bauer's depca.c (V0.5) was referred to when debugging V0.1 of this driver. The original DEPCA card requires that the ethernet ROM address counter be enabled to count and has an 8 bit NICSR. The ROM counter enabling is only done when a 0x08 is read as the first address octet (to minimise the chances of writing over some other hardware's I/O register). The NICSR accesses have been changed to byte accesses for all the cards supported by this driver, since there is only one useful bit in the MSB (remote boot timeout) and it is not used. Also, there is a maximum of only 48kB network RAM for this card. My thanks to Torbjorn Lindh for help debugging all this (and holding my feet to the fire until I got it right). The DE200 series boards have on-board 64kB RAM for use as a shared memory network buffer. Only the DE100 cards make use of a 2kB buffer mode which has not been implemented in this driver (only the 32kB and 64kB modes are supported [16kB/48kB for the original DEPCA]). At the most only 2 DEPCA cards can be supported on the ISA bus because there is only provision for two I/O base addresses on each card (0x300 and 0x200). The I/O address is detected by searching for a byte sequence in the Ethernet station address PROM at the expected I/O address for the Ethernet PROM. The shared memory base address is 'autoprobed' by looking for the self test PROM and detecting the card name. When a second DEPCA is detected, information is placed in the base_addr variable of the next device structure (which is created if necessary), thus enabling ethif_probe initialization for the device. More than 2 EISA cards can be supported, but care will be needed assigning the shared memory to ensure that each slot has the correct IRQ, I/O address and shared memory address assigned. ************************************************************************ NOTE: If you are using two ISA DEPCAs, it is important that you assign the base memory addresses correctly. The driver autoprobes I/O 0x300 then 0x200. The base memory address for the first device must be less than that of the second so that the auto probe will correctly assign the I/O and memory addresses on the same card. I can't think of a way to do this unambiguously at the moment, since there is nothing on the cards to tie I/O and memory information together. I am unable to test 2 cards together for now, so this code is unchecked. All reports, good or bad, are welcome. ************************************************************************ The board IRQ setting must be at an unused IRQ which is auto-probed using Donald Becker's autoprobe routines. DEPCA and DE100 board IRQs are {2,3,4,5,7}, whereas the DE200 is at {5,9,10,11,15}. Note that IRQ2 is really IRQ9 in machines with 16 IRQ lines. No 16MB memory limitation should exist with this driver as DMA is not used and the common memory area is in low memory on the network card (my current system has 20MB and I've not had problems yet). The ability to load this driver as a loadable module has been added. To utilise this ability, you have to do <8 things: 0) have a copy of the loadable modules code installed on your system. 1) copy depca.c from the /linux/drivers/net directory to your favourite temporary directory. 2) if you wish, edit the source code near line 1530 to reflect the I/O address and IRQ you're using (see also 5). 3) compile depca.c, but include -DMODULE in the command line to ensure that the correct bits are compiled (see end of source code). 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a kernel with the depca configuration turned off and reboot. 5) insmod depca.o [irq=7] [io=0x200] [mem=0xd0000] [adapter_name=DE100] [Alan Cox: Changed the code to allow command line irq/io assignments] [Dave Davies: Changed the code to allow command line mem/name assignments] 6) run the net startup bits for your eth?? interface manually (usually /etc/rc.inet[12] at boot time). 7) enjoy! Note that autoprobing is not allowed in loadable modules - the system is already up and running and you're messing with interrupts. To unload a module, turn off the associated interface 'ifconfig eth?? down' then 'rmmod depca'. To assign a base memory address for the shared memory when running as a loadable module, see 5 above. To include the adapter name (if you have no PROM but know the card name) also see 5 above. Note that this last option will not work with kernel built-in depca's. The shared memory assignment for a loadable module makes sense to avoid the 'memory autoprobe' picking the wrong shared memory (for the case of 2 depca's in a PC). ************************************************************************ Support for MCA EtherWORKS cards added 11-3-98. Verified to work with up to 2 DE212 cards in a system (although not fully stress-tested). Currently known bugs/limitations: Note: with the MCA stuff as a module, it trusts the MCA configuration, not the command line for IRQ and memory address. You can specify them if you want, but it will throw your values out. You still have to pass the IO address it was configured as though. ************************************************************************ TO DO: ------ Revision History ---------------- Version Date Description 0.1 25-jan-94 Initial writing. 0.2 27-jan-94 Added LANCE TX hardware buffer chaining. 0.3 1-feb-94 Added multiple DEPCA support. 0.31 4-feb-94 Added DE202 recognition. 0.32 19-feb-94 Tidy up. Improve multi-DEPCA support. 0.33 25-feb-94 Fix DEPCA ethernet ROM counter enable. Add jabber packet fix from murf@perftech.com and becker@super.org 0.34 7-mar-94 Fix DEPCA max network memory RAM & NICSR access. 0.35 8-mar-94 Added DE201 recognition. Tidied up. 0.351 30-apr-94 Added EISA support. Added DE422 recognition. 0.36 16-may-94 DE422 fix released. 0.37 22-jul-94 Added MODULE support 0.38 15-aug-94 Added DBR ROM switch in depca_close(). Multi DEPCA bug fix. 0.38axp 15-sep-94 Special version for Alpha AXP Linux V1.0. 0.381 12-dec-94 Added DE101 recognition, fix multicast bug. 0.382 9-feb-95 Fix recognition bug reported by . 0.383 22-feb-95 Fix for conflict with VESA SCSI reported by 0.384 17-mar-95 Fix a ring full bug reported by 0.385 3-apr-95 Fix a recognition bug reported by 0.386 21-apr-95 Fix the last fix...sorry, must be galloping senility 0.40 25-May-95 Rewrite for portability & updated. ALPHA support from 0.41 26-Jun-95 Added verify_area() calls in depca_ioctl() from suggestion by 0.42 27-Dec-95 Add 'mem' shared memory assignment for loadable modules. Add 'adapter_name' for loadable modules when no PROM. Both above from a suggestion by . Add new multicasting code. 0.421 22-Apr-96 Fix alloc_device() bug 0.422 29-Apr-96 Fix depca_hw_init() bug 0.423 7-Jun-96 Fix module load bug 0.43 16-Aug-96 Update alloc_device() to conform to de4x5.c 0.44 1-Sep-97 Fix *_probe() to test check_region() first - bug reported by 0.45 3-Nov-98 Added support for MCA EtherWORKS (DE210/DE212) cards by 0.451 5-Nov-98 Fixed mca stuff cuz I'm a dummy. 0.5 14-Nov-98 Re-spin for 2.1.x kernels. 0.51 27-Jun-99 Correct received packet length for CRC from report by 0.52 16-Oct-00 Fixes for 2.3 io memory accesses Fix show-stopper (ints left masked) in depca_interrupt by 0.53 12-Jan-01 Release resources on failure, bss tidbits by acme@conectiva.com.br 0.54 08-Nov-01 use library crc32 functions by Matt_Domsch@dell.com ========================================================================= */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MCA #include #endif #include "depca.h" static char version[] __initdata = "depca.c:v0.53 2001/1/12 davies@maniac.ultranet.com\n"; #ifdef DEPCA_DEBUG static int depca_debug = DEPCA_DEBUG; #else static int depca_debug = 1; #endif #define DEPCA_NDA 0xffe0 /* No Device Address */ #define TX_TIMEOUT (1*HZ) /* ** Ethernet PROM defines */ #define PROBE_LENGTH 32 #define ETH_PROM_SIG 0xAA5500FFUL /* ** Set the number of Tx and Rx buffers. Ensure that the memory requested ** here is <= to the amount of shared memory set up by the board switches. ** The number of descriptors MUST BE A POWER OF 2. ** ** total_memory = NUM_RX_DESC*(8+RX_BUFF_SZ) + NUM_TX_DESC*(8+TX_BUFF_SZ) */ #define NUM_RX_DESC 8 /* Number of RX descriptors */ #define NUM_TX_DESC 8 /* Number of TX descriptors */ #define RX_BUFF_SZ 1536 /* Buffer size for each Rx buffer */ #define TX_BUFF_SZ 1536 /* Buffer size for each Tx buffer */ /* ** EISA bus defines */ #define DEPCA_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */ #define MAX_EISA_SLOTS 16 #define EISA_SLOT_INC 0x1000 /* ** ISA Bus defines */ #define DEPCA_RAM_BASE_ADDRESSES {0xc0000,0xd0000,0xe0000,0x00000} #define DEPCA_IO_PORTS {0x300, 0x200, 0} #define DEPCA_TOTAL_SIZE 0x10 static short mem_chkd; /* ** Adapter ID for the MCA EtherWORKS DE210/212 adapter */ #define DE212_ID 0x6def /* ** Name <-> Adapter mapping */ #define DEPCA_SIGNATURE {"DEPCA",\ "DE100","DE101",\ "DE200","DE201","DE202",\ "DE210","DE212",\ "DE422",\ ""} static enum { DEPCA, de100, de101, de200, de201, de202, de210, de212, de422, unknown } adapter; /* ** Miscellaneous info... */ #define DEPCA_STRLEN 16 #define MAX_NUM_DEPCAS 2 /* ** Memory Alignment. Each descriptor is 4 longwords long. To force a ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and ** DESC_ALIGN. ALIGN aligns the start address of the private memory area ** and hence the RX descriptor ring's first entry. */ #define ALIGN4 ((u_long)4 - 1) /* 1 longword align */ #define ALIGN8 ((u_long)8 - 1) /* 2 longword (quadword) align */ #define ALIGN ALIGN8 /* Keep the LANCE happy... */ /* ** The DEPCA Rx and Tx ring descriptors. */ struct depca_rx_desc { volatile s32 base; s16 buf_length; /* This length is negative 2's complement! */ s16 msg_length; /* This length is "normal". */ }; struct depca_tx_desc { volatile s32 base; s16 length; /* This length is negative 2's complement! */ s16 misc; /* Errors and TDR info */ }; #define LA_MASK 0x0000ffff /* LANCE address mask for mapping network RAM to LANCE memory address space */ /* ** The Lance initialization block, described in databook, in common memory. */ struct depca_init { u16 mode; /* Mode register */ u8 phys_addr[ETH_ALEN]; /* Physical ethernet address */ u8 mcast_table[8]; /* Multicast Hash Table. */ u32 rx_ring; /* Rx ring base pointer & ring length */ u32 tx_ring; /* Tx ring base pointer & ring length */ }; #define DEPCA_PKT_STAT_SZ 16 #define DEPCA_PKT_BIN_SZ 128 /* Should be >=100 unless you increase DEPCA_PKT_STAT_SZ */ struct depca_private { char devname[DEPCA_STRLEN]; /* Device Product String */ char adapter_name[DEPCA_STRLEN]; /* /proc/ioports string */ char adapter; /* Adapter type */ char mca_slot; /* MCA slot, if MCA else -1 */ struct depca_init init_block; /* Shadow Initialization block */ /* CPU address space fields */ struct depca_rx_desc *rx_ring; /* Pointer to start of RX descriptor ring */ struct depca_tx_desc *tx_ring; /* Pointer to start of TX descriptor ring */ void *rx_buff[NUM_RX_DESC]; /* CPU virt address of sh'd memory buffs */ void *tx_buff[NUM_TX_DESC]; /* CPU virt address of sh'd memory buffs */ void *sh_mem; /* CPU mapped virt address of device RAM */ /* Device address space fields */ u_long device_ram_start; /* Start of RAM in device addr space */ /* Offsets used in both address spaces */ u_long rx_ring_offset; /* Offset from start of RAM to rx_ring */ u_long tx_ring_offset; /* Offset from start of RAM to tx_ring */ u_long buffs_offset; /* LANCE Rx and Tx buffers start address. */ /* Kernel-only (not device) fields */ int rx_new, tx_new; /* The next free ring entry */ int rx_old, tx_old; /* The ring entries to be free()ed. */ struct net_device_stats stats; spinlock_t lock; struct { /* Private stats counters */ u32 bins[DEPCA_PKT_STAT_SZ]; u32 unicast; u32 multicast; u32 broadcast; u32 excessive_collisions; u32 tx_underruns; u32 excessive_underruns; } pktStats; int txRingMask; /* TX ring mask */ int rxRingMask; /* RX ring mask */ s32 rx_rlen; /* log2(rxRingMask+1) for the descriptors */ s32 tx_rlen; /* log2(txRingMask+1) for the descriptors */ }; /* ** The transmit ring full condition is described by the tx_old and tx_new ** pointers by: ** tx_old = tx_new Empty ring ** tx_old = tx_new+1 Full ring ** tx_old+txRingMask = tx_new Full ring (wrapped condition) */ #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\ lp->tx_old+lp->txRingMask-lp->tx_new:\ lp->tx_old -lp->tx_new-1) /* ** Public Functions */ static int depca_open(struct net_device *dev); static int depca_start_xmit(struct sk_buff *skb, struct net_device *dev); static void depca_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int depca_close(struct net_device *dev); static int depca_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static void depca_tx_timeout(struct net_device *dev); static struct net_device_stats *depca_get_stats(struct net_device *dev); static void set_multicast_list(struct net_device *dev); /* ** Private functions */ static int depca_hw_init(struct net_device *dev, u_long ioaddr, int mca_slot); static void depca_init_ring(struct net_device *dev); static int depca_rx(struct net_device *dev); static int depca_tx(struct net_device *dev); static void LoadCSRs(struct net_device *dev); static int InitRestartDepca(struct net_device *dev); static void DepcaSignature(char *name, u_long paddr); static int DevicePresent(u_long ioaddr); static int get_hw_addr(struct net_device *dev); static int EISA_signature(char *name, s32 eisa_id); static void SetMulticastFilter(struct net_device *dev); static void isa_probe(struct net_device *dev, u_long iobase); static void eisa_probe(struct net_device *dev, u_long iobase); #ifdef CONFIG_MCA static void mca_probe(struct net_device *dev, u_long iobase); #endif static struct net_device *alloc_device(struct net_device *dev, u_long iobase); static int depca_dev_index(char *s); static struct net_device *insert_device(struct net_device *dev, u_long iobase, int (*init) (struct net_device *)); static int load_packet(struct net_device *dev, struct sk_buff *skb); static void depca_dbg_open(struct net_device *dev); #ifdef MODULE int init_module(void); void cleanup_module(void); static int autoprobed = 1, loading_module = 1; # else static u_char de1xx_irq[] __initdata = { 2, 3, 4, 5, 7, 9, 0 }; static u_char de2xx_irq[] __initdata = { 5, 9, 10, 11, 15, 0 }; static u_char de422_irq[] __initdata = { 5, 9, 10, 11, 0 }; static u_char *depca_irq; static int autoprobed, loading_module; #endif /* MODULE */ static char name[DEPCA_STRLEN]; static int num_depcas, num_eth; static int mem; /* For loadable module assignment use insmod mem=0x????? .... */ static char *adapter_name; /* = '\0'; If no PROM when loadable module use insmod adapter_name=DE??? ... bss initializes this to zero */ /* ** Miscellaneous defines... */ #define STOP_DEPCA \ outw(CSR0, DEPCA_ADDR);\ outw(STOP, DEPCA_DATA) int __init depca_probe(struct net_device *dev) { int tmp = num_depcas, status = -ENODEV; u_long iobase = dev->base_addr; SET_MODULE_OWNER(dev); if ((iobase == 0) && loading_module) { printk("Autoprobing is not supported when loading a module based driver.\n"); status = -EIO; } else { #ifdef CONFIG_MCA mca_probe(dev, iobase); #endif isa_probe(dev, iobase); eisa_probe(dev, iobase); if ((tmp == num_depcas) && (iobase != 0) && loading_module) { printk("%s: depca_probe() cannot find device at 0x%04lx.\n", dev->name, iobase); } /* ** Walk the device list to check that at least one device ** initialised OK */ for (; (dev->priv == NULL) && (dev->next != NULL); dev = dev->next); if (dev->priv) status = 0; if (iobase == 0) autoprobed = 1; } return status; } static int __init depca_hw_init(struct net_device *dev, u_long ioaddr, int mca_slot) { struct depca_private *lp; int i, j, offset, netRAM, mem_len, status = 0; s16 nicsr; u_long mem_start = 0, mem_base[] = DEPCA_RAM_BASE_ADDRESSES; STOP_DEPCA; nicsr = inb(DEPCA_NICSR); nicsr = ((nicsr & ~SHE & ~RBE & ~IEN) | IM); outb(nicsr, DEPCA_NICSR); if (inw(DEPCA_DATA) != STOP) { return -ENXIO; } do { strcpy(name, (adapter_name ? adapter_name : "")); mem_start = (mem ? mem & 0xf0000 : mem_base[mem_chkd++]); DepcaSignature(name, mem_start); } while (!mem && mem_base[mem_chkd] && (adapter == unknown)); if ((adapter == unknown) || !mem_start) { /* DEPCA device not found */ return -ENXIO; } dev->base_addr = ioaddr; if (mca_slot != -1) { printk("%s: %s at 0x%04lx (MCA slot %d)", dev->name, name, ioaddr, mca_slot); } else if ((ioaddr & 0x0fff) == DEPCA_EISA_IO_PORTS) { /* EISA slot address */ printk("%s: %s at 0x%04lx (EISA slot %d)", dev->name, name, ioaddr, (int) ((ioaddr >> 12) & 0x0f)); } else { /* ISA port address */ printk("%s: %s at 0x%04lx", dev->name, name, ioaddr); } printk(", h/w address "); status = get_hw_addr(dev); if (status != 0) { printk(" which has an Ethernet PROM CRC error.\n"); return -ENXIO; } for (i = 0; i < ETH_ALEN - 1; i++) { /* get the ethernet address */ printk("%2.2x:", dev->dev_addr[i]); } printk("%2.2x", dev->dev_addr[i]); /* Set up the maximum amount of network RAM(kB) */ netRAM = ((adapter != DEPCA) ? 64 : 48); if ((nicsr & _128KB) && (adapter == de422)) netRAM = 128; offset = 0x0000; /* Shared Memory Base Address */ if (nicsr & BUF) { offset = 0x8000; /* 32kbyte RAM offset */ nicsr &= ~BS; /* DEPCA RAM in top 32k */ netRAM -= 32; } mem_start += offset; /* (E)ISA start address */ if ((mem_len = (NUM_RX_DESC * (sizeof(struct depca_rx_desc) + RX_BUFF_SZ) + NUM_TX_DESC * (sizeof(struct depca_tx_desc) + TX_BUFF_SZ) + sizeof(struct depca_init))) > (netRAM << 10)) { printk(",\n requests %dkB RAM: only %dkB is available!\n", (mem_len >> 10), netRAM); return -ENXIO; } printk(",\n has %dkB RAM at 0x%.5lx", netRAM, mem_start); /* Enable the shadow RAM. */ if (adapter != DEPCA) { nicsr |= SHE; outb(nicsr, DEPCA_NICSR); } /* Define the device private memory */ dev->priv = (void *) kmalloc(sizeof(struct depca_private), GFP_KERNEL); if (dev->priv == NULL) return -ENOMEM; lp = (struct depca_private *) dev->priv; memset((char *) dev->priv, 0, sizeof(struct depca_private)); lp->adapter = adapter; lp->mca_slot = mca_slot; lp->lock = SPIN_LOCK_UNLOCKED; sprintf(lp->adapter_name, "%s (%s)", name, dev->name); status = -EBUSY; if (!request_region(ioaddr, DEPCA_TOTAL_SIZE, lp->adapter_name)) { printk(KERN_ERR "depca: I/O resource 0x%x @ 0x%lx busy\n", DEPCA_TOTAL_SIZE, ioaddr); goto out_priv; } /* Initialisation Block */ lp->sh_mem = ioremap(mem_start, mem_len); status = -EIO; if (lp->sh_mem == NULL) { printk(KERN_ERR "depca: cannot remap ISA memory, aborting\n"); goto out_region; } lp->device_ram_start = mem_start & LA_MASK; offset = 0; offset += sizeof(struct depca_init); /* Tx & Rx descriptors (aligned to a quadword boundary) */ offset = (offset + ALIGN) & ~ALIGN; lp->rx_ring = (struct depca_rx_desc *) (lp->sh_mem + offset); lp->rx_ring_offset = offset; offset += (sizeof(struct depca_rx_desc) * NUM_RX_DESC); lp->tx_ring = (struct depca_tx_desc *) (lp->sh_mem + offset); lp->tx_ring_offset = offset; offset += (sizeof(struct depca_tx_desc) * NUM_TX_DESC); lp->buffs_offset = offset; /* Finish initialising the ring information. */ lp->rxRingMask = NUM_RX_DESC - 1; lp->txRingMask = NUM_TX_DESC - 1; /* Calculate Tx/Rx RLEN size for the descriptors. */ for (i = 0, j = lp->rxRingMask; j > 0; i++) { j >>= 1; } lp->rx_rlen = (s32) (i << 29); for (i = 0, j = lp->txRingMask; j > 0; i++) { j >>= 1; } lp->tx_rlen = (s32) (i << 29); /* Load the initialisation block */ depca_init_ring(dev); /* Initialise the control and status registers */ LoadCSRs(dev); /* Enable DEPCA board interrupts for autoprobing */ nicsr = ((nicsr & ~IM) | IEN); outb(nicsr, DEPCA_NICSR); /* To auto-IRQ we enable the initialization-done and DMA err, interrupts. For now we will always get a DMA error. */ if (dev->irq < 2) { #ifndef MODULE unsigned char irqnum; autoirq_setup(0); /* Assign the correct irq list */ switch (lp->adapter) { case DEPCA: case de100: case de101: depca_irq = de1xx_irq; break; case de200: case de201: case de202: case de210: case de212: depca_irq = de2xx_irq; break; case de422: depca_irq = de422_irq; break; } /* Trigger an initialization just for the interrupt. */ outw(INEA | INIT, DEPCA_DATA); irqnum = autoirq_report(1); status = -ENXIO; if (!irqnum) { printk(" and failed to detect IRQ line.\n"); goto out_region; } else { for (dev->irq = 0, i = 0; (depca_irq[i]) && (!dev->irq); i++) if (irqnum == depca_irq[i]) { dev->irq = irqnum; printk(" and uses IRQ%d.\n", dev->irq); } status = -ENXIO; if (!dev->irq) { printk(" but incorrect IRQ line detected.\n"); goto out_region; } } #endif /* MODULE */ } else { printk(" and assigned IRQ%d.\n", dev->irq); } if (depca_debug > 1) { printk(version); } /* The DEPCA-specific entries in the device structure. */ dev->open = &depca_open; dev->hard_start_xmit = &depca_start_xmit; dev->stop = &depca_close; dev->get_stats = &depca_get_stats; dev->set_multicast_list = &set_multicast_list; dev->do_ioctl = &depca_ioctl; dev->tx_timeout = depca_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; dev->mem_start = 0; /* Fill in the generic field of the device structure. */ ether_setup(dev); return 0; out_region: release_region(ioaddr, DEPCA_TOTAL_SIZE); out_priv: kfree(dev->priv); dev->priv = NULL; return status; } static int depca_open(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; u_long ioaddr = dev->base_addr; s16 nicsr; int status = 0; STOP_DEPCA; nicsr = inb(DEPCA_NICSR); /* Make sure the shadow RAM is enabled */ if (lp->adapter != DEPCA) { nicsr |= SHE; outb(nicsr, DEPCA_NICSR); } /* Re-initialize the DEPCA... */ depca_init_ring(dev); LoadCSRs(dev); depca_dbg_open(dev); if (request_irq(dev->irq, &depca_interrupt, 0, lp->adapter_name, dev)) { printk("depca_open(): Requested IRQ%d is busy\n", dev->irq); status = -EAGAIN; } else { /* Enable DEPCA board interrupts and turn off LED */ nicsr = ((nicsr & ~IM & ~LED) | IEN); outb(nicsr, DEPCA_NICSR); outw(CSR0, DEPCA_ADDR); netif_start_queue(dev); status = InitRestartDepca(dev); if (depca_debug > 1) { printk("CSR0: 0x%4.4x\n", inw(DEPCA_DATA)); printk("nicsr: 0x%02x\n", inb(DEPCA_NICSR)); } } return status; } /* Initialize the lance Rx and Tx descriptor rings. */ static void depca_init_ring(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; u_int i; u_long offset; /* Lock out other processes whilst setting up the hardware */ netif_stop_queue(dev); lp->rx_new = lp->tx_new = 0; lp->rx_old = lp->tx_old = 0; /* Initialize the base address and length of each buffer in the ring */ for (i = 0; i <= lp->rxRingMask; i++) { offset = lp->buffs_offset + i * RX_BUFF_SZ; writel((lp->device_ram_start + offset) | R_OWN, &lp->rx_ring[i].base); writew(-RX_BUFF_SZ, &lp->rx_ring[i].buf_length); lp->rx_buff[i] = lp->sh_mem + offset; } for (i = 0; i <= lp->txRingMask; i++) { offset = lp->buffs_offset + (i + lp->rxRingMask + 1) * TX_BUFF_SZ; writel((lp->device_ram_start + offset) & 0x00ffffff, &lp->tx_ring[i].base); lp->tx_buff[i] = lp->sh_mem + offset; } /* Set up the initialization block */ lp->init_block.rx_ring = (lp->device_ram_start + lp->rx_ring_offset) | lp->rx_rlen; lp->init_block.tx_ring = (lp->device_ram_start + lp->tx_ring_offset) | lp->tx_rlen; SetMulticastFilter(dev); for (i = 0; i < ETH_ALEN; i++) { lp->init_block.phys_addr[i] = dev->dev_addr[i]; } lp->init_block.mode = 0x0000; /* Enable the Tx and Rx */ } static void depca_tx_timeout(struct net_device *dev) { u_long ioaddr = dev->base_addr; printk("%s: transmit timed out, status %04x, resetting.\n", dev->name, inw(DEPCA_DATA)); STOP_DEPCA; depca_init_ring(dev); LoadCSRs(dev); dev->trans_start = jiffies; netif_wake_queue(dev); InitRestartDepca(dev); } /* ** Writes a socket buffer to TX descriptor ring and starts transmission */ static int depca_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; u_long ioaddr = dev->base_addr; int status = 0; /* Transmitter timeout, serious problems. */ if (skb->len < 1) goto out; if(skb->len < ETH_ZLEN) { skb = skb_padto(skb, ETH_ZLEN); if(skb == NULL) goto out; } netif_stop_queue(dev); if (TX_BUFFS_AVAIL) { /* Fill in a Tx ring entry */ status = load_packet(dev, skb); if (!status) { /* Trigger an immediate send demand. */ outw(CSR0, DEPCA_ADDR); outw(INEA | TDMD, DEPCA_DATA); dev->trans_start = jiffies; dev_kfree_skb(skb); } if (TX_BUFFS_AVAIL) netif_start_queue(dev); } else status = -1; out: return status; } /* ** The DEPCA interrupt handler. */ static void depca_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = dev_id; struct depca_private *lp; s16 csr0, nicsr; u_long ioaddr; if (dev == NULL) { printk("depca_interrupt(): irq %d for unknown device.\n", irq); return; } lp = (struct depca_private *) dev->priv; ioaddr = dev->base_addr; spin_lock(&lp->lock); /* mask the DEPCA board interrupts and turn on the LED */ nicsr = inb(DEPCA_NICSR); nicsr |= (IM | LED); outb(nicsr, DEPCA_NICSR); outw(CSR0, DEPCA_ADDR); csr0 = inw(DEPCA_DATA); /* Acknowledge all of the current interrupt sources ASAP. */ outw(csr0 & INTE, DEPCA_DATA); if (csr0 & RINT) /* Rx interrupt (packet arrived) */ depca_rx(dev); if (csr0 & TINT) /* Tx interrupt (packet sent) */ depca_tx(dev); /* Any resources available? */ if ((TX_BUFFS_AVAIL >= 0) && netif_queue_stopped(dev)) { netif_wake_queue(dev); } /* Unmask the DEPCA board interrupts and turn off the LED */ nicsr = (nicsr & ~IM & ~LED); outb(nicsr, DEPCA_NICSR); spin_unlock(&lp->lock); } static int depca_rx(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; int i, entry; s32 status; for (entry = lp->rx_new; !(readl(&lp->rx_ring[entry].base) & R_OWN); entry = lp->rx_new) { status = readl(&lp->rx_ring[entry].base) >> 16; if (status & R_STP) { /* Remember start of frame */ lp->rx_old = entry; } if (status & R_ENP) { /* Valid frame status */ if (status & R_ERR) { /* There was an error. */ lp->stats.rx_errors++; /* Update the error stats. */ if (status & R_FRAM) lp->stats.rx_frame_errors++; if (status & R_OFLO) lp->stats.rx_over_errors++; if (status & R_CRC) lp->stats.rx_crc_errors++; if (status & R_BUFF) lp->stats.rx_fifo_errors++; } else { short len, pkt_len = readw(&lp->rx_ring[entry].msg_length) - 4; struct sk_buff *skb; skb = dev_alloc_skb(pkt_len + 2); if (skb != NULL) { unsigned char *buf; skb_reserve(skb, 2); /* 16 byte align the IP header */ buf = skb_put(skb, pkt_len); skb->dev = dev; if (entry < lp->rx_old) { /* Wrapped buffer */ len = (lp->rxRingMask - lp->rx_old + 1) * RX_BUFF_SZ; memcpy_fromio(buf, lp->rx_buff[lp->rx_old], len); memcpy_fromio(buf + len, lp->rx_buff[0], pkt_len - len); } else { /* Linear buffer */ memcpy_fromio(buf, lp->rx_buff[lp->rx_old], pkt_len); } /* ** Notify the upper protocol layers that there is another ** packet to handle */ skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); /* ** Update stats */ dev->last_rx = jiffies; lp->stats.rx_packets++; lp->stats.rx_bytes += pkt_len; for (i = 1; i < DEPCA_PKT_STAT_SZ - 1; i++) { if (pkt_len < (i * DEPCA_PKT_BIN_SZ)) { lp->pktStats.bins[i]++; i = DEPCA_PKT_STAT_SZ; } } if (buf[0] & 0x01) { /* Multicast/Broadcast */ if ((*(s16 *) & buf[0] == -1) && (*(s16 *) & buf[2] == -1) && (*(s16 *) & buf[4] == -1)) { lp->pktStats.broadcast++; } else { lp->pktStats.multicast++; } } else if ((*(s16 *) & buf[0] == *(s16 *) & dev->dev_addr[0]) && (*(s16 *) & buf[2] == *(s16 *) & dev->dev_addr[2]) && (*(s16 *) & buf[4] == *(s16 *) & dev->dev_addr[4])) { lp->pktStats.unicast++; } lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */ if (lp->pktStats.bins[0] == 0) { /* Reset counters */ memset((char *) &lp->pktStats, 0, sizeof(lp->pktStats)); } } else { printk("%s: Memory squeeze, deferring packet.\n", dev->name); lp->stats.rx_dropped++; /* Really, deferred. */ break; } } /* Change buffer ownership for this last frame, back to the adapter */ for (; lp->rx_old != entry; lp->rx_old = (++lp->rx_old) & lp->rxRingMask) { writel(readl(&lp->rx_ring[lp->rx_old].base) | R_OWN, &lp->rx_ring[lp->rx_old].base); } writel(readl(&lp->rx_ring[entry].base) | R_OWN, &lp->rx_ring[entry].base); } /* ** Update entry information */ lp->rx_new = (++lp->rx_new) & lp->rxRingMask; } return 0; } /* ** Buffer sent - check for buffer errors. */ static int depca_tx(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; int entry; s32 status; u_long ioaddr = dev->base_addr; for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) { status = readl(&lp->tx_ring[entry].base) >> 16; if (status < 0) { /* Packet not yet sent! */ break; } else if (status & T_ERR) { /* An error occurred. */ status = readl(&lp->tx_ring[entry].misc); lp->stats.tx_errors++; if (status & TMD3_RTRY) lp->stats.tx_aborted_errors++; if (status & TMD3_LCAR) lp->stats.tx_carrier_errors++; if (status & TMD3_LCOL) lp->stats.tx_window_errors++; if (status & TMD3_UFLO) lp->stats.tx_fifo_errors++; if (status & (TMD3_BUFF | TMD3_UFLO)) { /* Trigger an immediate send demand. */ outw(CSR0, DEPCA_ADDR); outw(INEA | TDMD, DEPCA_DATA); } } else if (status & (T_MORE | T_ONE)) { lp->stats.collisions++; } else { lp->stats.tx_packets++; } /* Update all the pointers */ lp->tx_old = (++lp->tx_old) & lp->txRingMask; } return 0; } static int depca_close(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; s16 nicsr; u_long ioaddr = dev->base_addr; netif_stop_queue(dev); outw(CSR0, DEPCA_ADDR); if (depca_debug > 1) { printk("%s: Shutting down ethercard, status was %2.2x.\n", dev->name, inw(DEPCA_DATA)); } /* ** We stop the DEPCA here -- it occasionally polls ** memory if we don't. */ outw(STOP, DEPCA_DATA); /* ** Give back the ROM in case the user wants to go to DOS */ if (lp->adapter != DEPCA) { nicsr = inb(DEPCA_NICSR); nicsr &= ~SHE; outb(nicsr, DEPCA_NICSR); } /* ** Free the associated irq */ free_irq(dev->irq, dev); return 0; } static void LoadCSRs(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; u_long ioaddr = dev->base_addr; outw(CSR1, DEPCA_ADDR); /* initialisation block address LSW */ outw((u16) lp->device_ram_start, DEPCA_DATA); outw(CSR2, DEPCA_ADDR); /* initialisation block address MSW */ outw((u16) (lp->device_ram_start >> 16), DEPCA_DATA); outw(CSR3, DEPCA_ADDR); /* ALE control */ outw(ACON, DEPCA_DATA); outw(CSR0, DEPCA_ADDR); /* Point back to CSR0 */ return; } static int InitRestartDepca(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; u_long ioaddr = dev->base_addr; int i, status = 0; /* Copy the shadow init_block to shared memory */ memcpy_toio(lp->sh_mem, &lp->init_block, sizeof(struct depca_init)); outw(CSR0, DEPCA_ADDR); /* point back to CSR0 */ outw(INIT, DEPCA_DATA); /* initialize DEPCA */ /* wait for lance to complete initialisation */ for (i = 0; (i < 100) && !(inw(DEPCA_DATA) & IDON); i++); if (i != 100) { /* clear IDON by writing a "1", enable interrupts and start lance */ outw(IDON | INEA | STRT, DEPCA_DATA); if (depca_debug > 2) { printk("%s: DEPCA open after %d ticks, init block 0x%08lx csr0 %4.4x.\n", dev->name, i, virt_to_phys(lp->sh_mem), inw(DEPCA_DATA)); } } else { printk("%s: DEPCA unopen after %d ticks, init block 0x%08lx csr0 %4.4x.\n", dev->name, i, virt_to_phys(lp->sh_mem), inw(DEPCA_DATA)); status = -1; } return status; } static struct net_device_stats *depca_get_stats(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; /* Null body since there is no framing error counter */ return &lp->stats; } /* ** Set or clear the multicast filter for this adaptor. */ static void set_multicast_list(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; u_long ioaddr = dev->base_addr; if (dev) { netif_stop_queue(dev); while (lp->tx_old != lp->tx_new); /* Wait for the ring to empty */ STOP_DEPCA; /* Temporarily stop the depca. */ depca_init_ring(dev); /* Initialize the descriptor rings */ if (dev->flags & IFF_PROMISC) { /* Set promiscuous mode */ lp->init_block.mode |= PROM; } else { SetMulticastFilter(dev); lp->init_block.mode &= ~PROM; /* Unset promiscuous mode */ } LoadCSRs(dev); /* Reload CSR3 */ InitRestartDepca(dev); /* Resume normal operation. */ netif_start_queue(dev); /* Unlock the TX ring */ } } /* ** Calculate the hash code and update the logical address filter ** from a list of ethernet multicast addresses. ** Big endian crc one liner is mine, all mine, ha ha ha ha! ** LANCE calculates its hash codes big endian. */ static void SetMulticastFilter(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; struct dev_mc_list *dmi = dev->mc_list; char *addrs; int i, j, bit, byte; u16 hashcode; u32 crc; if (dev->flags & IFF_ALLMULTI) { /* Set all multicast bits */ for (i = 0; i < (HASH_TABLE_LEN >> 3); i++) { lp->init_block.mcast_table[i] = (char) 0xff; } } else { for (i = 0; i < (HASH_TABLE_LEN >> 3); i++) { /* Clear the multicast table */ lp->init_block.mcast_table[i] = 0; } /* Add multicast addresses */ for (i = 0; i < dev->mc_count; i++) { /* for each address in the list */ addrs = dmi->dmi_addr; dmi = dmi->next; if ((*addrs & 0x01) == 1) { /* multicast address? */ crc = ether_crc(ETH_ALEN, addrs); hashcode = (crc & 1); /* hashcode is 6 LSb of CRC ... */ for (j = 0; j < 5; j++) { /* ... in reverse order. */ hashcode = (hashcode << 1) | ((crc >>= 1) & 1); } byte = hashcode >> 3; /* bit[3-5] -> byte in filter */ bit = 1 << (hashcode & 0x07); /* bit[0-2] -> bit in byte */ lp->init_block.mcast_table[byte] |= bit; } } } return; } #ifdef CONFIG_MCA /* ** Microchannel bus I/O device probe */ static void __init mca_probe(struct net_device *dev, u_long ioaddr) { unsigned char pos[2]; unsigned char where; unsigned long iobase; int irq; int slot = 0; /* ** See if we've been here before. */ if ((!ioaddr && autoprobed) || (ioaddr && !loading_module)) return; if (MCA_bus) { /* ** Search for the adapter. If an address has been given, search ** specifically for the card at that address. Otherwise find the ** first card in the system. */ while ((dev != NULL) && ((slot = mca_find_adapter(DE212_ID, slot)) != MCA_NOTFOUND)) { pos[0] = mca_read_stored_pos(slot, 2); pos[1] = mca_read_stored_pos(slot, 3); /* ** IO of card is handled by bits 1 and 2 of pos0. ** ** bit2 bit1 IO ** 0 0 0x2c00 ** 0 1 0x2c10 ** 1 0 0x2c20 ** 1 1 0x2c30 */ where = (pos[0] & 6) >> 1; iobase = 0x2c00 + (0x10 * where); if ((ioaddr) && (ioaddr != iobase)) { /* ** Card was found, but not at the right IO location. Continue ** scanning from the next MCA slot up for another card. */ slot++; continue; } /* ** Found the adapter we were looking for. Now start setting it up. ** ** First work on decoding the IRQ. It's stored in the lower 4 bits ** of pos1. Bits are as follows (from the ADF file): ** ** Bits ** 3 2 1 0 IRQ ** -------------------- ** 0 0 1 0 5 ** 0 0 0 1 9 ** 0 1 0 0 10 ** 1 0 0 0 11 * */ where = pos[1] & 0x0f; switch (where) { case 1: irq = 9; break; case 2: irq = 5; break; case 4: irq = 10; break; case 8: irq = 11; break; default: printk("%s: mca_probe IRQ error. You should never get here (%d).\n", dev->name, where); return; } /* ** Shared memory address of adapter is stored in bits 3-5 of pos0. ** They are mapped as follows: ** ** Bit ** 5 4 3 Memory Addresses ** 0 0 0 C0000-CFFFF (64K) ** 1 0 0 C8000-CFFFF (32K) ** 0 0 1 D0000-DFFFF (64K) ** 1 0 1 D8000-DFFFF (32K) ** 0 1 0 E0000-EFFFF (64K) ** 1 1 0 E8000-EFFFF (32K) */ where = (pos[0] & 0x18) >> 3; mem = 0xc0000 + (where * 0x10000); if (pos[0] & 0x20) { mem += 0x8000; } /* ** Get everything allocated and initialized... (almost just ** like the ISA and EISA probes) */ if (DevicePresent(iobase) != 0) { /* ** If the MCA configuration says the card should be here, ** it really should be here. */ printk(KERN_ERR "%s: MCA reports card at 0x%lx but it is not responding.\n", dev->name, iobase); } if (check_region(iobase, DEPCA_TOTAL_SIZE) == 0) { if ((dev = alloc_device(dev, iobase)) != NULL) { dev->irq = irq; if (depca_hw_init(dev, iobase, slot) == 0) { /* ** Adapter initialized correctly: Name it in ** /proc/mca. */ mca_set_adapter_name(slot, "DE210/212 Ethernet Adapter"); mca_mark_as_used(slot); num_depcas++; } num_eth++; } } else if (autoprobed) { printk(KERN_WARNING "%s: region already allocated at 0x%04lx.\n", dev->name, iobase); } /* ** If this is a probe by a module, return after setting up the ** given card. */ if (ioaddr) return; /* ** Set up to check the next slot and loop. */ slot++; } } return; } #endif /* ** ISA bus I/O device probe */ static void __init isa_probe(struct net_device *dev, u_long ioaddr) { int i = num_depcas, maxSlots; s32 ports[] = DEPCA_IO_PORTS; if (!ioaddr && autoprobed) return; /* Been here before ! */ if (ioaddr > 0x400) return; /* EISA Address */ if (i >= MAX_NUM_DEPCAS) return; /* Too many ISA adapters */ if (ioaddr == 0) { /* Autoprobing */ maxSlots = MAX_NUM_DEPCAS; } else { /* Probe a specific location */ ports[i] = ioaddr; maxSlots = i + 1; } for (; (i < maxSlots) && (dev != NULL) && ports[i]; i++) { if (check_region(ports[i], DEPCA_TOTAL_SIZE) == 0) { if (DevicePresent(ports[i]) == 0) { if ((dev = alloc_device(dev, ports[i])) != NULL) { if (depca_hw_init(dev, ports[i], -1) == 0) { num_depcas++; } num_eth++; } } } else if (autoprobed) { printk("%s: region already allocated at 0x%04x.\n", dev->name, ports[i]); } } return; } /* ** EISA bus I/O device probe. Probe from slot 1 since slot 0 is usually ** the motherboard. Upto 15 EISA devices are supported. */ static void __init eisa_probe(struct net_device *dev, u_long ioaddr) { int i, maxSlots; u_long iobase; char name[DEPCA_STRLEN]; if (!ioaddr && autoprobed) return; /* Been here before ! */ if ((ioaddr < 0x400) && (ioaddr > 0)) return; /* ISA Address */ if (ioaddr == 0) { /* Autoprobing */ iobase = EISA_SLOT_INC; /* Get the first slot address */ i = 1; maxSlots = MAX_EISA_SLOTS; } else { /* Probe a specific location */ iobase = ioaddr; i = (ioaddr >> 12); maxSlots = i + 1; } if ((iobase & 0x0fff) == 0) iobase += DEPCA_EISA_IO_PORTS; for (; (i < maxSlots) && (dev != NULL); i++, iobase += EISA_SLOT_INC) { if (check_region(iobase, DEPCA_TOTAL_SIZE) == 0) { if (EISA_signature(name, EISA_ID)) { if (DevicePresent(iobase) == 0) { if ((dev = alloc_device(dev, iobase)) != NULL) { if (depca_hw_init(dev, iobase, -1) == 0) { num_depcas++; } num_eth++; } } } } else if (autoprobed) { printk("%s: region already allocated at 0x%04lx.\n", dev->name, iobase); } } return; } /* ** Search the entire 'eth' device list for a fixed probe. If a match isn't ** found then check for an autoprobe or unused device location. If they ** are not available then insert a new device structure at the end of ** the current list. */ static struct net_device *__init alloc_device(struct net_device *dev, u_long iobase) { struct net_device *adev = NULL; int fixed = 0, new_dev = 0; num_eth = depca_dev_index(dev->name); if (loading_module) return dev; while (1) { if (((dev->base_addr == DEPCA_NDA) || (dev->base_addr == 0)) && !adev) { adev = dev; } else if ((dev->priv == NULL) && (dev->base_addr == iobase)) { fixed = 1; } else { if (dev->next == NULL) { new_dev = 1; } else if (strncmp(dev->next->name, "eth", 3) != 0) { new_dev = 1; } } if ((dev->next == NULL) || new_dev || fixed) break; dev = dev->next; num_eth++; } if (adev && !fixed) { dev = adev; num_eth = depca_dev_index(dev->name); new_dev = 0; } if (((dev->next == NULL) && ((dev->base_addr != DEPCA_NDA) && (dev->base_addr != 0)) && !fixed) || new_dev) { num_eth++; /* New device */ dev = insert_device(dev, iobase, depca_probe); } return dev; } /* ** If at end of eth device list and can't use current entry, malloc ** one up. If memory could not be allocated, print an error message. */ static struct net_device *__init insert_device(struct net_device *dev, u_long iobase, int (*init) (struct net_device *)) { struct net_device *new; new = (struct net_device *) kmalloc(sizeof(struct net_device), GFP_KERNEL); if (new == NULL) { printk("eth%d: Device not initialised, insufficient memory\n", num_eth); return NULL; } else { new->next = dev->next; dev->next = new; dev = dev->next; /* point to the new device */ if (num_eth > 9999) { sprintf(dev->name, "eth????"); /* New device name */ } else { sprintf(dev->name, "eth%d", num_eth); /* New device name */ } dev->base_addr = iobase; /* assign the io address */ dev->init = init; /* initialisation routine */ } return dev; } static int __init depca_dev_index(char *s) { int i = 0, j = 0; for (; *s; s++) { if (isdigit(*s)) { j = 1; i = (i * 10) + (*s - '0'); } else if (j) break; } return i; } /* ** Look for a particular board name in the on-board Remote Diagnostics ** and Boot (readb) ROM. This will also give us a clue to the network RAM ** base address. */ static void __init DepcaSignature(char *name, u_long paddr) { u_int i, j, k; const char *signatures[] = DEPCA_SIGNATURE; void *ptr; char tmpstr[16]; /* Copy the first 16 bytes of ROM */ ptr = ioremap(paddr + 0xc000, 16); if (ptr == NULL) { printk(KERN_ERR "depca: I/O remap failed at %lx\n", paddr + 0xc000); adapter = unknown; return; } for (i = 0; i < 16; i++) { tmpstr[i] = readb(ptr + i); } iounmap(ptr); /* Check if PROM contains a valid string */ for (i = 0; *signatures[i] != '\0'; i++) { for (j = 0, k = 0; j < 16 && k < strlen(signatures[i]); j++) { if (signatures[i][k] == tmpstr[j]) { /* track signature */ k++; } else { /* lost signature; begin search again */ k = 0; } } if (k == strlen(signatures[i])) break; } /* Check if name string is valid, provided there's no PROM */ if (*name && (i == unknown)) { for (i = 0; *signatures[i] != '\0'; i++) { if (strcmp(name, signatures[i]) == 0) break; } } /* Update search results */ strcpy(name, signatures[i]); adapter = i; return; } /* ** Look for a special sequence in the Ethernet station address PROM that ** is common across all DEPCA products. Note that the original DEPCA needs ** its ROM address counter to be initialized and enabled. Only enable ** if the first address octet is a 0x08 - this minimises the chances of ** messing around with some other hardware, but it assumes that this DEPCA ** card initialized itself correctly. ** ** Search the Ethernet address ROM for the signature. Since the ROM address ** counter can start at an arbitrary point, the search must include the entire ** probe sequence length plus the (length_of_the_signature - 1). ** Stop the search IMMEDIATELY after the signature is found so that the ** PROM address counter is correctly positioned at the start of the ** ethernet address for later read out. */ static int __init DevicePresent(u_long ioaddr) { union { struct { u32 a; u32 b; } llsig; char Sig[sizeof(u32) << 1]; } dev; short sigLength = 0; s8 data; s16 nicsr; int i, j, status = 0; data = inb(DEPCA_PROM); /* clear counter on DEPCA */ data = inb(DEPCA_PROM); /* read data */ if (data == 0x08) { /* Enable counter on DEPCA */ nicsr = inb(DEPCA_NICSR); nicsr |= AAC; outb(nicsr, DEPCA_NICSR); } dev.llsig.a = ETH_PROM_SIG; dev.llsig.b = ETH_PROM_SIG; sigLength = sizeof(u32) << 1; for (i = 0, j = 0; j < sigLength && i < PROBE_LENGTH + sigLength - 1; i++) { data = inb(DEPCA_PROM); if (dev.Sig[j] == data) { /* track signature */ j++; } else { /* lost signature; begin search again */ if (data == dev.Sig[0]) { /* rare case.... */ j = 1; } else { j = 0; } } } if (j != sigLength) { status = -ENODEV; /* search failed */ } return status; } /* ** The DE100 and DE101 PROM accesses were made non-standard for some bizarre ** reason: access the upper half of the PROM with x=0; access the lower half ** with x=1. */ static int __init get_hw_addr(struct net_device *dev) { u_long ioaddr = dev->base_addr; int i, k, tmp, status = 0; u_short j, x, chksum; x = (((adapter == de100) || (adapter == de101)) ? 1 : 0); for (i = 0, k = 0, j = 0; j < 3; j++) { k <<= 1; if (k > 0xffff) k -= 0xffff; k += (u_char) (tmp = inb(DEPCA_PROM + x)); dev->dev_addr[i++] = (u_char) tmp; k += (u_short) ((tmp = inb(DEPCA_PROM + x)) << 8); dev->dev_addr[i++] = (u_char) tmp; if (k > 0xffff) k -= 0xffff; } if (k == 0xffff) k = 0; chksum = (u_char) inb(DEPCA_PROM + x); chksum |= (u_short) (inb(DEPCA_PROM + x) << 8); if (k != chksum) status = -1; return status; } /* ** Load a packet into the shared memory */ static int load_packet(struct net_device *dev, struct sk_buff *skb) { struct depca_private *lp = (struct depca_private *) dev->priv; int i, entry, end, len, status = 0; entry = lp->tx_new; /* Ring around buffer number. */ end = (entry + (skb->len - 1) / TX_BUFF_SZ) & lp->txRingMask; if (!(readl(&lp->tx_ring[end].base) & T_OWN)) { /* Enough room? */ /* ** Caution: the write order is important here... don't set up the ** ownership rights until all the other information is in place. */ if (end < entry) { /* wrapped buffer */ len = (lp->txRingMask - entry + 1) * TX_BUFF_SZ; memcpy_toio(lp->tx_buff[entry], skb->data, len); memcpy_toio(lp->tx_buff[0], skb->data + len, skb->len - len); } else { /* linear buffer */ memcpy_toio(lp->tx_buff[entry], skb->data, skb->len); } /* set up the buffer descriptors */ len = (skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len; for (i = entry; i != end; i = (i+1) & lp->txRingMask) { /* clean out flags */ writel(readl(&lp->tx_ring[i].base) & ~T_FLAGS, &lp->tx_ring[i].base); writew(0x0000, &lp->tx_ring[i].misc); /* clears other error flags */ writew(-TX_BUFF_SZ, &lp->tx_ring[i].length); /* packet length in buffer */ len -= TX_BUFF_SZ; } /* clean out flags */ writel(readl(&lp->tx_ring[end].base) & ~T_FLAGS, &lp->tx_ring[end].base); writew(0x0000, &lp->tx_ring[end].misc); /* clears other error flags */ writew(-len, &lp->tx_ring[end].length); /* packet length in last buff */ /* start of packet */ writel(readl(&lp->tx_ring[entry].base) | T_STP, &lp->tx_ring[entry].base); /* end of packet */ writel(readl(&lp->tx_ring[end].base) | T_ENP, &lp->tx_ring[end].base); for (i = end; i != entry; --i) { /* ownership of packet */ writel(readl(&lp->tx_ring[i].base) | T_OWN, &lp->tx_ring[i].base); if (i == 0) i = lp->txRingMask + 1; } writel(readl(&lp->tx_ring[entry].base) | T_OWN, &lp->tx_ring[entry].base); lp->tx_new = (++end) & lp->txRingMask; /* update current pointers */ } else { status = -1; } return status; } /* ** Look for a particular board name in the EISA configuration space */ static int __init EISA_signature(char *name, s32 eisa_id) { u_int i; const char *signatures[] = DEPCA_SIGNATURE; char ManCode[DEPCA_STRLEN]; union { s32 ID; char Id[4]; } Eisa; int status = 0; *name = '\0'; Eisa.ID = inl(eisa_id); ManCode[0] = (((Eisa.Id[0] >> 2) & 0x1f) + 0x40); ManCode[1] = (((Eisa.Id[1] & 0xe0) >> 5) + ((Eisa.Id[0] & 0x03) << 3) + 0x40); ManCode[2] = (((Eisa.Id[2] >> 4) & 0x0f) + 0x30); ManCode[3] = ((Eisa.Id[2] & 0x0f) + 0x30); ManCode[4] = (((Eisa.Id[3] >> 4) & 0x0f) + 0x30); ManCode[5] = '\0'; for (i = 0; (*signatures[i] != '\0') && (*name == '\0'); i++) { if (strstr(ManCode, signatures[i]) != NULL) { strcpy(name, ManCode); status = 1; } } return status; } static void depca_dbg_open(struct net_device *dev) { struct depca_private *lp = (struct depca_private *) dev->priv; u_long ioaddr = dev->base_addr; struct depca_init *p = &lp->init_block; int i; if (depca_debug > 1) { /* Do not copy the shadow init block into shared memory */ /* Debugging should not affect normal operation! */ /* The shadow init block will get copied across during InitRestartDepca */ printk("%s: depca open with irq %d\n", dev->name, dev->irq); printk("Descriptor head addresses (CPU):\n"); printk(" 0x%lx 0x%lx\n", (u_long) lp->rx_ring, (u_long) lp->tx_ring); printk("Descriptor addresses (CPU):\nRX: "); for (i = 0; i < lp->rxRingMask; i++) { if (i < 3) { printk("0x%8.8lx ", (long) &lp->rx_ring[i].base); } } printk("...0x%8.8lx\n", (long) &lp->rx_ring[i].base); printk("TX: "); for (i = 0; i < lp->txRingMask; i++) { if (i < 3) { printk("0x%8.8lx ", (long) &lp->tx_ring[i].base); } } printk("...0x%8.8lx\n", (long) &lp->tx_ring[i].base); printk("\nDescriptor buffers (Device):\nRX: "); for (i = 0; i < lp->rxRingMask; i++) { if (i < 3) { printk("0x%8.8x ", readl(&lp->rx_ring[i].base)); } } printk("...0x%8.8x\n", readl(&lp->rx_ring[i].base)); printk("TX: "); for (i = 0; i < lp->txRingMask; i++) { if (i < 3) { printk("0x%8.8x ", readl(&lp->tx_ring[i].base)); } } printk("...0x%8.8x\n", readl(&lp->tx_ring[i].base)); printk("Initialisation block at 0x%8.8lx(Phys)\n", virt_to_phys(lp->sh_mem)); printk(" mode: 0x%4.4x\n", p->mode); printk(" physical address: "); for (i = 0; i < ETH_ALEN - 1; i++) { printk("%2.2x:", p->phys_addr[i]); } printk("%2.2x\n", p->phys_addr[i]); printk(" multicast hash table: "); for (i = 0; i < (HASH_TABLE_LEN >> 3) - 1; i++) { printk("%2.2x:", p->mcast_table[i]); } printk("%2.2x\n", p->mcast_table[i]); printk(" rx_ring at: 0x%8.8x\n", p->rx_ring); printk(" tx_ring at: 0x%8.8x\n", p->tx_ring); printk("buffers (Phys): 0x%8.8lx\n", virt_to_phys(lp->sh_mem) + lp->buffs_offset); printk("Ring size:\nRX: %d Log2(rxRingMask): 0x%8.8x\n", (int) lp->rxRingMask + 1, lp->rx_rlen); printk("TX: %d Log2(txRingMask): 0x%8.8x\n", (int) lp->txRingMask + 1, lp->tx_rlen); outw(CSR2, DEPCA_ADDR); printk("CSR2&1: 0x%4.4x", inw(DEPCA_DATA)); outw(CSR1, DEPCA_ADDR); printk("%4.4x\n", inw(DEPCA_DATA)); outw(CSR3, DEPCA_ADDR); printk("CSR3: 0x%4.4x\n", inw(DEPCA_DATA)); } return; } /* ** Perform IOCTL call functions here. Some are privileged operations and the ** effective uid is checked in those cases. ** All multicast IOCTLs will not work here and are for testing purposes only. */ static int depca_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct depca_private *lp = (struct depca_private *) dev->priv; struct depca_ioctl *ioc = (struct depca_ioctl *) &rq->ifr_data; int i, status = 0; u_long ioaddr = dev->base_addr; union { u8 addr[(HASH_TABLE_LEN * ETH_ALEN)]; u16 sval[(HASH_TABLE_LEN * ETH_ALEN) >> 1]; u32 lval[(HASH_TABLE_LEN * ETH_ALEN) >> 2]; } tmp; switch (ioc->cmd) { case DEPCA_GET_HWADDR: /* Get the hardware address */ for (i = 0; i < ETH_ALEN; i++) { tmp.addr[i] = dev->dev_addr[i]; } ioc->len = ETH_ALEN; if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT; break; case DEPCA_SET_HWADDR: /* Set the hardware address */ if (!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT; for (i = 0; i < ETH_ALEN; i++) { dev->dev_addr[i] = tmp.addr[i]; } netif_stop_queue(dev); while (lp->tx_old != lp->tx_new) cpu_relax(); /* Wait for the ring to empty */ STOP_DEPCA; /* Temporarily stop the depca. */ depca_init_ring(dev); /* Initialize the descriptor rings */ LoadCSRs(dev); /* Reload CSR3 */ InitRestartDepca(dev); /* Resume normal operation. */ netif_start_queue(dev); /* Unlock the TX ring */ break; case DEPCA_SET_PROM: /* Set Promiscuous Mode */ if (!capable(CAP_NET_ADMIN)) return -EPERM; netif_stop_queue(dev); while (lp->tx_old != lp->tx_new) cpu_relax(); /* Wait for the ring to empty */ STOP_DEPCA; /* Temporarily stop the depca. */ depca_init_ring(dev); /* Initialize the descriptor rings */ lp->init_block.mode |= PROM; /* Set promiscuous mode */ LoadCSRs(dev); /* Reload CSR3 */ InitRestartDepca(dev); /* Resume normal operation. */ netif_start_queue(dev); /* Unlock the TX ring */ break; case DEPCA_CLR_PROM: /* Clear Promiscuous Mode */ if (!capable(CAP_NET_ADMIN)) return -EPERM; netif_stop_queue(dev); while (lp->tx_old != lp->tx_new) cpu_relax(); /* Wait for the ring to empty */ STOP_DEPCA; /* Temporarily stop the depca. */ depca_init_ring(dev); /* Initialize the descriptor rings */ lp->init_block.mode &= ~PROM; /* Clear promiscuous mode */ LoadCSRs(dev); /* Reload CSR3 */ InitRestartDepca(dev); /* Resume normal operation. */ netif_start_queue(dev); /* Unlock the TX ring */ break; case DEPCA_SAY_BOO: /* Say "Boo!" to the kernel log file */ if(!capable(CAP_NET_ADMIN)) return -EPERM; printk("%s: Boo!\n", dev->name); break; case DEPCA_GET_MCA: /* Get the multicast address table */ ioc->len = (HASH_TABLE_LEN >> 3); if (copy_to_user(ioc->data, lp->init_block.mcast_table, ioc->len)) return -EFAULT; break; case DEPCA_SET_MCA: /* Set a multicast address */ if (!capable(CAP_NET_ADMIN)) return -EPERM; if (ioc->len >= HASH_TABLE_LEN) return -EINVAL; if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN * ioc->len)) return -EFAULT; set_multicast_list(dev); break; case DEPCA_CLR_MCA: /* Clear all multicast addresses */ if (!capable(CAP_NET_ADMIN)) return -EPERM; set_multicast_list(dev); break; case DEPCA_MCA_EN: /* Enable pass all multicast addressing */ if (!capable(CAP_NET_ADMIN)) return -EPERM; set_multicast_list(dev); break; case DEPCA_GET_STATS: /* Get the driver statistics */ cli(); ioc->len = sizeof(lp->pktStats); if (copy_to_user(ioc->data, &lp->pktStats, ioc->len)) status = -EFAULT; sti(); break; case DEPCA_CLR_STATS: /* Zero out the driver statistics */ if (!capable(CAP_NET_ADMIN)) return -EPERM; cli(); memset(&lp->pktStats, 0, sizeof(lp->pktStats)); sti(); break; case DEPCA_GET_REG: /* Get the DEPCA Registers */ i = 0; tmp.sval[i++] = inw(DEPCA_NICSR); outw(CSR0, DEPCA_ADDR); /* status register */ tmp.sval[i++] = inw(DEPCA_DATA); memcpy(&tmp.sval[i], &lp->init_block, sizeof(struct depca_init)); ioc->len = i + sizeof(struct depca_init); if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT; break; default: return -EOPNOTSUPP; } return status; } #ifdef MODULE static struct net_device thisDepca; static int irq = 7; /* EDIT THESE LINE FOR YOUR CONFIGURATION */ static int io = 0x200; /* Or use the irq= io= options to insmod */ MODULE_PARM(irq, "i"); MODULE_PARM(io, "i"); MODULE_PARM_DESC(irq, "DEPCA IRQ number"); MODULE_PARM_DESC(io, "DEPCA I/O base address"); /* See depca_probe() for autoprobe messages when a module */ int init_module(void) { thisDepca.irq = irq; thisDepca.base_addr = io; thisDepca.init = depca_probe; if (register_netdev(&thisDepca) != 0) return -EIO; return 0; } void cleanup_module(void) { struct depca_private *lp = thisDepca.priv; unregister_netdev(&thisDepca); if (lp) { iounmap(lp->sh_mem); #ifdef CONFIG_MCA if (lp->mca_slot != -1) mca_mark_as_unused(lp->mca_slot); #endif kfree(lp); thisDepca.priv = NULL; } thisDepca.irq = 0; release_region(thisDepca.base_addr, DEPCA_TOTAL_SIZE); } #endif /* MODULE */ MODULE_LICENSE("GPL"); /* * Local variables: * compile-command: "gcc -D__KERNEL__ -I/linux/include -Wall -Wstrict-prototypes -fomit-frame-pointer -fno-strength-reduce -malign-loops=2 -malign-jumps=2 -malign-functions=2 -O2 -m486 -c depca.c" * * compile-command: "gcc -D__KERNEL__ -DMODULE -I/linux/include -Wall -Wstrict-prototypes -fomit-frame-pointer -fno-strength-reduce -malign-loops=2 -malign-jumps=2 -malign-functions=2 -O2 -m486 -c depca.c" * End: */