/* * sbp2.c - SBP-2 protocol driver for IEEE-1394 * * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com) * jamesg@filanet.com (JSG) * * Copyright (C) 2003 Ben Collins * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * Brief Description: * * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level * driver. It also registers as a SCSI lower-level driver in order to accept * SCSI commands for transport using SBP-2. * * The easiest way to add/detect new SBP-2 devices is to run the shell script * rescan-scsi-bus.sh. This script may be found at: * http://www.garloff.de/kurt/linux/rescan-scsi-bus.sh * * You may access any attached SBP-2 storage devices as if they were SCSI * devices (e.g. mount /dev/sda1, fdisk, mkfs, etc.). * * Current Issues: * * - Error Handling: SCSI aborts and bus reset requests are handled somewhat * but the code needs additional debugging. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_KBUILD_2_5 #include #include #include #else #include "../scsi/scsi.h" #include "../scsi/hosts.h" #include "../scsi/sd.h" #endif #include "ieee1394.h" #include "ieee1394_types.h" #include "ieee1394_core.h" #include "nodemgr.h" #include "hosts.h" #include "nodemgr.h" #include "highlevel.h" #include "ieee1394_transactions.h" #include "sbp2.h" static char version[] __devinitdata = "$Rev: 1074 $ Ben Collins "; /* * Module load parameter definitions */ /* * Change sbp2_max_speed on module load if you have a bad IEEE-1394 * controller that has trouble running 2KB packets at 400mb. * * NOTE: On certain OHCI parts I have seen short packets on async transmit * (probably due to PCI latency/throughput issues with the part). You can * bump down the speed if you are running into problems. */ MODULE_PARM(sbp2_max_speed,"i"); MODULE_PARM_DESC(sbp2_max_speed, "Force max speed (3 = 800mb, 2 = 400mb default, 1 = 200mb, 0 = 100mb)"); static int sbp2_max_speed = IEEE1394_SPEED_MAX; /* * Set sbp2_serialize_io to 1 if you'd like only one scsi command sent * down to us at a time (debugging). This might be necessary for very * badly behaved sbp2 devices. */ MODULE_PARM(sbp2_serialize_io,"i"); MODULE_PARM_DESC(sbp2_serialize_io, "Serialize all I/O coming down from the scsi drivers (default = 1)"); static int sbp2_serialize_io = 1; /* serialize I/O - available for debugging purposes */ /* * Bump up sbp2_max_sectors if you'd like to support very large sized * transfers. Please note that some older sbp2 bridge chips are broken for * transfers greater or equal to 128KB. Default is a value of 255 * sectors, or just under 128KB (at 512 byte sector size). I can note that * the Oxsemi sbp2 chipsets have no problems supporting very large * transfer sizes. */ MODULE_PARM(sbp2_max_sectors,"i"); MODULE_PARM_DESC(sbp2_max_sectors, "Change max sectors per I/O supported (default = 255)"); static int sbp2_max_sectors = SBP2_MAX_SECTORS; /* * Exclusive login to sbp2 device? In most cases, the sbp2 driver should * do an exclusive login, as it's generally unsafe to have two hosts * talking to a single sbp2 device at the same time (filesystem coherency, * etc.). If you're running an sbp2 device that supports multiple logins, * and you're either running read-only filesystems or some sort of special * filesystem supporting multiple hosts (one such filesystem is OpenGFS, * see opengfs.sourceforge.net for more info), then set sbp2_exclusive_login * to zero. Note: The Oxsemi OXFW911 sbp2 chipset supports up to four * concurrent logins. */ MODULE_PARM(sbp2_exclusive_login,"i"); MODULE_PARM_DESC(sbp2_exclusive_login, "Exclusive login to sbp2 device (default = 1)"); static int sbp2_exclusive_login = 1; /* * SCSI inquiry hack for really badly behaved sbp2 devices. Turn this on * if your sbp2 device is not properly handling the SCSI inquiry command. * This hack makes the inquiry look more like a typical MS Windows * inquiry. * * If sbp2_force_inquiry_hack=1 is required for your device to work, * please submit the logged sbp2_firmware_revision value of this device to * the linux1394-devel mailing list. */ MODULE_PARM(sbp2_force_inquiry_hack,"i"); MODULE_PARM_DESC(sbp2_force_inquiry_hack, "Force SCSI inquiry hack (default = 0)"); static int sbp2_force_inquiry_hack = 0; /* * Export information about protocols/devices supported by this driver. */ static struct ieee1394_device_id sbp2_id_table[] = { { .match_flags =IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff, .version = SBP2_SW_VERSION_ENTRY & 0xffffff }, { } }; MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); /* * Debug levels, configured via kernel config, or enable here. */ /* #define CONFIG_IEEE1394_SBP2_DEBUG_ORBS */ /* #define CONFIG_IEEE1394_SBP2_DEBUG_DMA */ /* #define CONFIG_IEEE1394_SBP2_DEBUG 1 */ /* #define CONFIG_IEEE1394_SBP2_DEBUG 2 */ /* #define CONFIG_IEEE1394_SBP2_PACKET_DUMP */ #ifdef CONFIG_IEEE1394_SBP2_DEBUG_ORBS #define SBP2_ORB_DEBUG(fmt, args...) HPSB_ERR("sbp2(%s): "fmt, __FUNCTION__, ## args) static u32 global_outstanding_command_orbs = 0; #define outstanding_orb_incr global_outstanding_command_orbs++ #define outstanding_orb_decr global_outstanding_command_orbs-- #else #define SBP2_ORB_DEBUG(fmt, args...) #define outstanding_orb_incr #define outstanding_orb_decr #endif #ifdef CONFIG_IEEE1394_SBP2_DEBUG_DMA #define SBP2_DMA_ALLOC(fmt, args...) \ HPSB_ERR("sbp2(%s)alloc(%d): "fmt, __FUNCTION__, \ ++global_outstanding_dmas, ## args) #define SBP2_DMA_FREE(fmt, args...) \ HPSB_ERR("sbp2(%s)free(%d): "fmt, __FUNCTION__, \ --global_outstanding_dmas, ## args) static u32 global_outstanding_dmas = 0; #else #define SBP2_DMA_ALLOC(fmt, args...) #define SBP2_DMA_FREE(fmt, args...) #endif #if CONFIG_IEEE1394_SBP2_DEBUG >= 2 #define SBP2_DEBUG(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) #define SBP2_INFO(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) #define SBP2_NOTICE(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) #define SBP2_WARN(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) #elif CONFIG_IEEE1394_SBP2_DEBUG == 1 #define SBP2_DEBUG(fmt, args...) HPSB_DEBUG("sbp2: "fmt, ## args) #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args) #define SBP2_NOTICE(fmt, args...) HPSB_NOTICE("sbp2: "fmt, ## args) #define SBP2_WARN(fmt, args...) HPSB_WARN("sbp2: "fmt, ## args) #else #define SBP2_DEBUG(fmt, args...) #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args) #define SBP2_NOTICE(fmt, args...) HPSB_NOTICE("sbp2: "fmt, ## args) #define SBP2_WARN(fmt, args...) HPSB_WARN("sbp2: "fmt, ## args) #endif #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) /* If you get the linux-2.4 scsi_{add,remove}_single_device patch, you can * enable this define to make use of it. This provides better hotplug * support. The mentioned patch is not part of the kernel proper though, * because it is considered somewhat of a hack. */ #define SBP2_USE_SCSI_ADDREM_HACK /* * Globals */ static void sbp2scsi_complete_all_commands(struct scsi_id_instance_data *scsi_id, u32 status); static void sbp2scsi_complete_command(struct scsi_id_instance_data *scsi_id, u32 scsi_status, Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *)); static Scsi_Host_Template scsi_driver_template; const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC }; static struct hpsb_highlevel sbp2_highlevel = { .name = SBP2_DEVICE_NAME, .remove_host = sbp2_remove_host, }; static struct hpsb_address_ops sbp2_ops = { .write = sbp2_handle_status_write }; #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA static struct hpsb_address_ops sbp2_physdma_ops = { .read = sbp2_handle_physdma_read, .write = sbp2_handle_physdma_write, }; #endif static struct hpsb_protocol_driver sbp2_driver = { .name = "SBP2 Driver", .id_table = sbp2_id_table, .probe = sbp2_probe, .disconnect = sbp2_disconnect, .update = sbp2_update }; /* List of device firmware's that require a forced 36 byte inquiry. */ static u32 sbp2_broken_inquiry_list[] = { 0x00002800, /* Stefan Richter */ /* DViCO Momobay CX-1 */ 0x00000200 /* Andreas Plesch */ /* QPS Fire DVDBurner */ }; #define NUM_BROKEN_INQUIRY_DEVS \ (sizeof(sbp2_broken_inquiry_list)/sizeof(*sbp2_broken_inquiry_list)) /************************************** * General utility functions **************************************/ #ifndef __BIG_ENDIAN /* * Converts a buffer from be32 to cpu byte ordering. Length is in bytes. */ static __inline__ void sbp2util_be32_to_cpu_buffer(void *buffer, int length) { u32 *temp = buffer; for (length = (length >> 2); length--; ) temp[length] = be32_to_cpu(temp[length]); return; } /* * Converts a buffer from cpu to be32 byte ordering. Length is in bytes. */ static __inline__ void sbp2util_cpu_to_be32_buffer(void *buffer, int length) { u32 *temp = buffer; for (length = (length >> 2); length--; ) temp[length] = cpu_to_be32(temp[length]); return; } #else /* BIG_ENDIAN */ /* Why waste the cpu cycles? */ #define sbp2util_be32_to_cpu_buffer(x,y) #define sbp2util_cpu_to_be32_buffer(x,y) #endif #ifdef CONFIG_IEEE1394_SBP2_PACKET_DUMP /* * Debug packet dump routine. Length is in bytes. */ static void sbp2util_packet_dump(void *buffer, int length, char *dump_name, u32 dump_phys_addr) { int i; unsigned char *dump = buffer; if (!dump || !length || !dump_name) return; if (dump_phys_addr) printk("[%s, 0x%x]", dump_name, dump_phys_addr); else printk("[%s]", dump_name); for (i = 0; i < length; i++) { if (i > 0x3f) { printk("\n ..."); break; } if ((i & 0x3) == 0) printk(" "); if ((i & 0xf) == 0) printk("\n "); printk("%02x ", (int) dump[i]); } printk("\n"); return; } #else #define sbp2util_packet_dump(w,x,y,z) #endif /* * Goofy routine that basically does a down_timeout function. */ static int sbp2util_down_timeout(atomic_t *done, int timeout) { int i; for (i = timeout; (i > 0 && atomic_read(done) == 0); i-= HZ/10) { set_current_state(TASK_INTERRUPTIBLE); if (schedule_timeout(HZ/10)) /* 100ms */ return(1); } return ((i > 0) ? 0:1); } /* Free's an allocated packet */ static void sbp2_free_packet(struct hpsb_packet *packet) { hpsb_free_tlabel(packet); free_hpsb_packet(packet); } /* * This function is called to retrieve a block write packet from our * packet pool. This function is used in place of calling * alloc_hpsb_packet (which costs us three kmallocs). Instead we just pull * out a free request packet and re-initialize values in it. I'm sure this * can still stand some more optimization. */ static struct hpsb_packet * sbp2util_allocate_write_packet(struct sbp2scsi_host_info *hi, struct node_entry *ne, u64 addr, size_t data_size, quadlet_t *data, int complete) { struct hpsb_packet *packet; packet = hpsb_make_writepacket(hi->host, ne->nodeid, addr, data, data_size); if (!packet) return NULL; if (complete) hpsb_set_packet_complete_task(packet, (void (*)(void*))sbp2_free_packet, packet); hpsb_node_fill_packet(ne, packet); return packet; } /* * This function is called to create a pool of command orbs used for * command processing. It is called when a new sbp2 device is detected. */ static int sbp2util_create_command_orb_pool(struct scsi_id_instance_data *scsi_id) { struct sbp2scsi_host_info *hi = scsi_id->hi; int i; unsigned long flags, orbs; struct sbp2_command_info *command; orbs = sbp2_serialize_io ? 2 : SBP2_MAX_COMMAND_ORBS; spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags); for (i = 0; i < orbs; i++) { command = (struct sbp2_command_info *) kmalloc(sizeof(struct sbp2_command_info), GFP_ATOMIC); if (!command) { spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags); return(-ENOMEM); } memset(command, '\0', sizeof(struct sbp2_command_info)); command->command_orb_dma = pci_map_single (hi->host->pdev, &command->command_orb, sizeof(struct sbp2_command_orb), PCI_DMA_BIDIRECTIONAL); SBP2_DMA_ALLOC("single command orb DMA"); command->sge_dma = pci_map_single (hi->host->pdev, &command->scatter_gather_element, sizeof(command->scatter_gather_element), PCI_DMA_BIDIRECTIONAL); SBP2_DMA_ALLOC("scatter_gather_element"); INIT_LIST_HEAD(&command->list); list_add_tail(&command->list, &scsi_id->sbp2_command_orb_completed); } spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags); return 0; } /* * This function is called to delete a pool of command orbs. */ static void sbp2util_remove_command_orb_pool(struct scsi_id_instance_data *scsi_id) { struct hpsb_host *host = scsi_id->hi->host; struct list_head *lh, *next; struct sbp2_command_info *command; unsigned long flags; spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags); if (!list_empty(&scsi_id->sbp2_command_orb_completed)) { list_for_each_safe(lh, next, &scsi_id->sbp2_command_orb_completed) { command = list_entry(lh, struct sbp2_command_info, list); /* Release our generic DMA's */ pci_unmap_single(host->pdev, command->command_orb_dma, sizeof(struct sbp2_command_orb), PCI_DMA_BIDIRECTIONAL); SBP2_DMA_FREE("single command orb DMA"); pci_unmap_single(host->pdev, command->sge_dma, sizeof(command->scatter_gather_element), PCI_DMA_BIDIRECTIONAL); SBP2_DMA_FREE("scatter_gather_element"); kfree(command); } } spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags); return; } /* * This function finds the sbp2_command for a given outstanding command * orb.Only looks at the inuse list. */ static struct sbp2_command_info *sbp2util_find_command_for_orb( struct scsi_id_instance_data *scsi_id, dma_addr_t orb) { struct list_head *lh; struct sbp2_command_info *command; unsigned long flags; spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags); if (!list_empty(&scsi_id->sbp2_command_orb_inuse)) { list_for_each(lh, &scsi_id->sbp2_command_orb_inuse) { command = list_entry(lh, struct sbp2_command_info, list); if (command->command_orb_dma == orb) { spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags); return (command); } } } spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags); SBP2_ORB_DEBUG("could not match command orb %x", (unsigned int)orb); return(NULL); } /* * This function finds the sbp2_command for a given outstanding SCpnt. * Only looks at the inuse list. */ static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(struct scsi_id_instance_data *scsi_id, void *SCpnt) { struct list_head *lh; struct sbp2_command_info *command; unsigned long flags; spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags); if (!list_empty(&scsi_id->sbp2_command_orb_inuse)) { list_for_each(lh, &scsi_id->sbp2_command_orb_inuse) { command = list_entry(lh, struct sbp2_command_info, list); if (command->Current_SCpnt == SCpnt) { spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags); return (command); } } } spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags); return(NULL); } /* * This function allocates a command orb used to send a scsi command. */ static struct sbp2_command_info *sbp2util_allocate_command_orb( struct scsi_id_instance_data *scsi_id, Scsi_Cmnd *Current_SCpnt, void (*Current_done)(Scsi_Cmnd *)) { struct list_head *lh; struct sbp2_command_info *command = NULL; unsigned long flags; spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags); if (!list_empty(&scsi_id->sbp2_command_orb_completed)) { lh = scsi_id->sbp2_command_orb_completed.next; list_del(lh); command = list_entry(lh, struct sbp2_command_info, list); command->Current_done = Current_done; command->Current_SCpnt = Current_SCpnt; list_add_tail(&command->list, &scsi_id->sbp2_command_orb_inuse); } else { SBP2_ERR("sbp2util_allocate_command_orb - No orbs available!"); } spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags); return (command); } /* Free our DMA's */ static void sbp2util_free_command_dma(struct sbp2_command_info *command) { struct hpsb_host *host; host = hpsb_get_host_bykey(&sbp2_highlevel, (unsigned long)command->Current_SCpnt->device->host->hostt); if (!host) { printk(KERN_ERR "%s: host == NULL\n", __FUNCTION__); return; } if (command->cmd_dma) { if (command->dma_type == CMD_DMA_SINGLE) { pci_unmap_single(host->pdev, command->cmd_dma, command->dma_size, command->dma_dir); SBP2_DMA_FREE("single bulk"); } else if (command->dma_type == CMD_DMA_PAGE) { pci_unmap_page(host->pdev, command->cmd_dma, command->dma_size, command->dma_dir); SBP2_DMA_FREE("single page"); } /* XXX: Check for CMD_DMA_NONE bug */ command->dma_type = CMD_DMA_NONE; command->cmd_dma = 0; } if (command->sge_buffer) { pci_unmap_sg(host->pdev, command->sge_buffer, command->dma_size, command->dma_dir); SBP2_DMA_FREE("scatter list"); command->sge_buffer = NULL; } } /* * This function moves a command to the completed orb list. */ static void sbp2util_mark_command_completed(struct scsi_id_instance_data *scsi_id, struct sbp2_command_info *command) { unsigned long flags; spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags); list_del(&command->list); sbp2util_free_command_dma(command); list_add_tail(&command->list, &scsi_id->sbp2_command_orb_completed); spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags); } /********************************************* * IEEE-1394 core driver stack related section *********************************************/ /* * This function is called at SCSI init in order to register our driver * with the IEEE-1394 stack. */ static int sbp2scsi_detect(Scsi_Host_Template *tpnt) { struct Scsi_Host *scsi_host; struct hpsb_host *host = hpsb_get_host_bykey(&sbp2_highlevel, (unsigned long)tpnt); SBP2_DEBUG("sbp2scsi_detect"); /* Register our host with the SCSI stack. */ if (!(scsi_host = scsi_register(tpnt, 0))) return 0; scsi_set_pci_device(scsi_host, host->pdev); tpnt->present = 1; return tpnt->present; } static int sbp2_probe(struct unit_directory *ud) { struct sbp2scsi_host_info *hi; SBP2_DEBUG(__FUNCTION__); /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s) * instead. */ if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY) return -1; /* This will only add it if it doesn't exist */ hi = sbp2_add_host(ud->ne->host); if (!hi) return -1; return sbp2_start_ud(hi, ud); } static void sbp2_disconnect(struct unit_directory *ud) { struct scsi_id_group *scsi_group = ud->driver_data; struct list_head *lh, *next; struct scsi_id_instance_data *scsi_id; SBP2_DEBUG("sbp2_disconnect"); list_for_each_safe (lh, next, &scsi_group->scsi_id_list) { scsi_id = list_entry(lh, struct scsi_id_instance_data, list); if (scsi_id) { sbp2_logout_device(scsi_id); sbp2_remove_device(scsi_id); } } kfree(scsi_group); } static void sbp2_update(struct unit_directory *ud) { struct sbp2scsi_host_info *hi; struct scsi_id_group *scsi_group = ud->driver_data; struct list_head *lh, *next; struct scsi_id_instance_data *scsi_id; unsigned long flags; SBP2_DEBUG("sbp2_update"); hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host); list_for_each_safe (lh, next, &scsi_group->scsi_id_list) { scsi_id = list_entry(lh, struct scsi_id_instance_data, list); if (sbp2_reconnect_device(scsi_id)) { /* * Ok, reconnect has failed. Perhaps we didn't * reconnect fast enough. Try doing a regular login. */ if (sbp2_login_device(scsi_id)) { /* Login failed too, just remove the device. */ SBP2_ERR("sbp2_reconnect_device failed!"); sbp2_remove_device(scsi_id); continue; } } /* Set max retries to something large on the device. */ sbp2_set_busy_timeout(scsi_id); /* Do a SBP-2 fetch agent reset. */ sbp2_agent_reset(scsi_id, 0); /* Get the max speed and packet size that we can use. */ sbp2_max_speed_and_size(scsi_id); /* Complete any pending commands with busy (so they get * retried) and remove them from our queue */ spin_lock_irqsave(&hi->sbp2_command_lock, flags); sbp2scsi_complete_all_commands(scsi_id, DID_BUS_BUSY); spin_unlock_irqrestore(&hi->sbp2_command_lock, flags); } if (list_empty(&scsi_group->scsi_id_list)) { hpsb_release_unit_directory(ud); kfree(scsi_group); } } /* * We go ahead and allocate some memory for our host info structure, and * init some structures. */ static struct sbp2scsi_host_info *sbp2_add_host(struct hpsb_host *host) { struct sbp2scsi_host_info *hi; SBP2_DEBUG("sbp2_add_host"); /* Check for existing hostinfo */ hi = hpsb_get_hostinfo(&sbp2_highlevel, host); if (hi) return hi; /* Allocate some memory for our host info structure */ hi = hpsb_create_hostinfo(&sbp2_highlevel, host, sizeof(*hi)); if (hi == NULL) { SBP2_ERR("out of memory in sbp2_add_host"); return NULL; } /* Initialize some host stuff */ hi->host = host; hi->sbp2_command_lock = SPIN_LOCK_UNLOCKED; memcpy(&hi->sht, &scsi_driver_template, sizeof hi->sht); sprintf(hi->proc_name, "%s_%d", SBP2_DEVICE_NAME, host->id); hi->sht.proc_name = hi->proc_name; hpsb_set_hostinfo_key(&sbp2_highlevel, host, (unsigned long)&hi->sht); if (SCSI_REGISTER_HOST(&hi->sht)) { SBP2_ERR("Failed to register scsi template for ieee1394 host"); hpsb_destroy_hostinfo(&sbp2_highlevel, host); return NULL; } for (hi->scsi_host = scsi_hostlist; hi->scsi_host; hi->scsi_host = hi->scsi_host->next) if (hi->scsi_host->hostt == &hi->sht) break; if (!hi->scsi_host) { SBP2_ERR("Failed to register scsi host for ieee1394 host"); SCSI_UNREGISTER_HOST(&hi->sht); hpsb_destroy_hostinfo(&sbp2_highlevel, host); return NULL; } hi->scsi_host->max_id = SBP2SCSI_MAX_SCSI_IDS; return hi; } /* * This function is called when a host is removed. */ static void sbp2_remove_host(struct hpsb_host *host) { struct sbp2scsi_host_info *hi; SBP2_DEBUG("sbp2_remove_host"); hi = hpsb_get_hostinfo(&sbp2_highlevel, host); if (hi) SCSI_UNREGISTER_HOST(&hi->sht); } static int sbp2_start_ud(struct sbp2scsi_host_info *hi, struct unit_directory *ud) { struct scsi_id_instance_data *scsi_id; struct scsi_id_group *scsi_group; struct list_head *lh, *next; SBP2_DEBUG("sbp2_start_ud"); scsi_group = kmalloc(sizeof(*scsi_group), GFP_KERNEL); if (!scsi_group) { SBP2_ERR ("Could not allocate memory for scsi_group"); return -ENOMEM; } INIT_LIST_HEAD(&scsi_group->scsi_id_list); ud->driver_data = scsi_group; sbp2_parse_unit_directory(scsi_group, ud); list_for_each_safe (lh, next, &scsi_group->scsi_id_list) { scsi_id = list_entry(lh, struct scsi_id_instance_data, list); scsi_id->ne = ud->ne; scsi_id->hi = hi; scsi_id->speed_code = IEEE1394_SPEED_100; scsi_id->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100]; atomic_set(&scsi_id->sbp2_login_complete, 0); INIT_LIST_HEAD(&scsi_id->sbp2_command_orb_inuse); INIT_LIST_HEAD(&scsi_id->sbp2_command_orb_completed); scsi_id->sbp2_command_orb_lock = SPIN_LOCK_UNLOCKED; sbp2_start_device(scsi_id); } /* Check to see if any of our devices survived the ordeal */ if (list_empty(&scsi_group->scsi_id_list)) { kfree(scsi_group); return -ENODEV; } return 0; } /* * This function is where we first pull the node unique ids, and then * allocate memory and register a SBP-2 device. */ static int sbp2_start_device(struct scsi_id_instance_data *scsi_id) { struct sbp2scsi_host_info *hi = scsi_id->hi; int i; SBP2_DEBUG("sbp2_start_device"); /* Login FIFO DMA */ scsi_id->login_response = pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_login_response), &scsi_id->login_response_dma); if (!scsi_id->login_response) goto alloc_fail; SBP2_DMA_ALLOC("consistent DMA region for login FIFO"); /* Query logins ORB DMA */ scsi_id->query_logins_orb = pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_query_logins_orb), &scsi_id->query_logins_orb_dma); if (!scsi_id->query_logins_orb) goto alloc_fail; SBP2_DMA_ALLOC("consistent DMA region for query logins ORB"); /* Query logins response DMA */ scsi_id->query_logins_response = pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_query_logins_response), &scsi_id->query_logins_response_dma); if (!scsi_id->query_logins_response) goto alloc_fail; SBP2_DMA_ALLOC("consistent DMA region for query logins response"); /* Reconnect ORB DMA */ scsi_id->reconnect_orb = pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_reconnect_orb), &scsi_id->reconnect_orb_dma); if (!scsi_id->reconnect_orb) goto alloc_fail; SBP2_DMA_ALLOC("consistent DMA region for reconnect ORB"); /* Logout ORB DMA */ scsi_id->logout_orb = pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_logout_orb), &scsi_id->logout_orb_dma); if (!scsi_id->logout_orb) goto alloc_fail; SBP2_DMA_ALLOC("consistent DMA region for logout ORB"); /* Login ORB DMA */ scsi_id->login_orb = pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_login_orb), &scsi_id->login_orb_dma); if (!scsi_id->login_orb) { alloc_fail: if (scsi_id->query_logins_response) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_query_logins_response), scsi_id->query_logins_response, scsi_id->query_logins_response_dma); SBP2_DMA_FREE("query logins response DMA"); } if (scsi_id->query_logins_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_query_logins_orb), scsi_id->query_logins_orb, scsi_id->query_logins_orb_dma); SBP2_DMA_FREE("query logins ORB DMA"); } if (scsi_id->logout_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_logout_orb), scsi_id->logout_orb, scsi_id->logout_orb_dma); SBP2_DMA_FREE("logout ORB DMA"); } if (scsi_id->reconnect_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_reconnect_orb), scsi_id->reconnect_orb, scsi_id->reconnect_orb_dma); SBP2_DMA_FREE("reconnect ORB DMA"); } if (scsi_id->login_response) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_login_response), scsi_id->login_response, scsi_id->login_response_dma); SBP2_DMA_FREE("login FIFO DMA"); } kfree(scsi_id); list_del(&scsi_id->list); SBP2_ERR ("Could not allocate memory for scsi_id"); return -ENOMEM; } SBP2_DMA_ALLOC("consistent DMA region for login ORB"); /* * Find an empty spot to stick our scsi id instance data. */ for (i = 0; i < hi->scsi_host->max_id; i++) { if (!hi->scsi_id[i]) { hi->scsi_id[i] = scsi_id; scsi_id->id = i; SBP2_DEBUG("New SBP-2 device inserted, SCSI ID = %x", (unsigned int) i); break; } } /* * Create our command orb pool */ if (sbp2util_create_command_orb_pool(scsi_id)) { SBP2_ERR("sbp2util_create_command_orb_pool failed!"); sbp2_remove_device(scsi_id); return -ENOMEM; } /* * Make sure we are not out of space */ if (i == hi->scsi_host->max_id) { SBP2_ERR("No slots left for SBP-2 device"); sbp2_remove_device(scsi_id); return -EBUSY; } /* Schedule a timeout here. The reason is that we may be so close * to a bus reset, that the device is not available for logins. * This can happen when the bus reset is caused by the host * connected to the sbp2 device being removed. That host would * have a certain amount of time to relogin before the sbp2 device * allows someone else to login instead. One second makes sense. */ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ); /* * Login to the sbp-2 device */ if (sbp2_login_device(scsi_id)) { /* Login failed, just remove the device. */ sbp2_remove_device(scsi_id); return -EBUSY; } /* * Set max retries to something large on the device */ sbp2_set_busy_timeout(scsi_id); /* * Do a SBP-2 fetch agent reset */ sbp2_agent_reset(scsi_id, 1); /* * Get the max speed and packet size that we can use */ sbp2_max_speed_and_size(scsi_id); #ifdef SBP2_USE_SCSI_ADDREM_HACK /* Try to hook ourselves into the SCSI subsystem */ if (scsi_add_single_device(hi->scsi_host, 0, scsi_id->id, 0)) SBP2_INFO("Unable to connect SBP-2 device into the SCSI subsystem"); #endif return 0; } /* * This function removes an sbp2 device from the sbp2scsi_host_info struct. */ static void sbp2_remove_device(struct scsi_id_instance_data *scsi_id) { struct sbp2scsi_host_info *hi = scsi_id->hi; SBP2_DEBUG("sbp2_remove_device"); /* Complete any pending commands with selection timeout */ sbp2scsi_complete_all_commands(scsi_id, DID_NO_CONNECT); /* Clean up any other structures */ sbp2util_remove_command_orb_pool(scsi_id); hi->scsi_id[scsi_id->id] = NULL; if (scsi_id->login_response) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_login_response), scsi_id->login_response, scsi_id->login_response_dma); SBP2_DMA_FREE("single login FIFO"); } if (scsi_id->login_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_login_orb), scsi_id->login_orb, scsi_id->login_orb_dma); SBP2_DMA_FREE("single login ORB"); } if (scsi_id->reconnect_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_reconnect_orb), scsi_id->reconnect_orb, scsi_id->reconnect_orb_dma); SBP2_DMA_FREE("single reconnect orb"); } if (scsi_id->logout_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_logout_orb), scsi_id->logout_orb, scsi_id->logout_orb_dma); SBP2_DMA_FREE("single logout orb"); } if (scsi_id->query_logins_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_query_logins_orb), scsi_id->query_logins_orb, scsi_id->query_logins_orb_dma); SBP2_DMA_FREE("single query logins orb"); } if (scsi_id->query_logins_response) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_query_logins_response), scsi_id->query_logins_response, scsi_id->query_logins_response_dma); SBP2_DMA_FREE("single query logins data"); } SBP2_DEBUG("SBP-2 device removed, SCSI ID = %d", scsi_id->id); list_del(&scsi_id->list); kfree(scsi_id); } #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA /* * This function deals with physical dma write requests (for adapters that do not support * physical dma in hardware). Mostly just here for debugging... */ static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid, int destid, quadlet_t *data, u64 addr, size_t length, u16 flags) { /* * Manually put the data in the right place. */ memcpy(bus_to_virt((u32)addr), data, length); sbp2util_packet_dump(data, length, "sbp2 phys dma write by device", (u32)addr); return(RCODE_COMPLETE); } /* * This function deals with physical dma read requests (for adapters that do not support * physical dma in hardware). Mostly just here for debugging... */ static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid, quadlet_t *data, u64 addr, size_t length, u16 flags) { /* * Grab data from memory and send a read response. */ memcpy(data, bus_to_virt((u32)addr), length); sbp2util_packet_dump(data, length, "sbp2 phys dma read by device", (u32)addr); return(RCODE_COMPLETE); } #endif /************************************** * SBP-2 protocol related section **************************************/ /* * This function determines if we should convert scsi commands for a particular sbp2 device type */ static __inline__ int sbp2_command_conversion_device_type(u8 device_type) { return (((device_type == TYPE_DISK) || (device_type == TYPE_SDAD) || (device_type == TYPE_ROM)) ? 1:0); } /* * This function queries the device for the maximum concurrent logins it * supports. */ static int sbp2_query_logins(struct scsi_id_instance_data *scsi_id) { struct sbp2scsi_host_info *hi = scsi_id->hi; quadlet_t data[2]; int max_logins; int active_logins; SBP2_DEBUG("sbp2_query_logins"); scsi_id->query_logins_orb->reserved1 = 0x0; scsi_id->query_logins_orb->reserved2 = 0x0; scsi_id->query_logins_orb->query_response_lo = scsi_id->query_logins_response_dma; scsi_id->query_logins_orb->query_response_hi = ORB_SET_NODE_ID(hi->host->node_id); SBP2_DEBUG("sbp2_query_logins: query_response_hi/lo initialized"); scsi_id->query_logins_orb->lun_misc = ORB_SET_FUNCTION(QUERY_LOGINS_REQUEST); scsi_id->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1); if (scsi_id->sbp2_device_type_and_lun != SBP2_DEVICE_TYPE_LUN_UNINITIALIZED) { scsi_id->query_logins_orb->lun_misc |= ORB_SET_LUN(scsi_id->sbp2_device_type_and_lun); SBP2_DEBUG("sbp2_query_logins: set lun to %d", ORB_SET_LUN(scsi_id->sbp2_device_type_and_lun)); } SBP2_DEBUG("sbp2_query_logins: lun_misc initialized"); scsi_id->query_logins_orb->reserved_resp_length = ORB_SET_QUERY_LOGINS_RESP_LENGTH(sizeof(struct sbp2_query_logins_response)); SBP2_DEBUG("sbp2_query_logins: reserved_resp_length initialized"); scsi_id->query_logins_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO + SBP2_STATUS_FIFO_ENTRY_TO_OFFSET(scsi_id->id); scsi_id->query_logins_orb->status_FIFO_hi = (ORB_SET_NODE_ID(hi->host->node_id) | SBP2_STATUS_FIFO_ADDRESS_HI); SBP2_DEBUG("sbp2_query_logins: status FIFO initialized"); sbp2util_cpu_to_be32_buffer(scsi_id->query_logins_orb, sizeof(struct sbp2_query_logins_orb)); SBP2_DEBUG("sbp2_query_logins: orb byte-swapped"); sbp2util_packet_dump(scsi_id->query_logins_orb, sizeof(struct sbp2_query_logins_orb), "sbp2 query logins orb", scsi_id->query_logins_orb_dma); memset(scsi_id->query_logins_response, 0, sizeof(struct sbp2_query_logins_response)); memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block)); SBP2_DEBUG("sbp2_query_logins: query_logins_response/status FIFO memset"); data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = scsi_id->query_logins_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); atomic_set(&scsi_id->sbp2_login_complete, 0); SBP2_DEBUG("sbp2_query_logins: prepared to write"); hpsb_node_write(scsi_id->ne, scsi_id->sbp2_management_agent_addr, data, 8); SBP2_DEBUG("sbp2_query_logins: written"); if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, 2*HZ)) { SBP2_ERR("Error querying logins to SBP-2 device - timed out"); return(-EIO); } if (scsi_id->status_block.ORB_offset_lo != scsi_id->query_logins_orb_dma) { SBP2_ERR("Error querying logins to SBP-2 device - timed out"); return(-EIO); } if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) || STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) || STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) { SBP2_ERR("Error querying logins to SBP-2 device - timed out"); return(-EIO); } sbp2util_cpu_to_be32_buffer(scsi_id->query_logins_response, sizeof(struct sbp2_query_logins_response)); SBP2_DEBUG("length_max_logins = %x", (unsigned int)scsi_id->query_logins_response->length_max_logins); SBP2_INFO("Query logins to SBP-2 device successful"); max_logins = RESPONSE_GET_MAX_LOGINS(scsi_id->query_logins_response->length_max_logins); SBP2_INFO("Maximum concurrent logins supported: %d", max_logins); active_logins = RESPONSE_GET_ACTIVE_LOGINS(scsi_id->query_logins_response->length_max_logins); SBP2_INFO("Number of active logins: %d", active_logins); if (active_logins >= max_logins) { return(-EIO); } return 0; } /* * This function is called in order to login to a particular SBP-2 device, * after a bus reset. */ static int sbp2_login_device(struct scsi_id_instance_data *scsi_id) { struct sbp2scsi_host_info *hi = scsi_id->hi; quadlet_t data[2]; SBP2_DEBUG("sbp2_login_device"); if (!scsi_id->login_orb) { SBP2_DEBUG("sbp2_login_device: login_orb not alloc'd!"); return(-EIO); } if (!sbp2_exclusive_login) { if (sbp2_query_logins(scsi_id)) { SBP2_ERR("Device does not support any more concurrent logins"); return(-EIO); } } /* Set-up login ORB, assume no password */ scsi_id->login_orb->password_hi = 0; scsi_id->login_orb->password_lo = 0; SBP2_DEBUG("sbp2_login_device: password_hi/lo initialized"); scsi_id->login_orb->login_response_lo = scsi_id->login_response_dma; scsi_id->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id); SBP2_DEBUG("sbp2_login_device: login_response_hi/lo initialized"); scsi_id->login_orb->lun_misc = ORB_SET_FUNCTION(LOGIN_REQUEST); scsi_id->login_orb->lun_misc |= ORB_SET_RECONNECT(0); /* One second reconnect time */ scsi_id->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login); /* Exclusive access to device */ scsi_id->login_orb->lun_misc |= ORB_SET_NOTIFY(1); /* Notify us of login complete */ /* Set the lun if we were able to pull it from the device's unit directory */ if (scsi_id->sbp2_device_type_and_lun != SBP2_DEVICE_TYPE_LUN_UNINITIALIZED) { scsi_id->login_orb->lun_misc |= ORB_SET_LUN(scsi_id->sbp2_device_type_and_lun); SBP2_DEBUG("sbp2_query_logins: set lun to %d", ORB_SET_LUN(scsi_id->sbp2_device_type_and_lun)); } SBP2_DEBUG("sbp2_login_device: lun_misc initialized"); scsi_id->login_orb->passwd_resp_lengths = ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response)); SBP2_DEBUG("sbp2_login_device: passwd_resp_lengths initialized"); scsi_id->login_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO + SBP2_STATUS_FIFO_ENTRY_TO_OFFSET(scsi_id->id); scsi_id->login_orb->status_FIFO_hi = (ORB_SET_NODE_ID(hi->host->node_id) | SBP2_STATUS_FIFO_ADDRESS_HI); SBP2_DEBUG("sbp2_login_device: status FIFO initialized"); /* * Byte swap ORB if necessary */ sbp2util_cpu_to_be32_buffer(scsi_id->login_orb, sizeof(struct sbp2_login_orb)); SBP2_DEBUG("sbp2_login_device: orb byte-swapped"); sbp2util_packet_dump(scsi_id->login_orb, sizeof(struct sbp2_login_orb), "sbp2 login orb", scsi_id->login_orb_dma); /* * Initialize login response and status fifo */ memset(scsi_id->login_response, 0, sizeof(struct sbp2_login_response)); memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block)); SBP2_DEBUG("sbp2_login_device: login_response/status FIFO memset"); /* * Ok, let's write to the target's management agent register */ data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = scsi_id->login_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); atomic_set(&scsi_id->sbp2_login_complete, 0); SBP2_DEBUG("sbp2_login_device: prepared to write to %08x", (unsigned int)scsi_id->sbp2_management_agent_addr); hpsb_node_write(scsi_id->ne, scsi_id->sbp2_management_agent_addr, data, 8); SBP2_DEBUG("sbp2_login_device: written"); /* * Wait for login status (up to 20 seconds)... */ if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, 20*HZ)) { SBP2_ERR("Error logging into SBP-2 device - login timed-out"); return(-EIO); } /* * Sanity. Make sure status returned matches login orb. */ if (scsi_id->status_block.ORB_offset_lo != scsi_id->login_orb_dma) { SBP2_ERR("Error logging into SBP-2 device - login timed-out"); return(-EIO); } /* * Check status */ if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) || STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) || STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) { SBP2_ERR("Error logging into SBP-2 device - login failed"); return(-EIO); } /* * Byte swap the login response, for use when reconnecting or * logging out. */ sbp2util_cpu_to_be32_buffer(scsi_id->login_response, sizeof(struct sbp2_login_response)); /* * Grab our command block agent address from the login response. */ SBP2_DEBUG("command_block_agent_hi = %x", (unsigned int)scsi_id->login_response->command_block_agent_hi); SBP2_DEBUG("command_block_agent_lo = %x", (unsigned int)scsi_id->login_response->command_block_agent_lo); scsi_id->sbp2_command_block_agent_addr = ((u64)scsi_id->login_response->command_block_agent_hi) << 32; scsi_id->sbp2_command_block_agent_addr |= ((u64)scsi_id->login_response->command_block_agent_lo); scsi_id->sbp2_command_block_agent_addr &= 0x0000ffffffffffffULL; SBP2_INFO("Logged into SBP-2 device"); return(0); } /* * This function is called in order to logout from a particular SBP-2 * device, usually called during driver unload. */ static int sbp2_logout_device(struct scsi_id_instance_data *scsi_id) { struct sbp2scsi_host_info *hi = scsi_id->hi; quadlet_t data[2]; SBP2_DEBUG("sbp2_logout_device"); /* * Set-up logout ORB */ scsi_id->logout_orb->reserved1 = 0x0; scsi_id->logout_orb->reserved2 = 0x0; scsi_id->logout_orb->reserved3 = 0x0; scsi_id->logout_orb->reserved4 = 0x0; scsi_id->logout_orb->login_ID_misc = ORB_SET_FUNCTION(LOGOUT_REQUEST); scsi_id->logout_orb->login_ID_misc |= ORB_SET_LOGIN_ID(scsi_id->login_response->length_login_ID); /* Notify us when complete */ scsi_id->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1); scsi_id->logout_orb->reserved5 = 0x0; scsi_id->logout_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO + SBP2_STATUS_FIFO_ENTRY_TO_OFFSET(scsi_id->id); scsi_id->logout_orb->status_FIFO_hi = (ORB_SET_NODE_ID(hi->host->node_id) | SBP2_STATUS_FIFO_ADDRESS_HI); /* * Byte swap ORB if necessary */ sbp2util_cpu_to_be32_buffer(scsi_id->logout_orb, sizeof(struct sbp2_logout_orb)); sbp2util_packet_dump(scsi_id->logout_orb, sizeof(struct sbp2_logout_orb), "sbp2 logout orb", scsi_id->logout_orb_dma); /* * Ok, let's write to the target's management agent register */ data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = scsi_id->logout_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); atomic_set(&scsi_id->sbp2_login_complete, 0); hpsb_node_write(scsi_id->ne, scsi_id->sbp2_management_agent_addr, data, 8); /* Wait for device to logout...1 second. */ sbp2util_down_timeout(&scsi_id->sbp2_login_complete, HZ); SBP2_INFO("Logged out of SBP-2 device"); #ifdef SBP2_USE_SCSI_ADDREM_HACK /* Now that we are logged out of the SBP-2 device, lets * try to un-hook ourselves from the SCSI subsystem */ if (scsi_remove_single_device(hi->scsi_host, 0, scsi_id->id, 0)) SBP2_INFO("Unable to disconnect SBP-2 device from the SCSI subsystem"); #endif return 0; } /* * This function is called in order to reconnect to a particular SBP-2 * device, after a bus reset. */ static int sbp2_reconnect_device(struct scsi_id_instance_data *scsi_id) { struct sbp2scsi_host_info *hi = scsi_id->hi; quadlet_t data[2]; SBP2_DEBUG("sbp2_reconnect_device"); /* * Set-up reconnect ORB */ scsi_id->reconnect_orb->reserved1 = 0x0; scsi_id->reconnect_orb->reserved2 = 0x0; scsi_id->reconnect_orb->reserved3 = 0x0; scsi_id->reconnect_orb->reserved4 = 0x0; scsi_id->reconnect_orb->login_ID_misc = ORB_SET_FUNCTION(RECONNECT_REQUEST); scsi_id->reconnect_orb->login_ID_misc |= ORB_SET_LOGIN_ID(scsi_id->login_response->length_login_ID); /* Notify us when complete */ scsi_id->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1); scsi_id->reconnect_orb->reserved5 = 0x0; scsi_id->reconnect_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO + SBP2_STATUS_FIFO_ENTRY_TO_OFFSET(scsi_id->id); scsi_id->reconnect_orb->status_FIFO_hi = (ORB_SET_NODE_ID(hi->host->node_id) | SBP2_STATUS_FIFO_ADDRESS_HI); /* * Byte swap ORB if necessary */ sbp2util_cpu_to_be32_buffer(scsi_id->reconnect_orb, sizeof(struct sbp2_reconnect_orb)); sbp2util_packet_dump(scsi_id->reconnect_orb, sizeof(struct sbp2_reconnect_orb), "sbp2 reconnect orb", scsi_id->reconnect_orb_dma); /* * Initialize status fifo */ memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block)); /* * Ok, let's write to the target's management agent register */ data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = scsi_id->reconnect_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); atomic_set(&scsi_id->sbp2_login_complete, 0); hpsb_node_write(scsi_id->ne, scsi_id->sbp2_management_agent_addr, data, 8); /* * Wait for reconnect status (up to 1 second)... */ if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, HZ)) { SBP2_ERR("Error reconnecting to SBP-2 device - reconnect timed-out"); return(-EIO); } /* * Sanity. Make sure status returned matches reconnect orb. */ if (scsi_id->status_block.ORB_offset_lo != scsi_id->reconnect_orb_dma) { SBP2_ERR("Error reconnecting to SBP-2 device - reconnect timed-out"); return(-EIO); } /* * Check status */ if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) || STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) || STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) { SBP2_ERR("Error reconnecting to SBP-2 device - reconnect failed"); return(-EIO); } SBP2_INFO("Reconnected to SBP-2 device"); return(0); } /* * This function is called in order to set the busy timeout (number of * retries to attempt) on the sbp2 device. */ static int sbp2_set_busy_timeout(struct scsi_id_instance_data *scsi_id) { quadlet_t data; SBP2_DEBUG("sbp2_set_busy_timeout"); /* * Ok, let's write to the target's busy timeout register */ data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE); if (hpsb_node_write(scsi_id->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4)) { SBP2_ERR("sbp2_set_busy_timeout error"); } return(0); } /* * This function is called to parse sbp2 device's config rom unit * directory. Used to determine things like sbp2 management agent offset, * and command set used (SCSI or RBC). */ static void sbp2_parse_unit_directory(struct scsi_id_group *scsi_group, struct unit_directory *ud) { struct scsi_id_instance_data *scsi_id; struct list_head *lh; u64 management_agent_addr; u32 command_set_spec_id, command_set, unit_characteristics, firmware_revision, workarounds; int i; SBP2_DEBUG("sbp2_parse_unit_directory"); management_agent_addr = 0x0; command_set_spec_id = 0x0; command_set = 0x0; unit_characteristics = 0x0; firmware_revision = 0x0; /* Handle different fields in the unit directory, based on keys */ for (i = 0; i < ud->length; i++) { switch (CONFIG_ROM_KEY(ud->quadlets[i])) { case SBP2_CSR_OFFSET_KEY: /* Save off the management agent address */ management_agent_addr = CSR_REGISTER_BASE + (CONFIG_ROM_VALUE(ud->quadlets[i]) << 2); SBP2_DEBUG("sbp2_management_agent_addr = %x", (unsigned int) management_agent_addr); break; case SBP2_COMMAND_SET_SPEC_ID_KEY: /* Command spec organization */ command_set_spec_id = CONFIG_ROM_VALUE(ud->quadlets[i]); SBP2_DEBUG("sbp2_command_set_spec_id = %x", (unsigned int) command_set_spec_id); break; case SBP2_COMMAND_SET_KEY: /* Command set used by sbp2 device */ command_set = CONFIG_ROM_VALUE(ud->quadlets[i]); SBP2_DEBUG("sbp2_command_set = %x", (unsigned int) command_set); break; case SBP2_UNIT_CHARACTERISTICS_KEY: /* * Unit characterisitcs (orb related stuff * that I'm not yet paying attention to) */ unit_characteristics = CONFIG_ROM_VALUE(ud->quadlets[i]); SBP2_DEBUG("sbp2_unit_characteristics = %x", (unsigned int) unit_characteristics); break; case SBP2_DEVICE_TYPE_AND_LUN_KEY: /* * Device type and lun (used for * detemining type of sbp2 device) */ scsi_id = kmalloc(sizeof(*scsi_id), GFP_KERNEL); if (!scsi_id) { SBP2_ERR("Out of memory adding scsi_id, not all LUN's will be added"); break; } memset(scsi_id, 0, sizeof(*scsi_id)); scsi_id->sbp2_device_type_and_lun = CONFIG_ROM_VALUE(ud->quadlets[i]); SBP2_DEBUG("sbp2_device_type_and_lun = %x", (unsigned int) scsi_id->sbp2_device_type_and_lun); list_add_tail(&scsi_id->list, &scsi_group->scsi_id_list); break; case SBP2_FIRMWARE_REVISION_KEY: /* Firmware revision */ firmware_revision = CONFIG_ROM_VALUE(ud->quadlets[i]); if (sbp2_force_inquiry_hack) SBP2_INFO("sbp2_firmware_revision = %x", (unsigned int) firmware_revision); else SBP2_DEBUG("sbp2_firmware_revision = %x", (unsigned int) firmware_revision); break; default: break; } } /* This is the start of our broken device checking. We try to hack * around oddities and known defects. */ workarounds = 0x0; /* If the vendor id is 0xa0b8 (Symbios vendor id), then we have a * bridge with 128KB max transfer size limitation. For sanity, we * only voice this when the current sbp2_max_sectors setting * exceeds the 128k limit. By default, that is not the case. * * It would be really nice if we could detect this before the scsi * host gets initialized. That way we can down-force the * sbp2_max_sectors to account for it. That is not currently * possible. */ if ((firmware_revision & 0xffff00) == SBP2_128KB_BROKEN_FIRMWARE && (sbp2_max_sectors * 512) > (128 * 1024)) { SBP2_WARN("Node " NODE_BUS_FMT ": Bridge only supports 128KB max transfer size.", NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid)); SBP2_WARN("WARNING: Current sbp2_max_sectors setting is larger than 128KB (%d sectors)!", sbp2_max_sectors); workarounds |= SBP2_BREAKAGE_128K_MAX_TRANSFER; } /* Check for a blacklisted set of devices that require us to force * a 36 byte host inquiry. This can be overriden as a module param * (to force all hosts). */ for (i = 0; i < NUM_BROKEN_INQUIRY_DEVS; i++) { if ((firmware_revision & 0xffff00) == sbp2_broken_inquiry_list[i]) { SBP2_WARN("Node " NODE_BUS_FMT ": Using 36byte inquiry workaround", NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid)); workarounds |= SBP2_BREAKAGE_INQUIRY_HACK; break; /* No need to continue. */ } } /* If this is a logical unit directory entry, process the parent * to get the common values. */ if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) { sbp2_parse_unit_directory(scsi_group, ud->parent); } else { /* If our list is empty, add a base scsi_id (happens in a normal * case where there is no logical_unit_number entry */ if (list_empty(&scsi_group->scsi_id_list)) { scsi_id = kmalloc(sizeof(*scsi_id), GFP_KERNEL); if (!scsi_id) { SBP2_ERR("Out of memory adding scsi_id"); return; } memset(scsi_id, 0, sizeof(*scsi_id)); scsi_id->sbp2_device_type_and_lun = SBP2_DEVICE_TYPE_LUN_UNINITIALIZED; list_add_tail(&scsi_id->list, &scsi_group->scsi_id_list); } /* Update the generic fields in all the LUN's */ list_for_each (lh, &scsi_group->scsi_id_list) { scsi_id = list_entry(lh, struct scsi_id_instance_data, list); scsi_id->sbp2_management_agent_addr = management_agent_addr; scsi_id->sbp2_command_set_spec_id = command_set_spec_id; scsi_id->sbp2_command_set = command_set; scsi_id->sbp2_unit_characteristics = unit_characteristics; scsi_id->sbp2_firmware_revision = firmware_revision; scsi_id->workarounds = workarounds; } } } /* * This function is called in order to determine the max speed and packet * size we can use in our ORBs. Note, that we (the driver and host) only * initiate the transaction. The SBP-2 device actually transfers the data * (by reading from the DMA area we tell it). This means that the SBP-2 * device decides the actual maximum data it can transfer. We just tell it * the speed that it needs to use, and the max_rec the host supports, and * it takes care of the rest. */ static int sbp2_max_speed_and_size(struct scsi_id_instance_data *scsi_id) { struct sbp2scsi_host_info *hi = scsi_id->hi; SBP2_DEBUG("sbp2_max_speed_and_size"); /* Initial setting comes from the hosts speed map */ scsi_id->speed_code = hi->host->speed_map[NODEID_TO_NODE(hi->host->node_id) * 64 + NODEID_TO_NODE(scsi_id->ne->nodeid)]; /* Bump down our speed if the user requested it */ if (scsi_id->speed_code > sbp2_max_speed) { scsi_id->speed_code = sbp2_max_speed; SBP2_ERR("Forcing SBP-2 max speed down to %s", hpsb_speedto_str[scsi_id->speed_code]); } /* Payload size is the lesser of what our speed supports and what * our host supports. */ scsi_id->max_payload_size = min(sbp2_speedto_max_payload[scsi_id->speed_code], (u8)(((be32_to_cpu(hi->host->csr.rom[2]) >> 12) & 0xf) - 1)); SBP2_ERR("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]", NODE_BUS_ARGS(hi->host, scsi_id->ne->nodeid), hpsb_speedto_str[scsi_id->speed_code], 1 << ((u32)scsi_id->max_payload_size + 2)); return(0); } /* * This function is called in order to perform a SBP-2 agent reset. */ static int sbp2_agent_reset(struct scsi_id_instance_data *scsi_id, int wait) { struct sbp2scsi_host_info *hi = scsi_id->hi; struct hpsb_packet *packet; quadlet_t data; SBP2_DEBUG("sbp2_agent_reset"); /* * Ok, let's write to the target's management agent register */ data = ntohl(SBP2_AGENT_RESET_DATA); packet = sbp2util_allocate_write_packet(hi, scsi_id->ne, scsi_id->sbp2_command_block_agent_addr + SBP2_AGENT_RESET_OFFSET, 4, &data, wait ? 0 : 1); if (!packet) { SBP2_ERR("sbp2util_allocate_write_packet failed"); return(-ENOMEM); } if (!hpsb_send_packet(packet)) { SBP2_ERR("hpsb_send_packet failed"); sbp2_free_packet(packet); return(-EIO); } if (wait) { down(&packet->state_change); down(&packet->state_change); sbp2_free_packet(packet); } /* * Need to make sure orb pointer is written on next command */ scsi_id->last_orb = NULL; return(0); } /* * This function is called to create the actual command orb and s/g list * out of the scsi command itself. */ static int sbp2_create_command_orb(struct scsi_id_instance_data *scsi_id, struct sbp2_command_info *command, unchar *scsi_cmd, unsigned int scsi_use_sg, unsigned int scsi_request_bufflen, void *scsi_request_buffer, unsigned char scsi_dir) { struct sbp2scsi_host_info *hi = scsi_id->hi; struct scatterlist *sgpnt = (struct scatterlist *) scsi_request_buffer; struct sbp2_command_orb *command_orb = &command->command_orb; struct sbp2_unrestricted_page_table *scatter_gather_element = &command->scatter_gather_element[0]; int dma_dir = scsi_to_pci_dma_dir (scsi_dir); u32 sg_count, sg_len, orb_direction; dma_addr_t sg_addr; int i; /* * Set-up our command ORB.. * * NOTE: We're doing unrestricted page tables (s/g), as this is * best performance (at least with the devices I have). This means * that data_size becomes the number of s/g elements, and * page_size should be zero (for unrestricted). */ command_orb->next_ORB_hi = ORB_SET_NULL_PTR(1); command_orb->next_ORB_lo = 0x0; command_orb->misc = ORB_SET_MAX_PAYLOAD(scsi_id->max_payload_size); command_orb->misc |= ORB_SET_SPEED(scsi_id->speed_code); command_orb->misc |= ORB_SET_NOTIFY(1); /* Notify us when complete */ /* * Get the direction of the transfer. If the direction is unknown, then use our * goofy table as a back-up. */ switch (scsi_dir) { case SCSI_DATA_NONE: orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER; break; case SCSI_DATA_WRITE: orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA; break; case SCSI_DATA_READ: orb_direction = ORB_DIRECTION_READ_FROM_MEDIA; break; case SCSI_DATA_UNKNOWN: default: SBP2_ERR("SCSI data transfer direction not specified. " "Update the SBP2 direction table in sbp2.h if " "necessary for your application"); print_command (scsi_cmd); orb_direction = sbp2scsi_direction_table[*scsi_cmd]; break; } /* * Set-up our pagetable stuff... unfortunately, this has become * messier than I'd like. Need to clean this up a bit. ;-) */ if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) { SBP2_DEBUG("No data transfer"); /* * Handle no data transfer */ command_orb->data_descriptor_hi = 0x0; command_orb->data_descriptor_lo = 0x0; command_orb->misc |= ORB_SET_DIRECTION(1); } else if (scsi_use_sg) { SBP2_DEBUG("Use scatter/gather"); /* * Special case if only one element (and less than 64KB in size) */ if ((scsi_use_sg == 1) && (sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) { SBP2_DEBUG("Only one s/g element"); command->dma_dir = dma_dir; command->dma_size = sgpnt[0].length; command->dma_type = CMD_DMA_PAGE; command->cmd_dma = pci_map_page(hi->host->pdev, sgpnt[0].page, sgpnt[0].offset, command->dma_size, command->dma_dir); SBP2_DMA_ALLOC("single page scatter element"); command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id); command_orb->data_descriptor_lo = command->cmd_dma; command_orb->misc |= ORB_SET_DATA_SIZE(command->dma_size); command_orb->misc |= ORB_SET_DIRECTION(orb_direction); } else { int count = pci_map_sg(hi->host->pdev, sgpnt, scsi_use_sg, dma_dir); SBP2_DMA_ALLOC("scatter list"); command->dma_size = scsi_use_sg; command->dma_dir = dma_dir; command->sge_buffer = sgpnt; /* use page tables (s/g) */ command_orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1); command_orb->misc |= ORB_SET_DIRECTION(orb_direction); command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id); command_orb->data_descriptor_lo = command->sge_dma; /* * Loop through and fill out our sbp-2 page tables * (and split up anything too large) */ for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) { sg_len = sg_dma_len(sgpnt); sg_addr = sg_dma_address(sgpnt); while (sg_len) { scatter_gather_element[sg_count].segment_base_lo = sg_addr; if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) { scatter_gather_element[sg_count].length_segment_base_hi = PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH); sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH; sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH; } else { scatter_gather_element[sg_count].length_segment_base_hi = PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len); sg_len = 0; } sg_count++; } } /* Number of page table (s/g) elements */ command_orb->misc |= ORB_SET_DATA_SIZE(sg_count); sbp2util_packet_dump(scatter_gather_element, (sizeof(struct sbp2_unrestricted_page_table)) * sg_count, "sbp2 s/g list", command->sge_dma); /* * Byte swap page tables if necessary */ sbp2util_cpu_to_be32_buffer(scatter_gather_element, (sizeof(struct sbp2_unrestricted_page_table)) * sg_count); } } else { SBP2_DEBUG("No scatter/gather"); command->dma_dir = dma_dir; command->dma_size = scsi_request_bufflen; command->dma_type = CMD_DMA_SINGLE; command->cmd_dma = pci_map_single (hi->host->pdev, scsi_request_buffer, command->dma_size, command->dma_dir); SBP2_DMA_ALLOC("single bulk"); /* * Handle case where we get a command w/o s/g enabled (but * check for transfers larger than 64K) */ if (scsi_request_bufflen <= SBP2_MAX_SG_ELEMENT_LENGTH) { command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id); command_orb->data_descriptor_lo = command->cmd_dma; command_orb->misc |= ORB_SET_DATA_SIZE(scsi_request_bufflen); command_orb->misc |= ORB_SET_DIRECTION(orb_direction); /* * Sanity, in case our direction table is not * up-to-date */ if (!scsi_request_bufflen) { command_orb->data_descriptor_hi = 0x0; command_orb->data_descriptor_lo = 0x0; command_orb->misc |= ORB_SET_DIRECTION(1); } } else { /* * Need to turn this into page tables, since the * buffer is too large. */ command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id); command_orb->data_descriptor_lo = command->sge_dma; /* Use page tables (s/g) */ command_orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1); command_orb->misc |= ORB_SET_DIRECTION(orb_direction); /* * fill out our sbp-2 page tables (and split up * the large buffer) */ sg_count = 0; sg_len = scsi_request_bufflen; sg_addr = command->cmd_dma; while (sg_len) { scatter_gather_element[sg_count].segment_base_lo = sg_addr; if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) { scatter_gather_element[sg_count].length_segment_base_hi = PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH); sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH; sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH; } else { scatter_gather_element[sg_count].length_segment_base_hi = PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len); sg_len = 0; } sg_count++; } /* Number of page table (s/g) elements */ command_orb->misc |= ORB_SET_DATA_SIZE(sg_count); sbp2util_packet_dump(scatter_gather_element, (sizeof(struct sbp2_unrestricted_page_table)) * sg_count, "sbp2 s/g list", command->sge_dma); /* * Byte swap page tables if necessary */ sbp2util_cpu_to_be32_buffer(scatter_gather_element, (sizeof(struct sbp2_unrestricted_page_table)) * sg_count); } } /* * Byte swap command ORB if necessary */ sbp2util_cpu_to_be32_buffer(command_orb, sizeof(struct sbp2_command_orb)); /* * Put our scsi command in the command ORB */ memset(command_orb->cdb, 0, 12); memcpy(command_orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd)); return(0); } /* * This function is called in order to begin a regular SBP-2 command. */ static int sbp2_link_orb_command(struct scsi_id_instance_data *scsi_id, struct sbp2_command_info *command) { struct sbp2scsi_host_info *hi = scsi_id->hi; struct hpsb_packet *packet; struct sbp2_command_orb *command_orb = &command->command_orb; outstanding_orb_incr; SBP2_ORB_DEBUG("sending command orb %p, total orbs = %x", command_orb, global_outstanding_command_orbs); pci_dma_sync_single(hi->host->pdev, command->command_orb_dma, sizeof(struct sbp2_command_orb), PCI_DMA_BIDIRECTIONAL); pci_dma_sync_single(hi->host->pdev, command->sge_dma, sizeof(command->scatter_gather_element), PCI_DMA_BIDIRECTIONAL); /* * Check to see if there are any previous orbs to use */ if (scsi_id->last_orb == NULL) { /* * Ok, let's write to the target's management agent register */ if (hpsb_node_entry_valid(scsi_id->ne)) { packet = sbp2util_allocate_write_packet(hi, scsi_id->ne, scsi_id->sbp2_command_block_agent_addr + SBP2_ORB_POINTER_OFFSET, 8, NULL, 1); if (!packet) { SBP2_ERR("sbp2util_allocate_write_packet failed"); return(-ENOMEM); } packet->data[0] = ORB_SET_NODE_ID(hi->host->node_id); packet->data[1] = command->command_orb_dma; sbp2util_cpu_to_be32_buffer(packet->data, 8); SBP2_ORB_DEBUG("write command agent, command orb %p", command_orb); if (!hpsb_send_packet(packet)) { SBP2_ERR("hpsb_send_packet failed"); sbp2_free_packet(packet); return(-EIO); } SBP2_ORB_DEBUG("write command agent complete"); } scsi_id->last_orb = command_orb; scsi_id->last_orb_dma = command->command_orb_dma; } else { /* * We have an orb already sent (maybe or maybe not * processed) that we can append this orb to. So do so, * and ring the doorbell. Have to be very careful * modifying these next orb pointers, as they are accessed * both by the sbp2 device and us. */ scsi_id->last_orb->next_ORB_lo = cpu_to_be32(command->command_orb_dma); /* Tells hardware that this pointer is valid */ scsi_id->last_orb->next_ORB_hi = 0x0; pci_dma_sync_single(hi->host->pdev, scsi_id->last_orb_dma, sizeof(struct sbp2_command_orb), PCI_DMA_BIDIRECTIONAL); /* * Ring the doorbell */ if (hpsb_node_entry_valid(scsi_id->ne)) { quadlet_t data = cpu_to_be32(command->command_orb_dma); packet = sbp2util_allocate_write_packet(hi, scsi_id->ne, scsi_id->sbp2_command_block_agent_addr + SBP2_DOORBELL_OFFSET, 4, &data, 1); if (!packet) { SBP2_ERR("sbp2util_allocate_write_packet failed"); return(-ENOMEM); } SBP2_ORB_DEBUG("ring doorbell, command orb %p", command_orb); if (!hpsb_send_packet(packet)) { SBP2_ERR("hpsb_send_packet failed"); sbp2_free_packet(packet); return(-EIO); } } scsi_id->last_orb = command_orb; scsi_id->last_orb_dma = command->command_orb_dma; } return(0); } /* * This function is called in order to begin a regular SBP-2 command. */ static int sbp2_send_command(struct scsi_id_instance_data *scsi_id, Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *)) { unchar *cmd = (unchar *) SCpnt->cmnd; unsigned int request_bufflen = SCpnt->request_bufflen; struct sbp2_command_info *command; SBP2_DEBUG("sbp2_send_command"); #if (CONFIG_IEEE1394_SBP2_DEBUG >= 2) || defined(CONFIG_IEEE1394_SBP2_PACKET_DUMP) printk("[scsi command]\n "); print_command (cmd); #endif SBP2_DEBUG("SCSI transfer size = %x", request_bufflen); SBP2_DEBUG("SCSI s/g elements = %x", (unsigned int)SCpnt->use_sg); /* * Allocate a command orb and s/g structure */ command = sbp2util_allocate_command_orb(scsi_id, SCpnt, done); if (!command) { return(-EIO); } /* * The scsi stack sends down a request_bufflen which does not match the * length field in the scsi cdb. This causes some sbp2 devices to * reject this inquiry command. Fix the request_bufflen. */ if (*cmd == INQUIRY) { if (sbp2_force_inquiry_hack || scsi_id->workarounds & SBP2_BREAKAGE_INQUIRY_HACK) request_bufflen = cmd[4] = 0x24; else request_bufflen = cmd[4]; } /* * Now actually fill in the comamnd orb and sbp2 s/g list */ sbp2_create_command_orb(scsi_id, command, cmd, SCpnt->use_sg, request_bufflen, SCpnt->request_buffer, SCpnt->sc_data_direction); /* * Update our cdb if necessary (to handle sbp2 RBC command set * differences). This is where the command set hacks go! =) */ sbp2_check_sbp2_command(scsi_id, command->command_orb.cdb); sbp2util_packet_dump(&command->command_orb, sizeof(struct sbp2_command_orb), "sbp2 command orb", command->command_orb_dma); /* * Initialize status fifo */ memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block)); /* * Link up the orb, and ring the doorbell if needed */ sbp2_link_orb_command(scsi_id, command); return(0); } /* * This function deals with command set differences between Linux scsi * command set and sbp2 RBC command set. */ static void sbp2_check_sbp2_command(struct scsi_id_instance_data *scsi_id, unchar *cmd) { unchar new_cmd[16]; u8 device_type = SBP2_DEVICE_TYPE (scsi_id->sbp2_device_type_and_lun); SBP2_DEBUG("sbp2_check_sbp2_command"); switch (*cmd) { case READ_6: if (sbp2_command_conversion_device_type(device_type)) { SBP2_DEBUG("Convert READ_6 to READ_10"); /* * Need to turn read_6 into read_10 */ new_cmd[0] = 0x28; new_cmd[1] = (cmd[1] & 0xe0); new_cmd[2] = 0x0; new_cmd[3] = (cmd[1] & 0x1f); new_cmd[4] = cmd[2]; new_cmd[5] = cmd[3]; new_cmd[6] = 0x0; new_cmd[7] = 0x0; new_cmd[8] = cmd[4]; new_cmd[9] = cmd[5]; memcpy(cmd, new_cmd, 10); } break; case WRITE_6: if (sbp2_command_conversion_device_type(device_type)) { SBP2_DEBUG("Convert WRITE_6 to WRITE_10"); /* * Need to turn write_6 into write_10 */ new_cmd[0] = 0x2a; new_cmd[1] = (cmd[1] & 0xe0); new_cmd[2] = 0x0; new_cmd[3] = (cmd[1] & 0x1f); new_cmd[4] = cmd[2]; new_cmd[5] = cmd[3]; new_cmd[6] = 0x0; new_cmd[7] = 0x0; new_cmd[8] = cmd[4]; new_cmd[9] = cmd[5]; memcpy(cmd, new_cmd, 10); } break; case MODE_SENSE: if (sbp2_command_conversion_device_type(device_type)) { SBP2_DEBUG("Convert MODE_SENSE_6 to MODE_SENSE_10"); /* * Need to turn mode_sense_6 into mode_sense_10 */ new_cmd[0] = 0x5a; new_cmd[1] = cmd[1]; new_cmd[2] = cmd[2]; new_cmd[3] = 0x0; new_cmd[4] = 0x0; new_cmd[5] = 0x0; new_cmd[6] = 0x0; new_cmd[7] = 0x0; new_cmd[8] = cmd[4]; new_cmd[9] = cmd[5]; memcpy(cmd, new_cmd, 10); } break; case MODE_SELECT: /* * TODO. Probably need to change mode select to 10 byte version */ default: break; } return; } /* * Translates SBP-2 status into SCSI sense data for check conditions */ static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status, unchar *sense_data) { SBP2_DEBUG("sbp2_status_to_sense_data"); /* * Ok, it's pretty ugly... ;-) */ sense_data[0] = 0x70; sense_data[1] = 0x0; sense_data[2] = sbp2_status[9]; sense_data[3] = sbp2_status[12]; sense_data[4] = sbp2_status[13]; sense_data[5] = sbp2_status[14]; sense_data[6] = sbp2_status[15]; sense_data[7] = 10; sense_data[8] = sbp2_status[16]; sense_data[9] = sbp2_status[17]; sense_data[10] = sbp2_status[18]; sense_data[11] = sbp2_status[19]; sense_data[12] = sbp2_status[10]; sense_data[13] = sbp2_status[11]; sense_data[14] = sbp2_status[20]; sense_data[15] = sbp2_status[21]; return(sbp2_status[8] & 0x3f); /* return scsi status */ } /* * This function is called after a command is completed, in order to do any necessary SBP-2 * response data translations for the SCSI stack */ static void sbp2_check_sbp2_response(struct scsi_id_instance_data *scsi_id, Scsi_Cmnd *SCpnt) { u8 *scsi_buf = SCpnt->request_buffer; u8 device_type = SBP2_DEVICE_TYPE (scsi_id->sbp2_device_type_and_lun); SBP2_DEBUG("sbp2_check_sbp2_response"); switch (SCpnt->cmnd[0]) { case INQUIRY: /* * If scsi_id->sbp2_device_type_and_lun is uninitialized, then fill * this information in from the inquiry response data. Lun is set to zero. */ if (scsi_id->sbp2_device_type_and_lun == SBP2_DEVICE_TYPE_LUN_UNINITIALIZED) { SBP2_DEBUG("Creating sbp2_device_type_and_lun from scsi inquiry data"); scsi_id->sbp2_device_type_and_lun = (scsi_buf[0] & 0x1f) << 16; } /* * Make sure data length is ok. Minimum length is 36 bytes */ if (scsi_buf[4] == 0) { scsi_buf[4] = 36 - 5; } /* * Check for Simple Direct Access Device and change it to TYPE_DISK */ if ((scsi_buf[0] & 0x1f) == TYPE_SDAD) { SBP2_DEBUG("Changing TYPE_SDAD to TYPE_DISK"); scsi_buf[0] &= 0xe0; } /* * Fix ansi revision and response data format */ scsi_buf[2] |= 2; scsi_buf[3] = (scsi_buf[3] & 0xf0) | 2; break; case MODE_SENSE: if (sbp2_command_conversion_device_type(device_type)) { SBP2_DEBUG("Modify mode sense response (10 byte version)"); scsi_buf[0] = scsi_buf[1]; /* Mode data length */ scsi_buf[1] = scsi_buf[2]; /* Medium type */ scsi_buf[2] = scsi_buf[3]; /* Device specific parameter */ scsi_buf[3] = scsi_buf[7]; /* Block descriptor length */ memcpy(scsi_buf + 4, scsi_buf + 8, scsi_buf[0]); } break; case MODE_SELECT: /* * TODO. Probably need to change mode select to 10 byte version */ default: break; } return; } /* * This function deals with status writes from the SBP-2 device */ static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid, int destid, quadlet_t *data, u64 addr, size_t length, u16 fl) { struct sbp2scsi_host_info *hi = NULL; struct scsi_id_instance_data *scsi_id = NULL; u32 id; unsigned long flags; Scsi_Cmnd *SCpnt = NULL; u32 scsi_status = SBP2_SCSI_STATUS_GOOD; struct sbp2_command_info *command; SBP2_DEBUG("sbp2_handle_status_write"); sbp2util_packet_dump(data, length, "sbp2 status write by device", (u32)addr); if (!host) { SBP2_ERR("host is NULL - this is bad!"); return(RCODE_ADDRESS_ERROR); } hi = hpsb_get_hostinfo(&sbp2_highlevel, host); if (!hi) { SBP2_ERR("host info is NULL - this is bad!"); return(RCODE_ADDRESS_ERROR); } spin_lock_irqsave(&hi->sbp2_command_lock, flags); /* * Find our scsi_id structure by looking at the status fifo address written to by * the sbp2 device. */ id = SBP2_STATUS_FIFO_OFFSET_TO_ENTRY((u32)(addr - SBP2_STATUS_FIFO_ADDRESS)); scsi_id = hi->scsi_id[id]; if (!scsi_id) { SBP2_ERR("scsi_id is NULL - device is gone?"); spin_unlock_irqrestore(&hi->sbp2_command_lock, flags); return(RCODE_ADDRESS_ERROR); } /* * Put response into scsi_id status fifo... */ memcpy(&scsi_id->status_block, data, length); /* * Byte swap first two quadlets (8 bytes) of status for processing */ sbp2util_be32_to_cpu_buffer(&scsi_id->status_block, 8); /* * Handle command ORB status here if necessary. First, need to match status with command. */ command = sbp2util_find_command_for_orb(scsi_id, scsi_id->status_block.ORB_offset_lo); if (command) { SBP2_DEBUG("Found status for command ORB"); pci_dma_sync_single(hi->host->pdev, command->command_orb_dma, sizeof(struct sbp2_command_orb), PCI_DMA_BIDIRECTIONAL); pci_dma_sync_single(hi->host->pdev, command->sge_dma, sizeof(command->scatter_gather_element), PCI_DMA_BIDIRECTIONAL); SBP2_ORB_DEBUG("matched command orb %p", &command->command_orb); outstanding_orb_decr; /* * Matched status with command, now grab scsi command pointers and check status */ SCpnt = command->Current_SCpnt; sbp2util_mark_command_completed(scsi_id, command); if (SCpnt) { /* * See if the target stored any scsi status information */ if (STATUS_GET_LENGTH(scsi_id->status_block.ORB_offset_hi_misc) > 1) { /* * Translate SBP-2 status to SCSI sense data */ SBP2_DEBUG("CHECK CONDITION"); scsi_status = sbp2_status_to_sense_data((unchar *)&scsi_id->status_block, SCpnt->sense_buffer); } /* * Check to see if the dead bit is set. If so, we'll have to initiate * a fetch agent reset. */ if (STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc)) { /* * Initiate a fetch agent reset. */ SBP2_DEBUG("Dead bit set - initiating fetch agent reset"); sbp2_agent_reset(scsi_id, 0); } SBP2_ORB_DEBUG("completing command orb %p", &command->command_orb); } /* * Check here to see if there are no commands in-use. If there are none, we can * null out last orb so that next time around we write directly to the orb pointer... * Quick start saves one 1394 bus transaction. */ if (list_empty(&scsi_id->sbp2_command_orb_inuse)) { scsi_id->last_orb = NULL; } } else { /* * It's probably a login/logout/reconnect status. */ if ((scsi_id->login_orb_dma == scsi_id->status_block.ORB_offset_lo) || (scsi_id->query_logins_orb_dma == scsi_id->status_block.ORB_offset_lo) || (scsi_id->reconnect_orb_dma == scsi_id->status_block.ORB_offset_lo) || (scsi_id->logout_orb_dma == scsi_id->status_block.ORB_offset_lo)) { atomic_set(&scsi_id->sbp2_login_complete, 1); } } spin_unlock_irqrestore(&hi->sbp2_command_lock, flags); if (SCpnt) { /* * Complete the SCSI command. * * Only do it after we've released the sbp2_command_lock, * as it might otherwise deadlock with the * io_request_lock (in sbp2scsi_queuecommand). */ SBP2_DEBUG("Completing SCSI command"); sbp2scsi_complete_command(scsi_id, scsi_status, SCpnt, command->Current_done); SBP2_ORB_DEBUG("command orb completed"); } return(RCODE_COMPLETE); } /************************************** * SCSI interface related section **************************************/ /* * This routine is the main request entry routine for doing I/O. It is * called from the scsi stack directly. */ static int sbp2scsi_queuecommand (Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *)) { struct sbp2scsi_host_info *hi = NULL; struct scsi_id_instance_data *scsi_id = NULL; unsigned long flags; SBP2_DEBUG("sbp2scsi_queuecommand"); /* * Pull our host info and scsi id instance data from the scsi command */ hi = hpsb_get_hostinfo_bykey(&sbp2_highlevel, (unsigned long)SCpnt->device->host->hostt); if (!hi) { SBP2_ERR("sbp2scsi_host_info is NULL - this is bad!"); SCpnt->result = DID_NO_CONNECT << 16; done (SCpnt); return(0); } scsi_id = hi->scsi_id[SCpnt->target]; /* * If scsi_id is null, it means there is no device in this slot, * so we should return selection timeout. */ if (!scsi_id) { SCpnt->result = DID_NO_CONNECT << 16; done (SCpnt); return(0); } /* * Until we handle multiple luns, just return selection time-out * to any IO directed at non-zero LUNs */ if (SCpnt->lun) { SCpnt->result = DID_NO_CONNECT << 16; done (SCpnt); return(0); } /* * Check for request sense command, and handle it here * (autorequest sense) */ if (SCpnt->cmnd[0] == REQUEST_SENSE) { SBP2_DEBUG("REQUEST_SENSE"); memcpy(SCpnt->request_buffer, SCpnt->sense_buffer, SCpnt->request_bufflen); memset(SCpnt->sense_buffer, 0, sizeof(SCpnt->sense_buffer)); sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_GOOD, SCpnt, done); return(0); } /* * Check to see if we are in the middle of a bus reset. */ if (!hpsb_node_entry_valid(scsi_id->ne)) { SBP2_ERR("Bus reset in progress - rejecting command"); SCpnt->result = DID_BUS_BUSY << 16; done (SCpnt); return(0); } /* * Try and send our SCSI command */ spin_lock_irqsave(&hi->sbp2_command_lock, flags); if (sbp2_send_command(scsi_id, SCpnt, done)) { SBP2_ERR("Error sending SCSI command"); sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_SELECTION_TIMEOUT, SCpnt, done); } spin_unlock_irqrestore(&hi->sbp2_command_lock, flags); return(0); } /* * This function is called in order to complete all outstanding SBP-2 * commands (in case of resets, etc.). */ static void sbp2scsi_complete_all_commands(struct scsi_id_instance_data *scsi_id, u32 status) { struct sbp2scsi_host_info *hi = scsi_id->hi; struct list_head *lh; struct sbp2_command_info *command; SBP2_DEBUG("sbp2_complete_all_commands"); while (!list_empty(&scsi_id->sbp2_command_orb_inuse)) { SBP2_DEBUG("Found pending command to complete"); lh = scsi_id->sbp2_command_orb_inuse.next; command = list_entry(lh, struct sbp2_command_info, list); pci_dma_sync_single(hi->host->pdev, command->command_orb_dma, sizeof(struct sbp2_command_orb), PCI_DMA_BIDIRECTIONAL); pci_dma_sync_single(hi->host->pdev, command->sge_dma, sizeof(command->scatter_gather_element), PCI_DMA_BIDIRECTIONAL); sbp2util_mark_command_completed(scsi_id, command); if (command->Current_SCpnt) { void (*done)(Scsi_Cmnd *) = command->Current_done; command->Current_SCpnt->result = status << 16; done (command->Current_SCpnt); } } return; } /* * This function is called in order to complete a regular SBP-2 command. * * This can be called in interrupt context. */ static void sbp2scsi_complete_command(struct scsi_id_instance_data *scsi_id, u32 scsi_status, Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *)) { unsigned long flags; SBP2_DEBUG("sbp2scsi_complete_command"); /* * Sanity */ if (!SCpnt) { SBP2_ERR("SCpnt is NULL"); return; } /* * If a bus reset is in progress and there was an error, don't * complete the command, just let it get retried at the end of the * bus reset. */ if (!hpsb_node_entry_valid(scsi_id->ne) && (scsi_status != SBP2_SCSI_STATUS_GOOD)) { SBP2_ERR("Bus reset in progress - retry command later"); return; } /* * Switch on scsi status */ switch (scsi_status) { case SBP2_SCSI_STATUS_GOOD: SCpnt->result = DID_OK; break; case SBP2_SCSI_STATUS_BUSY: SBP2_ERR("SBP2_SCSI_STATUS_BUSY"); SCpnt->result = DID_BUS_BUSY << 16; break; case SBP2_SCSI_STATUS_CHECK_CONDITION: SBP2_DEBUG("SBP2_SCSI_STATUS_CHECK_CONDITION"); SCpnt->result = CHECK_CONDITION << 1; /* * Debug stuff */ #if CONFIG_IEEE1394_SBP2_DEBUG >= 1 print_command (SCpnt->cmnd); print_sense("bh", SCpnt); #endif break; case SBP2_SCSI_STATUS_SELECTION_TIMEOUT: SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT"); SCpnt->result = DID_NO_CONNECT << 16; print_command (SCpnt->cmnd); break; case SBP2_SCSI_STATUS_CONDITION_MET: case SBP2_SCSI_STATUS_RESERVATION_CONFLICT: case SBP2_SCSI_STATUS_COMMAND_TERMINATED: SBP2_ERR("Bad SCSI status = %x", scsi_status); SCpnt->result = DID_ERROR << 16; print_command (SCpnt->cmnd); break; default: SBP2_ERR("Unsupported SCSI status = %x", scsi_status); SCpnt->result = DID_ERROR << 16; } /* * Take care of any sbp2 response data mucking here (RBC stuff, etc.) */ if (SCpnt->result == DID_OK) { sbp2_check_sbp2_response(scsi_id, SCpnt); } /* * If a bus reset is in progress and there was an error, complete * the command as busy so that it will get retried. */ if (!hpsb_node_entry_valid(scsi_id->ne) && (scsi_status != SBP2_SCSI_STATUS_GOOD)) { SBP2_ERR("Completing command with busy (bus reset)"); SCpnt->result = DID_BUS_BUSY << 16; } /* * If a unit attention occurs, return busy status so it gets * retried... it could have happened because of a 1394 bus reset * or hot-plug... */ #if 0 if ((scsi_status == SBP2_SCSI_STATUS_CHECK_CONDITION) && (SCpnt->sense_buffer[2] == UNIT_ATTENTION)) { SBP2_DEBUG("UNIT ATTENTION - return busy"); SCpnt->result = DID_BUS_BUSY << 16; } #endif /* * Tell scsi stack that we're done with this command */ spin_lock_irqsave(&io_request_lock, flags); done (SCpnt); spin_unlock_irqrestore(&io_request_lock, flags); return; } /* * Called by scsi stack when something has really gone wrong. Usually * called when a command has timed-out for some reason. */ static int sbp2scsi_abort (Scsi_Cmnd *SCpnt) { struct sbp2scsi_host_info *hi = hpsb_get_hostinfo_bykey(&sbp2_highlevel, (unsigned long)SCpnt->device->host->hostt); struct scsi_id_instance_data *scsi_id = hi->scsi_id[SCpnt->target]; struct sbp2_command_info *command; unsigned long flags; SBP2_ERR("aborting sbp2 command"); print_command (SCpnt->cmnd); if (scsi_id) { /* * Right now, just return any matching command structures * to the free pool. */ spin_lock_irqsave(&hi->sbp2_command_lock, flags); command = sbp2util_find_command_for_SCpnt(scsi_id, SCpnt); if (command) { SBP2_DEBUG("Found command to abort"); pci_dma_sync_single(hi->host->pdev, command->command_orb_dma, sizeof(struct sbp2_command_orb), PCI_DMA_BIDIRECTIONAL); pci_dma_sync_single(hi->host->pdev, command->sge_dma, sizeof(command->scatter_gather_element), PCI_DMA_BIDIRECTIONAL); sbp2util_mark_command_completed(scsi_id, command); if (command->Current_SCpnt) { void (*done)(Scsi_Cmnd *) = command->Current_done; command->Current_SCpnt->result = DID_ABORT << 16; done (command->Current_SCpnt); } } /* * Initiate a fetch agent reset. */ sbp2_agent_reset(scsi_id, 0); sbp2scsi_complete_all_commands(scsi_id, DID_BUS_BUSY); spin_unlock_irqrestore(&hi->sbp2_command_lock, flags); } return(SUCCESS); } /* * Called by scsi stack when something has really gone wrong. */ static int sbp2scsi_reset (Scsi_Cmnd *SCpnt) { struct sbp2scsi_host_info *hi = hpsb_get_hostinfo_bykey(&sbp2_highlevel, (unsigned long)SCpnt->device->host->hostt); struct scsi_id_instance_data *scsi_id = hi->scsi_id[SCpnt->device->id]; SBP2_ERR("reset requested"); if (scsi_id) { SBP2_ERR("Generating sbp2 fetch agent reset"); sbp2_agent_reset(scsi_id, 0); } return(SUCCESS); } static const char *sbp2scsi_info (struct Scsi_Host *host) { return "SCSI emulation for IEEE-1394 SBP-2 Devices"; } /* Called for contents of procfs */ #define SPRINTF(args...) \ do { if (pos < buffer+length) pos += sprintf(pos, ## args); } while (0) static int sbp2scsi_proc_info(char *buffer, char **start, off_t offset, int length, int hostno, int inout) { Scsi_Device *scd; struct Scsi_Host *scsi_host; struct hpsb_host *host; char *pos = buffer; /* if someone is sending us data, just throw it away */ if (inout) return length; for (scsi_host = scsi_hostlist; scsi_host; scsi_host = scsi_host->next) if (scsi_host->host_no == hostno) break; if (!scsi_host) /* if we couldn't find it, we return an error */ return -ESRCH; host = hpsb_get_host_bykey(&sbp2_highlevel, (unsigned long)scsi_host->hostt); if (!host) /* shouldn't happen, but... */ return -ESRCH; SPRINTF("Host scsi%d : SBP-2 IEEE-1394 (%s)\n", hostno, host->driver->name); SPRINTF("\nModule options :\n"); SPRINTF(" max_speed : %s\n", hpsb_speedto_str[sbp2_max_speed]); SPRINTF(" max_sectors : %d\n", sbp2_max_sectors); SPRINTF(" serialize_io : %s\n", sbp2_serialize_io ? "yes" : "no"); SPRINTF(" exclusive_login : %s\n", sbp2_exclusive_login ? "yes" : "no"); SPRINTF("\nAttached devices : %s\n", scsi_host->host_queue ? "" : "none"); for (scd = scsi_host->host_queue; scd; scd = scd->next) { int i; SPRINTF(" [Channel: %02d, Id: %02d, Lun: %02d] ", scd->channel, scd->id, scd->lun); SPRINTF("%s ", (scd->type < MAX_SCSI_DEVICE_CODE) ? scsi_device_types[(short) scd->type] : "Unknown device"); for (i = 0; (i < 8) && (scd->vendor[i] >= 0x20); i++) SPRINTF("%c", scd->vendor[i]); SPRINTF(" "); for (i = 0; (i < 16) && (scd->model[i] >= 0x20); i++) SPRINTF("%c", scd->model[i]); SPRINTF("\n"); } SPRINTF("\n"); /* Calculate start of next buffer, and return value. */ *start = buffer + offset; if ((pos - buffer) < offset) return (0); else if ((pos - buffer - offset) < length) return (pos - buffer - offset); else return (length); } MODULE_AUTHOR("Ben Collins "); MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver"); MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME); MODULE_LICENSE("GPL"); /* SCSI host template */ static Scsi_Host_Template scsi_driver_template = { .module = THIS_MODULE, .name = "SBP-2 IEEE-1394", .proc_name = NULL, // Filled in per-host .info = sbp2scsi_info, .proc_info = sbp2scsi_proc_info, .detect = sbp2scsi_detect, .queuecommand = sbp2scsi_queuecommand, .eh_abort_handler = sbp2scsi_abort, .eh_device_reset_handler = sbp2scsi_reset, .eh_bus_reset_handler = sbp2scsi_reset, .eh_host_reset_handler = sbp2scsi_reset, .use_new_eh_code = 1, .this_id = -1, .sg_tablesize = SG_ALL, .use_clustering = ENABLE_CLUSTERING, .cmd_per_lun = SBP2_MAX_CMDS_PER_LUN, .can_queue = SBP2_MAX_SCSI_QUEUE, .emulated = 1, .highmem_io = 1, }; static int sbp2_module_init(void) { SBP2_DEBUG("sbp2_module_init"); printk(KERN_INFO "sbp2: %s\n", version); /* Module load debug option to force one command at a time (serializing I/O) */ if (sbp2_serialize_io) { SBP2_ERR("Driver forced to serialize I/O (serialize_io = 1)"); scsi_driver_template.can_queue = 1; scsi_driver_template.cmd_per_lun = 1; } /* Set max sectors (module load option). Default is 255 sectors. */ scsi_driver_template.max_sectors = sbp2_max_sectors; /* Register our high level driver with 1394 stack */ hpsb_register_highlevel(&sbp2_highlevel); /* Register our sbp2 status address space... */ hpsb_register_addrspace(&sbp2_highlevel, &sbp2_ops, SBP2_STATUS_FIFO_ADDRESS, SBP2_STATUS_FIFO_ADDRESS + SBP2_STATUS_FIFO_ENTRY_TO_OFFSET(SBP2SCSI_MAX_SCSI_IDS+1)); /* Handle data movement if physical dma is not enabled/supported * on host controller */ #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA hpsb_register_addrspace(&sbp2_highlevel, &sbp2_physdma_ops, 0x0ULL, 0xfffffffcULL); #endif hpsb_register_protocol(&sbp2_driver); return 0; } static void __exit sbp2_module_exit(void) { SBP2_DEBUG("sbp2_module_exit"); hpsb_unregister_protocol(&sbp2_driver); hpsb_unregister_highlevel(&sbp2_highlevel); } module_init(sbp2_module_init); module_exit(sbp2_module_exit);