/* * SHPCHPRM ACPI: PHP Resource Manager for ACPI platform * * Copyright (C) 2003-2004 Intel Corporation * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to * */ #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_IA64 #include #endif #include #include #include #include "shpchp.h" #include "shpchprm.h" #define PCI_MAX_BUS 0x100 #define ACPI_STA_DEVICE_PRESENT 0x01 #define METHOD_NAME__SUN "_SUN" #define METHOD_NAME__HPP "_HPP" #define METHOD_NAME_OSHP "OSHP" #define PHP_RES_BUS 0xA0 #define PHP_RES_IO 0xA1 #define PHP_RES_MEM 0xA2 #define PHP_RES_PMEM 0xA3 #define BRIDGE_TYPE_P2P 0x00 #define BRIDGE_TYPE_HOST 0x01 /* This should go to drivers/acpi/include/ */ struct acpi__hpp { u8 cache_line_size; u8 latency_timer; u8 enable_serr; u8 enable_perr; }; struct acpi_php_slot { struct acpi_php_slot *next; struct acpi_bridge *bridge; acpi_handle handle; int seg; int bus; int dev; int fun; u32 sun; struct pci_resource *mem_head; struct pci_resource *p_mem_head; struct pci_resource *io_head; struct pci_resource *bus_head; void *slot_ops; /* _STA, _EJx, etc */ struct slot *slot; }; /* per func */ struct acpi_bridge { struct acpi_bridge *parent; struct acpi_bridge *next; struct acpi_bridge *child; acpi_handle handle; int seg; int pbus; /* pdev->bus->number */ int pdevice; /* PCI_SLOT(pdev->devfn) */ int pfunction; /* PCI_DEVFN(pdev->devfn) */ int bus; /* pdev->subordinate->number */ struct acpi__hpp *_hpp; struct acpi_php_slot *slots; struct pci_resource *tmem_head; /* total from crs */ struct pci_resource *tp_mem_head; /* total from crs */ struct pci_resource *tio_head; /* total from crs */ struct pci_resource *tbus_head; /* total from crs */ struct pci_resource *mem_head; /* available */ struct pci_resource *p_mem_head; /* available */ struct pci_resource *io_head; /* available */ struct pci_resource *bus_head; /* available */ int scanned; int type; }; static struct acpi_bridge *acpi_bridges_head; static u8 * acpi_path_name( acpi_handle handle) { acpi_status status; static u8 path_name[ACPI_PATHNAME_MAX]; struct acpi_buffer ret_buf = { ACPI_PATHNAME_MAX, path_name }; memset(path_name, 0, sizeof (path_name)); status = acpi_get_name(handle, ACPI_FULL_PATHNAME, &ret_buf); if (ACPI_FAILURE(status)) return NULL; else return path_name; } static void acpi_get__hpp ( struct acpi_bridge *ab); static void acpi_run_oshp ( struct acpi_bridge *ab); static int acpi_add_slot_to_php_slots( struct acpi_bridge *ab, int bus_num, acpi_handle handle, u32 adr, u32 sun ) { struct acpi_php_slot *aps; static long samesun = -1; aps = (struct acpi_php_slot *) kmalloc (sizeof(struct acpi_php_slot), GFP_KERNEL); if (!aps) { err ("acpi_shpchprm: alloc for aps fail\n"); return -1; } memset(aps, 0, sizeof(struct acpi_php_slot)); aps->handle = handle; aps->bus = bus_num; aps->dev = (adr >> 16) & 0xffff; aps->fun = adr & 0xffff; aps->sun = sun; aps->next = ab->slots; /* cling to the bridge */ aps->bridge = ab; ab->slots = aps; ab->scanned += 1; if (!ab->_hpp) acpi_get__hpp(ab); acpi_run_oshp(ab); if (sun != samesun) { info("acpi_shpchprm: Slot sun(%x) at s:b:d:f=0x%02x:%02x:%02x:%02x\n", aps->sun, ab->seg, aps->bus, aps->dev, aps->fun); samesun = sun; } return 0; } static void acpi_get__hpp ( struct acpi_bridge *ab) { acpi_status status; u8 nui[4]; struct acpi_buffer ret_buf = { 0, NULL}; union acpi_object *ext_obj, *package; u8 *path_name = acpi_path_name(ab->handle); int i, len = 0; /* get _hpp */ status = acpi_evaluate_object(ab->handle, METHOD_NAME__HPP, NULL, &ret_buf); switch (status) { case AE_BUFFER_OVERFLOW: ret_buf.pointer = kmalloc (ret_buf.length, GFP_KERNEL); if (!ret_buf.pointer) { err ("acpi_shpchprm:%s alloc for _HPP fail\n", path_name); return; } status = acpi_evaluate_object(ab->handle, METHOD_NAME__HPP, NULL, &ret_buf); if (ACPI_SUCCESS(status)) break; default: if (ACPI_FAILURE(status)) { err("acpi_shpchprm:%s _HPP fail=0x%x\n", path_name, status); return; } } ext_obj = (union acpi_object *) ret_buf.pointer; if (ext_obj->type != ACPI_TYPE_PACKAGE) { err ("acpi_shpchprm:%s _HPP obj not a package\n", path_name); goto free_and_return; } len = ext_obj->package.count; package = (union acpi_object *) ret_buf.pointer; for ( i = 0; (i < len) || (i < 4); i++) { ext_obj = (union acpi_object *) &package->package.elements[i]; switch (ext_obj->type) { case ACPI_TYPE_INTEGER: nui[i] = (u8)ext_obj->integer.value; break; default: err ("acpi_shpchprm:%s _HPP obj type incorrect\n", path_name); goto free_and_return; } } ab->_hpp = kmalloc (sizeof (struct acpi__hpp), GFP_KERNEL); if (!ab->_hpp) { err ("acpi_shpchprm:%s alloc for _HPP failed\n", path_name); goto free_and_return; } memset(ab->_hpp, 0, sizeof(struct acpi__hpp)); ab->_hpp->cache_line_size = nui[0]; ab->_hpp->latency_timer = nui[1]; ab->_hpp->enable_serr = nui[2]; ab->_hpp->enable_perr = nui[3]; dbg(" _HPP: cache_line_size=0x%x\n", ab->_hpp->cache_line_size); dbg(" _HPP: latency timer =0x%x\n", ab->_hpp->latency_timer); dbg(" _HPP: enable SERR =0x%x\n", ab->_hpp->enable_serr); dbg(" _HPP: enable PERR =0x%x\n", ab->_hpp->enable_perr); free_and_return: kfree(ret_buf.pointer); } static void acpi_run_oshp ( struct acpi_bridge *ab) { acpi_status status; u8 *path_name = acpi_path_name(ab->handle); struct acpi_buffer ret_buf = { 0, NULL}; /* run OSHP */ status = acpi_evaluate_object(ab->handle, METHOD_NAME_OSHP, NULL, &ret_buf); if (ACPI_FAILURE(status)) { err("acpi_pciehprm:%s OSHP fails=0x%x\n", path_name, status); } else dbg("acpi_pciehprm:%s OSHP passes =0x%x\n", path_name, status); return; } static acpi_status acpi_evaluate_crs( acpi_handle handle, struct acpi_resource **retbuf ) { acpi_status status; struct acpi_buffer crsbuf; u8 *path_name = acpi_path_name(handle); crsbuf.length = 0; crsbuf.pointer = NULL; status = acpi_get_current_resources (handle, &crsbuf); switch (status) { case AE_BUFFER_OVERFLOW: break; /* found */ case AE_NOT_FOUND: dbg("acpi_shpchprm:%s _CRS not found\n", path_name); return status; default: err ("acpi_shpchprm:%s _CRS fail=0x%x\n", path_name, status); return status; } crsbuf.pointer = kmalloc (crsbuf.length, GFP_KERNEL); if (!crsbuf.pointer) { err ("acpi_shpchprm: alloc %ld bytes for %s _CRS fail\n", (ulong)crsbuf.length, path_name); return AE_NO_MEMORY; } status = acpi_get_current_resources (handle, &crsbuf); if (ACPI_FAILURE(status)) { err("acpi_shpchprm: %s _CRS fail=0x%x.\n", path_name, status); kfree(crsbuf.pointer); return status; } *retbuf = crsbuf.pointer; return status; } static void free_pci_resource ( struct pci_resource *aprh) { struct pci_resource *res, *next; for (res = aprh; res; res = next) { next = res->next; kfree(res); } } static void print_pci_resource ( struct pci_resource *aprh) { struct pci_resource *res; for (res = aprh; res; res = res->next) dbg(" base= 0x%x length= 0x%x\n", res->base, res->length); } static void print_slot_resources( struct acpi_php_slot *aps) { if (aps->bus_head) { dbg(" BUS Resources:\n"); print_pci_resource (aps->bus_head); } if (aps->io_head) { dbg(" IO Resources:\n"); print_pci_resource (aps->io_head); } if (aps->mem_head) { dbg(" MEM Resources:\n"); print_pci_resource (aps->mem_head); } if (aps->p_mem_head) { dbg(" PMEM Resources:\n"); print_pci_resource (aps->p_mem_head); } } static void print_pci_resources( struct acpi_bridge *ab) { if (ab->tbus_head) { dbg(" Total BUS Resources:\n"); print_pci_resource (ab->tbus_head); } if (ab->bus_head) { dbg(" BUS Resources:\n"); print_pci_resource (ab->bus_head); } if (ab->tio_head) { dbg(" Total IO Resources:\n"); print_pci_resource (ab->tio_head); } if (ab->io_head) { dbg(" IO Resources:\n"); print_pci_resource (ab->io_head); } if (ab->tmem_head) { dbg(" Total MEM Resources:\n"); print_pci_resource (ab->tmem_head); } if (ab->mem_head) { dbg(" MEM Resources:\n"); print_pci_resource (ab->mem_head); } if (ab->tp_mem_head) { dbg(" Total PMEM Resources:\n"); print_pci_resource (ab->tp_mem_head); } if (ab->p_mem_head) { dbg(" PMEM Resources:\n"); print_pci_resource (ab->p_mem_head); } if (ab->_hpp) { dbg(" _HPP: cache_line_size=0x%x\n", ab->_hpp->cache_line_size); dbg(" _HPP: latency timer =0x%x\n", ab->_hpp->latency_timer); dbg(" _HPP: enable SERR =0x%x\n", ab->_hpp->enable_serr); dbg(" _HPP: enable PERR =0x%x\n", ab->_hpp->enable_perr); } } static int shpchprm_delete_resource( struct pci_resource **aprh, ulong base, ulong size) { struct pci_resource *res; struct pci_resource *prevnode; struct pci_resource *split_node; ulong tbase; shpchp_resource_sort_and_combine(aprh); for (res = *aprh; res; res = res->next) { if (res->base > base) continue; if ((res->base + res->length) < (base + size)) continue; if (res->base < base) { tbase = base; if ((res->length - (tbase - res->base)) < size) continue; split_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return -ENOMEM; split_node->base = res->base; split_node->length = tbase - res->base; res->base = tbase; res->length -= split_node->length; split_node->next = res->next; res->next = split_node; } if (res->length >= size) { split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return -ENOMEM; split_node->base = res->base + size; split_node->length = res->length - size; res->length = size; split_node->next = res->next; res->next = split_node; } if (*aprh == res) { *aprh = res->next; } else { prevnode = *aprh; while (prevnode->next != res) prevnode = prevnode->next; prevnode->next = res->next; } res->next = NULL; kfree(res); break; } return 0; } static int shpchprm_delete_resources( struct pci_resource **aprh, struct pci_resource *this ) { struct pci_resource *res; for (res = this; res; res = res->next) shpchprm_delete_resource(aprh, res->base, res->length); return 0; } static int shpchprm_add_resource( struct pci_resource **aprh, ulong base, ulong size) { struct pci_resource *res; for (res = *aprh; res; res = res->next) { if ((res->base + res->length) == base) { res->length += size; size = 0L; break; } if (res->next == *aprh) break; } if (size) { res = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!res) { err ("acpi_shpchprm: alloc for res fail\n"); return -ENOMEM; } memset(res, 0, sizeof (struct pci_resource)); res->base = base; res->length = size; res->next = *aprh; *aprh = res; } return 0; } static int shpchprm_add_resources( struct pci_resource **aprh, struct pci_resource *this ) { struct pci_resource *res; int rc = 0; for (res = this; res && !rc; res = res->next) rc = shpchprm_add_resource(aprh, res->base, res->length); return rc; } static void acpi_parse_io ( struct acpi_bridge *ab, union acpi_resource_data *data ) { struct acpi_resource_io *dataio; dataio = (struct acpi_resource_io *) data; dbg("Io Resource\n"); dbg(" %d bit decode\n", ACPI_DECODE_16 == dataio->io_decode ? 16:10); dbg(" Range minimum base: %08X\n", dataio->min_base_address); dbg(" Range maximum base: %08X\n", dataio->max_base_address); dbg(" Alignment: %08X\n", dataio->alignment); dbg(" Range Length: %08X\n", dataio->range_length); } static void acpi_parse_fixed_io ( struct acpi_bridge *ab, union acpi_resource_data *data ) { struct acpi_resource_fixed_io *datafio; datafio = (struct acpi_resource_fixed_io *) data; dbg("Fixed Io Resource\n"); dbg(" Range base address: %08X", datafio->base_address); dbg(" Range length: %08X", datafio->range_length); } static void acpi_parse_address16_32 ( struct acpi_bridge *ab, union acpi_resource_data *data, acpi_resource_type id ) { /* * acpi_resource_address16 == acpi_resource_address32 * acpi_resource_address16 *data16 = (acpi_resource_address16 *) data; */ struct acpi_resource_address32 *data32 = (struct acpi_resource_address32 *) data; struct pci_resource **aprh, **tprh; if (id == ACPI_RSTYPE_ADDRESS16) dbg("acpi_shpchprm:16-Bit Address Space Resource\n"); else dbg("acpi_shpchprm:32-Bit Address Space Resource\n"); switch (data32->resource_type) { case ACPI_MEMORY_RANGE: dbg(" Resource Type: Memory Range\n"); aprh = &ab->mem_head; tprh = &ab->tmem_head; switch (data32->attribute.memory.cache_attribute) { case ACPI_NON_CACHEABLE_MEMORY: dbg(" Type Specific: Noncacheable memory\n"); break; case ACPI_CACHABLE_MEMORY: dbg(" Type Specific: Cacheable memory\n"); break; case ACPI_WRITE_COMBINING_MEMORY: dbg(" Type Specific: Write-combining memory\n"); break; case ACPI_PREFETCHABLE_MEMORY: aprh = &ab->p_mem_head; dbg(" Type Specific: Prefetchable memory\n"); break; default: dbg(" Type Specific: Invalid cache attribute\n"); break; } dbg(" Type Specific: Read%s\n", ACPI_READ_WRITE_MEMORY == data32->attribute.memory.read_write_attribute ? "/Write":" Only"); break; case ACPI_IO_RANGE: dbg(" Resource Type: I/O Range\n"); aprh = &ab->io_head; tprh = &ab->tio_head; switch (data32->attribute.io.range_attribute) { case ACPI_NON_ISA_ONLY_RANGES: dbg(" Type Specific: Non-ISA Io Addresses\n"); break; case ACPI_ISA_ONLY_RANGES: dbg(" Type Specific: ISA Io Addresses\n"); break; case ACPI_ENTIRE_RANGE: dbg(" Type Specific: ISA and non-ISA Io Addresses\n"); break; default: dbg(" Type Specific: Invalid range attribute\n"); break; } break; case ACPI_BUS_NUMBER_RANGE: dbg(" Resource Type: Bus Number Range(fixed)\n"); /* Fixup to be compatible with the rest of php driver */ data32->min_address_range++; data32->address_length--; aprh = &ab->bus_head; tprh = &ab->tbus_head; break; default: dbg(" Resource Type: Invalid resource type. Exiting.\n"); return; } dbg(" Resource %s\n", ACPI_CONSUMER == data32->producer_consumer ? "Consumer":"Producer"); dbg(" %s decode\n", ACPI_SUB_DECODE == data32->decode ? "Subtractive":"Positive"); dbg(" Min address is %s fixed\n", ACPI_ADDRESS_FIXED == data32->min_address_fixed ? "":"not"); dbg(" Max address is %s fixed\n", ACPI_ADDRESS_FIXED == data32->max_address_fixed ? "":"not"); dbg(" Granularity: %08X\n", data32->granularity); dbg(" Address range min: %08X\n", data32->min_address_range); dbg(" Address range max: %08X\n", data32->max_address_range); dbg(" Address translation offset: %08X\n", data32->address_translation_offset); dbg(" Address Length: %08X\n", data32->address_length); if (0xFF != data32->resource_source.index) { dbg(" Resource Source Index: %X\n", data32->resource_source.index); /* dbg(" Resource Source: %s\n", data32->resource_source.string_ptr); */ } shpchprm_add_resource(aprh, data32->min_address_range, data32->address_length); } static acpi_status acpi_parse_crs( struct acpi_bridge *ab, struct acpi_resource *crsbuf ) { acpi_status status = AE_OK; struct acpi_resource *resource = crsbuf; u8 count = 0; u8 done = 0; while (!done) { dbg("acpi_shpchprm: PCI bus 0x%x Resource structure %x.\n", ab->bus, count++); switch (resource->id) { case ACPI_RSTYPE_IRQ: dbg("Irq -------- Resource\n"); break; case ACPI_RSTYPE_DMA: dbg("DMA -------- Resource\n"); break; case ACPI_RSTYPE_START_DPF: dbg("Start DPF -------- Resource\n"); break; case ACPI_RSTYPE_END_DPF: dbg("End DPF -------- Resource\n"); break; case ACPI_RSTYPE_IO: acpi_parse_io (ab, &resource->data); break; case ACPI_RSTYPE_FIXED_IO: acpi_parse_fixed_io (ab, &resource->data); break; case ACPI_RSTYPE_VENDOR: dbg("Vendor -------- Resource\n"); break; case ACPI_RSTYPE_END_TAG: dbg("End_tag -------- Resource\n"); done = 1; break; case ACPI_RSTYPE_MEM24: dbg("Mem24 -------- Resource\n"); break; case ACPI_RSTYPE_MEM32: dbg("Mem32 -------- Resource\n"); break; case ACPI_RSTYPE_FIXED_MEM32: dbg("Fixed Mem32 -------- Resource\n"); break; case ACPI_RSTYPE_ADDRESS16: acpi_parse_address16_32(ab, &resource->data, ACPI_RSTYPE_ADDRESS16); break; case ACPI_RSTYPE_ADDRESS32: acpi_parse_address16_32(ab, &resource->data, ACPI_RSTYPE_ADDRESS32); break; case ACPI_RSTYPE_ADDRESS64: info("Address64 -------- Resource unparsed\n"); break; case ACPI_RSTYPE_EXT_IRQ: dbg("Ext Irq -------- Resource\n"); break; default: dbg("Invalid -------- resource type 0x%x\n", resource->id); break; } resource = (struct acpi_resource *) ((char *)resource + resource->length); } return status; } static acpi_status acpi_get_crs( struct acpi_bridge *ab) { acpi_status status; struct acpi_resource *crsbuf; status = acpi_evaluate_crs(ab->handle, &crsbuf); if (ACPI_SUCCESS(status)) { status = acpi_parse_crs(ab, crsbuf); kfree(crsbuf); shpchp_resource_sort_and_combine(&ab->bus_head); shpchp_resource_sort_and_combine(&ab->io_head); shpchp_resource_sort_and_combine(&ab->mem_head); shpchp_resource_sort_and_combine(&ab->p_mem_head); shpchprm_add_resources (&ab->tbus_head, ab->bus_head); shpchprm_add_resources (&ab->tio_head, ab->io_head); shpchprm_add_resources (&ab->tmem_head, ab->mem_head); shpchprm_add_resources (&ab->tp_mem_head, ab->p_mem_head); } return status; } /* Find acpi_bridge downword from ab. */ static struct acpi_bridge * find_acpi_bridge_by_bus( struct acpi_bridge *ab, int seg, int bus /* pdev->subordinate->number */ ) { struct acpi_bridge *lab = NULL; if (!ab) return NULL; if ((ab->bus == bus) && (ab->seg == seg)) return ab; if (ab->child) lab = find_acpi_bridge_by_bus(ab->child, seg, bus); if (!lab) if (ab->next) lab = find_acpi_bridge_by_bus(ab->next, seg, bus); return lab; } /* * Build a device tree of ACPI PCI Bridges */ static void shpchprm_acpi_register_a_bridge ( struct acpi_bridge **head, struct acpi_bridge *pab, /* parent bridge to which child bridge is added */ struct acpi_bridge *cab /* child bridge to add */ ) { struct acpi_bridge *lpab; struct acpi_bridge *lcab; lpab = find_acpi_bridge_by_bus(*head, pab->seg, pab->bus); if (!lpab) { if (!(pab->type & BRIDGE_TYPE_HOST)) warn("PCI parent bridge s:b(%x:%x) not in list.\n", pab->seg, pab->bus); pab->next = *head; *head = pab; lpab = pab; } if ((cab->type & BRIDGE_TYPE_HOST) && (pab == cab)) return; lcab = find_acpi_bridge_by_bus(*head, cab->seg, cab->bus); if (lcab) { if ((pab->bus != lcab->parent->bus) || (lcab->bus != cab->bus)) err("PCI child bridge s:b(%x:%x) in list with diff parent.\n", cab->seg, cab->bus); return; } else lcab = cab; lcab->parent = lpab; lcab->next = lpab->child; lpab->child = lcab; } static acpi_status shpchprm_acpi_build_php_slots_callback( acpi_handle handle, u32 Level, void *context, void **retval ) { ulong bus_num; ulong seg_num; ulong sun, adr; ulong padr = 0; acpi_handle phandle = NULL; struct acpi_bridge *pab = (struct acpi_bridge *)context; struct acpi_bridge *lab; acpi_status status; u8 *path_name = acpi_path_name(handle); /* Get _SUN */ status = acpi_evaluate_integer(handle, METHOD_NAME__SUN, NULL, &sun); switch(status) { case AE_NOT_FOUND: return AE_OK; default: if (ACPI_FAILURE(status)) { err("acpi_shpchprm:%s _SUN fail=0x%x\n", path_name, status); return status; } } /* Get _ADR. _ADR must exist if _SUN exists */ status = acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL, &adr); if (ACPI_FAILURE(status)) { err("acpi_shpchprm:%s _ADR fail=0x%x\n", path_name, status); return status; } dbg("acpi_shpchprm:%s sun=0x%08x adr=0x%08x\n", path_name, (u32)sun, (u32)adr); status = acpi_get_parent(handle, &phandle); if (ACPI_FAILURE(status)) { err("acpi_shpchprm:%s get_parent fail=0x%x\n", path_name, status); return (status); } bus_num = pab->bus; seg_num = pab->seg; if (pab->bus == bus_num) { lab = pab; } else { dbg("WARN: pab is not parent\n"); lab = find_acpi_bridge_by_bus(pab, seg_num, bus_num); if (!lab) { dbg("acpi_shpchprm: alloc new P2P bridge(%x) for sun(%08x)\n", (u32)bus_num, (u32)sun); lab = (struct acpi_bridge *)kmalloc(sizeof(struct acpi_bridge), GFP_KERNEL); if (!lab) { err("acpi_shpchprm: alloc for ab fail\n"); return AE_NO_MEMORY; } memset(lab, 0, sizeof(struct acpi_bridge)); lab->handle = phandle; lab->pbus = pab->bus; lab->pdevice = (int)(padr >> 16) & 0xffff; lab->pfunction = (int)(padr & 0xffff); lab->bus = (int)bus_num; lab->scanned = 0; lab->type = BRIDGE_TYPE_P2P; shpchprm_acpi_register_a_bridge (&acpi_bridges_head, pab, lab); } else dbg("acpi_shpchprm: found P2P bridge(%x) for sun(%08x)\n", (u32)bus_num, (u32)sun); } acpi_add_slot_to_php_slots(lab, (int)bus_num, handle, (u32)adr, (u32)sun); return (status); } static int shpchprm_acpi_build_php_slots( struct acpi_bridge *ab, u32 depth ) { acpi_status status; u8 *path_name = acpi_path_name(ab->handle); /* Walk down this pci bridge to get _SUNs if any behind P2P */ status = acpi_walk_namespace ( ACPI_TYPE_DEVICE, ab->handle, depth, shpchprm_acpi_build_php_slots_callback, ab, NULL ); if (ACPI_FAILURE(status)) { dbg("acpi_shpchprm:%s walk for _SUN on pci bridge seg:bus(%x:%x) fail=0x%x\n", path_name, ab->seg, ab->bus, status); return -1; } return 0; } static void build_a_bridge( struct acpi_bridge *pab, struct acpi_bridge *ab ) { u8 *path_name = acpi_path_name(ab->handle); shpchprm_acpi_register_a_bridge (&acpi_bridges_head, pab, ab); switch (ab->type) { case BRIDGE_TYPE_HOST: dbg("acpi_shpchprm: Registered PCI HOST Bridge(%02x) on s:b:d:f(%02x:%02x:%02x:%02x) [%s]\n", ab->bus, ab->seg, ab->pbus, ab->pdevice, ab->pfunction, path_name); break; case BRIDGE_TYPE_P2P: dbg("acpi_shpchprm: Registered PCI P2P Bridge(%02x-%02x) on s:b:d:f(%02x:%02x:%02x:%02x) [%s]\n", ab->pbus, ab->bus, ab->seg, ab->pbus, ab->pdevice, ab->pfunction, path_name); break; }; /* any immediate PHP slots under this pci bridge */ shpchprm_acpi_build_php_slots(ab, 1); } static struct acpi_bridge * add_p2p_bridge( acpi_handle handle, struct acpi_bridge *pab, /* parent */ ulong adr ) { struct acpi_bridge *ab; struct pci_dev *pdev; ulong devnum, funcnum; u8 *path_name = acpi_path_name(handle); ab = (struct acpi_bridge *) kmalloc (sizeof(struct acpi_bridge), GFP_KERNEL); if (!ab) { err("acpi_shpchprm: alloc for ab fail\n"); return NULL; } memset(ab, 0, sizeof(struct acpi_bridge)); devnum = (adr >> 16) & 0xffff; funcnum = adr & 0xffff; pdev = pci_find_slot(pab->bus, PCI_DEVFN(devnum, funcnum)); if (!pdev || !pdev->subordinate) { err("acpi_shpchprm:%s is not a P2P Bridge\n", path_name); kfree(ab); return NULL; } ab->handle = handle; ab->seg = pab->seg; ab->pbus = pab->bus; /* or pdev->bus->number */ ab->pdevice = devnum; /* or PCI_SLOT(pdev->devfn) */ ab->pfunction = funcnum; /* or PCI_FUNC(pdev->devfn) */ ab->bus = pdev->subordinate->number; ab->scanned = 0; ab->type = BRIDGE_TYPE_P2P; dbg("acpi_shpchprm: P2P(%x-%x) on pci=b:d:f(%x:%x:%x) acpi=b:d:f(%x:%x:%x) [%s]\n", pab->bus, ab->bus, pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), pab->bus, (u32)devnum, (u32)funcnum, path_name); build_a_bridge(pab, ab); return ab; } static acpi_status scan_p2p_bridge( acpi_handle handle, u32 Level, void *context, void **retval ) { struct acpi_bridge *pab = (struct acpi_bridge *)context; struct acpi_bridge *ab; acpi_status status; ulong adr = 0; u8 *path_name = acpi_path_name(handle); ulong devnum, funcnum; struct pci_dev *pdev; /* Get device, function */ status = acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL, &adr); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) err("acpi_shpchprm:%s _ADR fail=0x%x\n", path_name, status); return AE_OK; } devnum = (adr >> 16) & 0xffff; funcnum = adr & 0xffff; pdev = pci_find_slot(pab->bus, PCI_DEVFN(devnum, funcnum)); if (!pdev) return AE_OK; if (!pdev->subordinate) return AE_OK; ab = add_p2p_bridge(handle, pab, adr); if (ab) { status = acpi_walk_namespace ( ACPI_TYPE_DEVICE, handle, (u32)1, scan_p2p_bridge, ab, NULL); if (ACPI_FAILURE(status)) dbg("acpi_shpchprm:%s find_p2p fail=0x%x\n", path_name, status); } return AE_OK; } static struct acpi_bridge * add_host_bridge( acpi_handle handle, ulong segnum, ulong busnum ) { ulong adr = 0; acpi_status status; struct acpi_bridge *ab; u8 *path_name = acpi_path_name(handle); /* Get device, function: host br adr is always 0000 though. */ status = acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL, &adr); if (ACPI_FAILURE(status)) { err("acpi_shpchprm:%s _ADR fail=0x%x\n", path_name, status); return NULL; } dbg("acpi_shpchprm: ROOT PCI seg(0x%x)bus(0x%x)dev(0x%x)func(0x%x) [%s]\n", (u32)segnum, (u32)busnum, (u32)(adr >> 16) & 0xffff, (u32)adr & 0xffff, path_name); ab = (struct acpi_bridge *) kmalloc (sizeof(struct acpi_bridge), GFP_KERNEL); if (!ab) { err("acpi_shpchprm: alloc for ab fail\n"); return NULL; } memset(ab, 0, sizeof(struct acpi_bridge)); ab->handle = handle; ab->seg = (int)segnum; ab->bus = ab->pbus = (int)busnum; ab->pdevice = (int)(adr >> 16) & 0xffff; ab->pfunction = (int)(adr & 0xffff); ab->scanned = 0; ab->type = BRIDGE_TYPE_HOST; /* Get root pci bridge's current resources */ status = acpi_get_crs(ab); if (ACPI_FAILURE(status)) { err("acpi_shpchprm:%s evaluate _CRS fail=0x%x\n", path_name, status); kfree(ab); return NULL; } build_a_bridge(ab, ab); return ab; } static acpi_status acpi_scan_from_root_pci_callback ( acpi_handle handle, u32 Level, void *context, void **retval ) { ulong segnum = 0; ulong busnum = 0; acpi_status status; struct acpi_bridge *ab; u8 *path_name = acpi_path_name(handle); /* Get bus number of this pci root bridge */ status = acpi_evaluate_integer(handle, METHOD_NAME__SEG, NULL, &segnum); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) { err("acpi_shpchprm:%s evaluate _SEG fail=0x%x\n", path_name, status); return status; } segnum = 0; } /* Get bus number of this pci root bridge */ status = acpi_evaluate_integer(handle, METHOD_NAME__BBN, NULL, &busnum); if (ACPI_FAILURE(status)) { err("acpi_shpchprm:%s evaluate _BBN fail=0x%x\n", path_name, status); return (status); } ab = add_host_bridge(handle, segnum, busnum); if (ab) { status = acpi_walk_namespace ( ACPI_TYPE_DEVICE, handle, 1, scan_p2p_bridge, ab, NULL); if (ACPI_FAILURE(status)) dbg("acpi_shpchprm:%s find_p2p fail=0x%x\n", path_name, status); } return AE_OK; } static int shpchprm_acpi_scan_pci (void) { acpi_status status; /* * TBD: traverse LDM device tree with the help of * unified ACPI augmented for php device population. */ status = acpi_get_devices ( PCI_ROOT_HID_STRING, acpi_scan_from_root_pci_callback, NULL, NULL ); if (ACPI_FAILURE(status)) { err("acpi_shpchprm:get_device PCI ROOT HID fail=0x%x\n", status); return -1; } return 0; } int shpchprm_init(enum php_ctlr_type ctlr_type) { int rc; if (ctlr_type != PCI) return -ENODEV; dbg("shpchprm ACPI init \n"); acpi_bridges_head = NULL; /* construct PCI bus:device tree of acpi_handles */ rc = shpchprm_acpi_scan_pci(); if (rc) return rc; dbg("shpchprm ACPI init %s\n", (rc)?"fail":"success"); return rc; } static void free_a_slot(struct acpi_php_slot *aps) { dbg(" free a php func of slot(0x%02x) on PCI b:d:f=0x%02x:%02x:%02x\n", aps->sun, aps->bus, aps->dev, aps->fun); free_pci_resource (aps->io_head); free_pci_resource (aps->bus_head); free_pci_resource (aps->mem_head); free_pci_resource (aps->p_mem_head); kfree(aps); } static void free_a_bridge( struct acpi_bridge *ab) { struct acpi_php_slot *aps, *next; switch (ab->type) { case BRIDGE_TYPE_HOST: dbg("Free ACPI PCI HOST Bridge(%x) [%s] on s:b:d:f(%x:%x:%x:%x)\n", ab->bus, acpi_path_name(ab->handle), ab->seg, ab->pbus, ab->pdevice, ab->pfunction); break; case BRIDGE_TYPE_P2P: dbg("Free ACPI PCI P2P Bridge(%x-%x) [%s] on s:b:d:f(%x:%x:%x:%x)\n", ab->pbus, ab->bus, acpi_path_name(ab->handle), ab->seg, ab->pbus, ab->pdevice, ab->pfunction); break; }; /* free slots first */ for (aps = ab->slots; aps; aps = next) { next = aps->next; free_a_slot(aps); } free_pci_resource (ab->io_head); free_pci_resource (ab->tio_head); free_pci_resource (ab->bus_head); free_pci_resource (ab->tbus_head); free_pci_resource (ab->mem_head); free_pci_resource (ab->tmem_head); free_pci_resource (ab->p_mem_head); free_pci_resource (ab->tp_mem_head); kfree(ab); } static void shpchprm_free_bridges ( struct acpi_bridge *ab) { if (!ab) return; if (ab->child) shpchprm_free_bridges (ab->child); if (ab->next) shpchprm_free_bridges (ab->next); free_a_bridge(ab); } void shpchprm_cleanup(void) { shpchprm_free_bridges (acpi_bridges_head); } static int get_number_of_slots ( struct acpi_bridge *ab, int selfonly ) { struct acpi_php_slot *aps; int prev_slot = -1; int slot_num = 0; for ( aps = ab->slots; aps; aps = aps->next) if (aps->dev != prev_slot) { prev_slot = aps->dev; slot_num++; } if (ab->child) slot_num += get_number_of_slots (ab->child, 0); if (selfonly) return slot_num; if (ab->next) slot_num += get_number_of_slots (ab->next, 0); return slot_num; } static int print_acpi_resources (struct acpi_bridge *ab) { struct acpi_php_slot *aps; int i; switch (ab->type) { case BRIDGE_TYPE_HOST: dbg("PCI HOST Bridge (%x) [%s]\n", ab->bus, acpi_path_name(ab->handle)); break; case BRIDGE_TYPE_P2P: dbg("PCI P2P Bridge (%x-%x) [%s]\n", ab->pbus, ab->bus, acpi_path_name(ab->handle)); break; }; print_pci_resources (ab); for ( i = -1, aps = ab->slots; aps; aps = aps->next) { if (aps->dev == i) continue; dbg(" Slot sun(%x) s:b:d:f(%02x:%02x:%02x:%02x)\n", aps->sun, aps->seg, aps->bus, aps->dev, aps->fun); print_slot_resources(aps); i = aps->dev; } if (ab->child) print_acpi_resources (ab->child); if (ab->next) print_acpi_resources (ab->next); return 0; } int shpchprm_print_pirt(void) { dbg("SHPCHPRM ACPI Slots\n"); if (acpi_bridges_head) print_acpi_resources (acpi_bridges_head); return 0; } static struct acpi_php_slot * get_acpi_slot ( struct acpi_bridge *ab, u32 sun ) { struct acpi_php_slot *aps = NULL; for ( aps = ab->slots; aps; aps = aps->next) if (aps->sun == sun) return aps; if (!aps && ab->child) { aps = (struct acpi_php_slot *)get_acpi_slot (ab->child, sun); if (aps) return aps; } if (!aps && ab->next) { aps = (struct acpi_php_slot *)get_acpi_slot (ab->next, sun); if (aps) return aps; } return aps; } void * shpchprm_get_slot(struct slot *slot) { struct acpi_bridge *ab = acpi_bridges_head; struct acpi_php_slot *aps = get_acpi_slot (ab, slot->number); aps->slot = slot; dbg("Got acpi slot sun(%x): s:b:d:f(%x:%x:%x:%x)\n", aps->sun, aps->seg, aps->bus, aps->dev, aps->fun); return (void *)aps; } static void shpchprm_dump_func_res( struct pci_func *fun) { struct pci_func *func = fun; if (func->bus_head) { dbg(": BUS Resources:\n"); print_pci_resource (func->bus_head); } if (func->io_head) { dbg(": IO Resources:\n"); print_pci_resource (func->io_head); } if (func->mem_head) { dbg(": MEM Resources:\n"); print_pci_resource (func->mem_head); } if (func->p_mem_head) { dbg(": PMEM Resources:\n"); print_pci_resource (func->p_mem_head); } } static void shpchprm_dump_ctrl_res( struct controller *ctlr) { struct controller *ctrl = ctlr; if (ctrl->bus_head) { dbg(": BUS Resources:\n"); print_pci_resource (ctrl->bus_head); } if (ctrl->io_head) { dbg(": IO Resources:\n"); print_pci_resource (ctrl->io_head); } if (ctrl->mem_head) { dbg(": MEM Resources:\n"); print_pci_resource (ctrl->mem_head); } if (ctrl->p_mem_head) { dbg(": PMEM Resources:\n"); print_pci_resource (ctrl->p_mem_head); } } static int shpchprm_get_used_resources ( struct controller *ctrl, struct pci_func *func ) { return shpchp_save_used_resources (ctrl, func, !DISABLE_CARD); } static int configure_existing_function( struct controller *ctrl, struct pci_func *func ) { int rc; /* see how much resources the func has used. */ rc = shpchprm_get_used_resources (ctrl, func); if (!rc) { /* subtract the resources used by the func from ctrl resources */ rc = shpchprm_delete_resources (&ctrl->bus_head, func->bus_head); rc |= shpchprm_delete_resources (&ctrl->io_head, func->io_head); rc |= shpchprm_delete_resources (&ctrl->mem_head, func->mem_head); rc |= shpchprm_delete_resources (&ctrl->p_mem_head, func->p_mem_head); if (rc) warn("aCEF: cannot del used resources\n"); } else err("aCEF: cannot get used resources\n"); return rc; } static int bind_pci_resources_to_slots ( struct controller *ctrl) { struct pci_func *func, new_func; int busn = ctrl->bus; int devn, funn; u32 vid; for (devn = 0; devn < 32; devn++) { for (funn = 0; funn < 8; funn++) { if (devn == ctrl->device && funn == ctrl->function) continue; /* find out if this entry is for an occupied slot */ vid = 0xFFFFFFFF; pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(devn, funn), PCI_VENDOR_ID, &vid); if (vid != 0xFFFFFFFF) { func = shpchp_slot_find(busn, devn, funn); if (!func) { memset(&new_func, 0, sizeof(struct pci_func)); new_func.bus = busn; new_func.device = devn; new_func.function = funn; new_func.is_a_board = 1; configure_existing_function(ctrl, &new_func); shpchprm_dump_func_res(&new_func); } else { configure_existing_function(ctrl, func); shpchprm_dump_func_res(func); } dbg("aCCF:existing PCI 0x%x Func ResourceDump\n", ctrl->bus); } } } return 0; } static int bind_pci_resources( struct controller *ctrl, struct acpi_bridge *ab ) { int status = 0; if (ab->bus_head) { dbg("bapr: BUS Resources add on PCI 0x%x\n", ab->bus); status = shpchprm_add_resources (&ctrl->bus_head, ab->bus_head); if (shpchprm_delete_resources (&ab->bus_head, ctrl->bus_head)) warn("bapr: cannot sub BUS Resource on PCI 0x%x\n", ab->bus); if (status) { err("bapr: BUS Resource add on PCI 0x%x: fail=0x%x\n", ab->bus, status); return status; } } else info("bapr: No BUS Resource on PCI 0x%x.\n", ab->bus); if (ab->io_head) { dbg("bapr: IO Resources add on PCI 0x%x\n", ab->bus); status = shpchprm_add_resources (&ctrl->io_head, ab->io_head); if (shpchprm_delete_resources (&ab->io_head, ctrl->io_head)) warn("bapr: cannot sub IO Resource on PCI 0x%x\n", ab->bus); if (status) { err("bapr: IO Resource add on PCI 0x%x: fail=0x%x\n", ab->bus, status); return status; } } else info("bapr: No IO Resource on PCI 0x%x.\n", ab->bus); if (ab->mem_head) { dbg("bapr: MEM Resources add on PCI 0x%x\n", ab->bus); status = shpchprm_add_resources (&ctrl->mem_head, ab->mem_head); if (shpchprm_delete_resources (&ab->mem_head, ctrl->mem_head)) warn("bapr: cannot sub MEM Resource on PCI 0x%x\n", ab->bus); if (status) { err("bapr: MEM Resource add on PCI 0x%x: fail=0x%x\n", ab->bus, status); return status; } } else info("bapr: No MEM Resource on PCI 0x%x.\n", ab->bus); if (ab->p_mem_head) { dbg("bapr: PMEM Resources add on PCI 0x%x\n", ab->bus); status = shpchprm_add_resources (&ctrl->p_mem_head, ab->p_mem_head); if (shpchprm_delete_resources (&ab->p_mem_head, ctrl->p_mem_head)) warn("bapr: cannot sub PMEM Resource on PCI 0x%x\n", ab->bus); if (status) { err("bapr: PMEM Resource add on PCI 0x%x: fail=0x%x\n", ab->bus, status); return status; } } else info("bapr: No PMEM Resource on PCI 0x%x.\n", ab->bus); return status; } static int no_pci_resources( struct acpi_bridge *ab) { return !(ab->p_mem_head || ab->mem_head || ab->io_head || ab->bus_head); } static int find_pci_bridge_resources ( struct controller *ctrl, struct acpi_bridge *ab ) { int rc = 0; struct pci_func func; memset(&func, 0, sizeof(struct pci_func)); func.bus = ab->pbus; func.device = ab->pdevice; func.function = ab->pfunction; func.is_a_board = 1; /* Get used resources for this PCI bridge */ rc = shpchp_save_used_resources (ctrl, &func, !DISABLE_CARD); ab->io_head = func.io_head; ab->mem_head = func.mem_head; ab->p_mem_head = func.p_mem_head; ab->bus_head = func.bus_head; if (ab->bus_head) shpchprm_delete_resource(&ab->bus_head, ctrl->bus, 1); return rc; } static int get_pci_resources_from_bridge( struct controller *ctrl, struct acpi_bridge *ab ) { int rc = 0; dbg("grfb: Get Resources for PCI 0x%x from actual PCI bridge 0x%x.\n", ctrl->bus, ab->bus); rc = find_pci_bridge_resources (ctrl, ab); shpchp_resource_sort_and_combine(&ab->bus_head); shpchp_resource_sort_and_combine(&ab->io_head); shpchp_resource_sort_and_combine(&ab->mem_head); shpchp_resource_sort_and_combine(&ab->p_mem_head); shpchprm_add_resources (&ab->tbus_head, ab->bus_head); shpchprm_add_resources (&ab->tio_head, ab->io_head); shpchprm_add_resources (&ab->tmem_head, ab->mem_head); shpchprm_add_resources (&ab->tp_mem_head, ab->p_mem_head); return rc; } static int get_pci_resources( struct controller *ctrl, struct acpi_bridge *ab ) { int rc = 0; if (no_pci_resources(ab)) { dbg("spbr:PCI 0x%x has no resources. Get parent resources.\n", ab->bus); rc = get_pci_resources_from_bridge(ctrl, ab); } return rc; } int shpchprm_get_physical_slot_number(struct controller *ctrl, u32 *sun, u8 busnum, u8 devnum) { int offset = devnum - ctrl->slot_device_offset; dbg("%s: ctrl->slot_num_inc %d, offset %d\n", __FUNCTION__, ctrl->slot_num_inc, offset); *sun = (u8) (ctrl->first_slot + ctrl->slot_num_inc *offset); return 0; } /* * Get resources for this ctrl. * 1. get total resources from ACPI _CRS or bridge (this ctrl) * 2. find used resources of existing adapters * 3. subtract used resources from total resources */ int shpchprm_find_available_resources( struct controller *ctrl) { int rc = 0; struct acpi_bridge *ab; ab = find_acpi_bridge_by_bus(acpi_bridges_head, ctrl->seg, ctrl->pci_dev->subordinate->number); if (!ab) { err("pfar:cannot locate acpi bridge of PCI 0x%x.\n", ctrl->pci_dev->subordinate->number); return -1; } if (no_pci_resources(ab)) { rc = get_pci_resources(ctrl, ab); if (rc) { err("pfar:cannot get pci resources of PCI 0x%x.\n", ctrl->pci_dev->subordinate->number); return -1; } } rc = bind_pci_resources(ctrl, ab); dbg("pfar:pre-Bind PCI 0x%x Ctrl Resource Dump\n", ctrl->pci_dev->subordinate->number); shpchprm_dump_ctrl_res(ctrl); bind_pci_resources_to_slots (ctrl); dbg("pfar:post-Bind PCI 0x%x Ctrl Resource Dump\n", ctrl->pci_dev->subordinate->number); shpchprm_dump_ctrl_res(ctrl); return rc; } int shpchprm_set_hpp( struct controller *ctrl, struct pci_func *func, u8 card_type ) { struct acpi_bridge *ab; struct pci_bus lpci_bus, *pci_bus; int rc = 0; unsigned int devfn; u8 cls= 0x08; /* default cache line size */ u8 lt = 0x40; /* default latency timer */ u8 ep = 0; u8 es = 0; memcpy(&lpci_bus, ctrl->pci_bus, sizeof(lpci_bus)); pci_bus = &lpci_bus; pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); ab = find_acpi_bridge_by_bus(acpi_bridges_head, ctrl->seg, ctrl->bus); if (ab) { if (ab->_hpp) { lt = (u8)ab->_hpp->latency_timer; cls = (u8)ab->_hpp->cache_line_size; ep = (u8)ab->_hpp->enable_perr; es = (u8)ab->_hpp->enable_serr; } else dbg("_hpp: no _hpp for B/D/F=%#x/%#x/%#x. use default value\n", func->bus, func->device, func->function); } else dbg("_hpp: no acpi bridge for B/D/F = %#x/%#x/%#x. use default value\n", func->bus, func->device, func->function); if (card_type == PCI_HEADER_TYPE_BRIDGE) { /* Set subordinate Latency Timer */ rc |= pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, lt); } /* set base Latency Timer */ rc |= pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, lt); dbg(" set latency timer =0x%02x: %x\n", lt, rc); rc |= pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, cls); dbg(" set cache_line_size=0x%02x: %x\n", cls, rc); return rc; } void shpchprm_enable_card( struct controller *ctrl, struct pci_func *func, u8 card_type) { u16 command, cmd, bcommand, bcmd; struct pci_bus lpci_bus, *pci_bus; struct acpi_bridge *ab; unsigned int devfn; int rc; memcpy(&lpci_bus, ctrl->pci_bus, sizeof(lpci_bus)); pci_bus = &lpci_bus; pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); rc = pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &command); if (card_type == PCI_HEADER_TYPE_BRIDGE) { rc = pci_bus_read_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, &bcommand); } cmd = command = command | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE | PCI_COMMAND_IO | PCI_COMMAND_MEMORY; bcmd = bcommand = bcommand | PCI_BRIDGE_CTL_NO_ISA; ab = find_acpi_bridge_by_bus(acpi_bridges_head, ctrl->seg, ctrl->bus); if (ab) { if (ab->_hpp) { if (ab->_hpp->enable_perr) { command |= PCI_COMMAND_PARITY; bcommand |= PCI_BRIDGE_CTL_PARITY; } else { command &= ~PCI_COMMAND_PARITY; bcommand &= ~PCI_BRIDGE_CTL_PARITY; } if (ab->_hpp->enable_serr) { command |= PCI_COMMAND_SERR; bcommand |= PCI_BRIDGE_CTL_SERR; } else { command &= ~PCI_COMMAND_SERR; bcommand &= ~PCI_BRIDGE_CTL_SERR; } } else dbg("no _hpp for B/D/F = %#x/%#x/%#x.\n", func->bus, func->device, func->function); } else dbg("no acpi bridge for B/D/F = %#x/%#x/%#x.\n", func->bus, func->device, func->function); if (command != cmd) { rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); } if ((card_type == PCI_HEADER_TYPE_BRIDGE) && (bcommand != bcmd)) { rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, bcommand); } }