/* * Standard Hot Plug Controller Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001 IBM Corp. * Copyright (C) 2003-2004 Intel Corporation * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to , * */ #include #include #include #include #include #include #include #include #include "shpchp.h" #ifndef CONFIG_IA64 #include "../../arch/i386/kernel/pci-i386.h" /* horrible hack showing how processor dependant we are... */ #endif static int is_pci_dev_in_use(struct pci_dev* dev) { /* * dev->driver will be set if the device is in use by a new-style * driver -- otherwise, check the device's regions to see if any * driver has claimed them */ int i, inuse=0; if (dev->driver) return 1; /* Assume driver feels responsible */ for (i = 0; !dev->driver && !inuse && (i < 6); i++) { if (!pci_resource_start(dev, i)) continue; if (pci_resource_flags(dev, i) & IORESOURCE_IO) inuse = check_region(pci_resource_start(dev, i), pci_resource_len(dev, i)); else if (pci_resource_flags(dev, i) & IORESOURCE_MEM) inuse = check_mem_region(pci_resource_start(dev, i), pci_resource_len(dev, i)); } return inuse; } static int pci_hp_remove_device(struct pci_dev *dev) { if (is_pci_dev_in_use(dev)) { err("***Cannot safely power down device -- " "it appears to be in use***\n"); return -EBUSY; } pci_remove_device(dev); return 0; } static int configure_visit_pci_dev (struct pci_dev_wrapped *wrapped_dev, struct pci_bus_wrapped *wrapped_bus) { struct pci_bus* bus = wrapped_bus->bus; struct pci_dev* dev = wrapped_dev->dev; struct pci_func *temp_func; int i=0; dbg("%s: Enter\n", __FUNCTION__); /* We need to fix up the hotplug function representation with the linux representation */ do { temp_func = shpchp_slot_find(dev->bus->number, dev->devfn >> 3, i++); dbg("%s: i %d temp_func %p, bus %x dev %x\n", __FUNCTION__, i, temp_func, dev->bus->number, dev->devfn >>3); } while (temp_func && (temp_func->function != (dev->devfn & 0x07))); if (temp_func) { temp_func->pci_dev = dev; dbg("%s: dev %p dev->irq %x\n", __FUNCTION__, dev, dev->irq); } else { /* We did not even find a hotplug rep of the function, create it * This code might be taken out if we can guarantee the creation of functions * in parallel (hotplug and Linux at the same time). */ dbg("@@@@@@@@@@@ shpchp_slot_create in %s\n", __FUNCTION__); temp_func = shpchp_slot_create(bus->number); if (temp_func == NULL) return -ENOMEM; temp_func->pci_dev = dev; } /* Create /proc/bus/pci proc entry for this device and bus device is on */ /* Notify the drivers of the change */ if (temp_func->pci_dev) { dbg("%s: PCI_ID=%04X:%04X\n", __FUNCTION__, temp_func->pci_dev->vendor, temp_func->pci_dev->device); dbg("%s: PCI BUS %x DEVFN %x\n", __FUNCTION__, temp_func->pci_dev->bus->number, temp_func->pci_dev->devfn); dbg("%s: PCI_SLOT_NAME %s\n", __FUNCTION__, temp_func->pci_dev->slot_name); pci_enable_device(temp_func->pci_dev); pci_proc_attach_device(temp_func->pci_dev); pci_announce_device_to_drivers(temp_func->pci_dev); } return 0; } static int unconfigure_visit_pci_dev_phase2 (struct pci_dev_wrapped *wrapped_dev, struct pci_bus_wrapped *wrapped_bus) { struct pci_dev* dev = wrapped_dev->dev; struct pci_func *temp_func; int i=0; /* We need to remove the hotplug function representation with the linux representation */ do { temp_func = shpchp_slot_find(dev->bus->number, dev->devfn >> 3, i++); if (temp_func) { dbg("temp_func->function = %d\n", temp_func->function); } } while (temp_func && (temp_func->function != (dev->devfn & 0x07))); /* Now, remove the Linux Representation */ if (dev) { if (pci_hp_remove_device(dev) == 0) { kfree(dev); /* Now, remove */ } else { return -1; /* problems while freeing, abort visitation */ } } if (temp_func) { temp_func->pci_dev = NULL; } else { dbg("No pci_func representation for bus, devfn = %d, %x\n", dev->bus->number, dev->devfn); } return 0; } static int unconfigure_visit_pci_bus_phase2 (struct pci_bus_wrapped *wrapped_bus, struct pci_dev_wrapped *wrapped_dev) { struct pci_bus* bus = wrapped_bus->bus; /* The cleanup code for proc entries regarding buses should be in the kernel...*/ if (bus->procdir) dbg("detach_pci_bus %s\n", bus->procdir->name); pci_proc_detach_bus(bus); /* The cleanup code should live in the kernel... */ bus->self->subordinate = NULL; /* Unlink from parent bus */ list_del(&bus->node); /* Now, remove */ if (bus) kfree(bus); return 0; } static int unconfigure_visit_pci_dev_phase1 (struct pci_dev_wrapped *wrapped_dev, struct pci_bus_wrapped *wrapped_bus) { struct pci_dev* dev = wrapped_dev->dev; int rc; dbg("attempting removal of driver for device (%x, %x, %x)\n", dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn)); /* Now, remove the Linux Driver Representation */ if (dev->driver) { if (dev->driver->remove) { dev->driver->remove(dev); dbg("driver was properly removed\n"); } dev->driver = NULL; } rc = is_pci_dev_in_use(dev); if (rc) info("%s: device still in use\n", __FUNCTION__); return rc; } static struct pci_visit configure_functions = { .visit_pci_dev = configure_visit_pci_dev, }; static struct pci_visit unconfigure_functions_phase1 = { .post_visit_pci_dev = unconfigure_visit_pci_dev_phase1 }; static struct pci_visit unconfigure_functions_phase2 = { .post_visit_pci_bus = unconfigure_visit_pci_bus_phase2, .post_visit_pci_dev = unconfigure_visit_pci_dev_phase2 }; int shpchp_configure_device (struct controller* ctrl, struct pci_func* func) { unsigned char bus; struct pci_dev dev0; struct pci_bus *child; struct pci_dev* temp; int rc = 0; struct pci_dev_wrapped wrapped_dev; struct pci_bus_wrapped wrapped_bus; dbg("%s: Enter\n", __FUNCTION__); memset(&wrapped_dev, 0, sizeof(struct pci_dev_wrapped)); memset(&wrapped_bus, 0, sizeof(struct pci_bus_wrapped)); memset(&dev0, 0, sizeof(struct pci_dev)); dbg("%s: func->pci_dev %p\n", __FUNCTION__, func->pci_dev); if (func->pci_dev != NULL) dbg("%s: func->pci_dev->irq %x\n", __FUNCTION__, func->pci_dev->irq); if (func->pci_dev == NULL) func->pci_dev = pci_find_slot(func->bus, (func->device << 3) | (func->function & 0x7)); dbg("%s: after pci_find_slot, func->pci_dev %p\n", __FUNCTION__, func->pci_dev); if (func->pci_dev != NULL) dbg("%s: after pci_find_slot, func->pci_dev->irq %x\n", __FUNCTION__, func->pci_dev->irq); /* Still NULL ? Well then scan for it ! */ if (func->pci_dev == NULL) { dbg("%s: pci_dev still null. do pci_scan_slot\n", __FUNCTION__); dev0.bus = ctrl->pci_dev->subordinate; dbg("%s: dev0.bus %p\n", __FUNCTION__, dev0.bus); dev0.bus->number = func->bus; dbg("%s: dev0.bus->number %x\n", __FUNCTION__, func->bus); dev0.devfn = PCI_DEVFN(func->device, func->function); dev0.sysdata = ctrl->pci_dev->sysdata; /* this will generate pci_dev structures for all functions, * but we will only call this case when lookup fails */ dbg("%s: dev0.irq %x\n", __FUNCTION__, dev0.irq); func->pci_dev = pci_scan_slot(&dev0); dbg("%s: func->pci_dev->irq %x\n", __FUNCTION__, func->pci_dev->irq); if (func->pci_dev == NULL) { dbg("ERROR: pci_dev still null\n"); return 0; } } if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus); child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus); dbg("%s: calling pci_do_scan_bus\n", __FUNCTION__); pci_do_scan_bus(child); } temp = func->pci_dev; dbg("%s: func->pci_dev->irq %x\n", __FUNCTION__, func->pci_dev->irq); if (temp) { wrapped_dev.dev = temp; wrapped_bus.bus = temp->bus; rc = pci_visit_dev(&configure_functions, &wrapped_dev, &wrapped_bus); } dbg("%s: Exit\n", __FUNCTION__); return rc; } int shpchp_unconfigure_device(struct pci_func* func) { int rc = 0; int j; struct pci_dev_wrapped wrapped_dev; struct pci_bus_wrapped wrapped_bus; memset(&wrapped_dev, 0, sizeof(struct pci_dev_wrapped)); memset(&wrapped_bus, 0, sizeof(struct pci_bus_wrapped)); dbg("%s: bus/dev/func = %x/%x/%x\n", __FUNCTION__, func->bus, func->device, func->function); for (j=0; j<8 ; j++) { struct pci_dev* temp = pci_find_slot(func->bus, (func->device << 3) | j); if (temp) { wrapped_dev.dev = temp; wrapped_bus.bus = temp->bus; rc = pci_visit_dev(&unconfigure_functions_phase1, &wrapped_dev, &wrapped_bus); if (rc) break; rc = pci_visit_dev(&unconfigure_functions_phase2, &wrapped_dev, &wrapped_bus); if (rc) break; } } return rc; } /* * shpchp_set_irq * * @bus_num: bus number of PCI device * @dev_num: device number of PCI device * @slot: pointer to u8 where slot number will be returned */ int shpchp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num) { #if defined(CONFIG_X86) && !defined(CONFIG_X86_IO_APIC) && !defined(CONFIG_X86_64) int rc; u16 temp_word; struct pci_dev fakedev; struct pci_bus fakebus; fakedev.devfn = dev_num << 3; fakedev.bus = &fakebus; fakebus.number = bus_num; dbg("%s: dev %d, bus %d, pin %d, num %d\n", __FUNCTION__, dev_num, bus_num, int_pin, irq_num); rc = pcibios_set_irq_routing(&fakedev, int_pin - 0x0a, irq_num); dbg("%s: rc %d\n", __FUNCTION__, rc); if (!rc) return !rc; /* set the Edge Level Control Register (ELCR) */ temp_word = inb(0x4d0); temp_word |= inb(0x4d1) << 8; temp_word |= 0x01 << irq_num; /* This should only be for x86 as it sets the Edge Level Control Register */ outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word & 0xFF00) >> 8), 0x4d1); #endif return 0; } /* More PCI configuration routines; this time centered around hotplug controller */ /* * shpchp_save_config * * Reads configuration for all slots in a PCI bus and saves info. * * Note: For non-hot plug busses, the slot # saved is the device # * * returns 0 if success */ int shpchp_save_config(struct controller *ctrl, int busnumber, int num_ctlr_slots, int first_device_num) { int rc; u8 class_code; u8 header_type; u32 ID; u8 secondary_bus; struct pci_func *new_slot; int sub_bus; int FirstSupported; int LastSupported; int max_functions; int function; u8 DevError; int device = 0; int cloop = 0; int stop_it; int index; int is_hot_plug = num_ctlr_slots || first_device_num; struct pci_bus lpci_bus, *pci_bus; dbg("%s: num_ctlr_slots = %d, first_device_num = %d\n", __FUNCTION__, num_ctlr_slots, first_device_num); memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); pci_bus = &lpci_bus; dbg("%s: num_ctlr_slots = %d, first_device_num = %d\n", __FUNCTION__, num_ctlr_slots, first_device_num); /* Decide which slots are supported */ if (is_hot_plug) { /********************************* * is_hot_plug is the slot mask *********************************/ FirstSupported = first_device_num; LastSupported = FirstSupported + num_ctlr_slots - 1; } else { FirstSupported = 0; LastSupported = 0x1F; } dbg("FirstSupported = %d, LastSupported = %d\n", FirstSupported, LastSupported); /* Save PCI configuration space for all devices in supported slots */ pci_bus->number = busnumber; for (device = FirstSupported; device <= LastSupported; device++) { ID = 0xFFFFFFFF; rc = pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID); if (ID != 0xFFFFFFFF) { /* device in slot */ rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code); if (rc) return rc; rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type); if (rc) return rc; dbg("class_code = %x, header_type = %x\n", class_code, header_type); /* If multi-function device, set max_functions to 8 */ if (header_type & 0x80) max_functions = 8; else max_functions = 1; function = 0; do { DevError = 0; if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* P-P Bridge */ /* Recurse the subordinate bus * get the subordinate bus number */ rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus); if (rc) { return rc; } else { sub_bus = (int) secondary_bus; /* Save secondary bus cfg spc with this recursive call. */ rc = shpchp_save_config(ctrl, sub_bus, 0, 0); if (rc) return rc; } } index = 0; new_slot = shpchp_slot_find(busnumber, device, index++); dbg("new_slot = %p\n", new_slot); while (new_slot && (new_slot->function != (u8) function)) { new_slot = shpchp_slot_find(busnumber, device, index++); dbg("new_slot = %p\n", new_slot); } if (!new_slot) { /* Setup slot structure. */ new_slot = shpchp_slot_create(busnumber); dbg("new_slot = %p\n", new_slot); if (new_slot == NULL) return(1); } new_slot->bus = (u8) busnumber; new_slot->device = (u8) device; new_slot->function = (u8) function; new_slot->is_a_board = 1; new_slot->switch_save = 0x10; new_slot->pwr_save = 1; /* In case of unsupported board */ new_slot->status = DevError; new_slot->pci_dev = pci_find_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function); dbg("new_slot->pci_dev = %p\n", new_slot->pci_dev); for (cloop = 0; cloop < 0x20; cloop++) { rc = pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot->config_space [cloop])); dbg("%s: new_slot->config_space[%x] = %x\n", __FUNCTION__, cloop, new_slot->config_space[cloop]); if (rc) return rc; } function++; stop_it = 0; /* This loop skips to the next present function * reading in Class Code and Header type. */ while ((function < max_functions)&&(!stop_it)) { rc = pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID); if (ID == 0xFFFFFFFF) { /* nothing there. */ function++; dbg("Nothing there\n"); } else { /* Something there */ rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code); if (rc) return rc; rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type); if (rc) return rc; dbg("class_code = %x, header_type = %x\n", class_code, header_type); stop_it++; } } } while (function < max_functions); } /* End of IF (device in slot?) */ else if (is_hot_plug) { /* Setup slot structure with entry for empty slot */ new_slot = shpchp_slot_create(busnumber); if (new_slot == NULL) { return(1); } dbg("new_slot = %p\n", new_slot); new_slot->bus = (u8) busnumber; new_slot->device = (u8) device; new_slot->function = 0; new_slot->is_a_board = 0; new_slot->presence_save = 0; new_slot->switch_save = 0; } } /* End of FOR loop */ return(0); } /* * shpchp_save_slot_config * * Saves configuration info for all PCI devices in a given slot * including subordinate busses. * * returns 0 if success */ int shpchp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot) { int rc; u8 class_code; u8 header_type; u32 ID; u8 secondary_bus; int sub_bus; int max_functions; int function; int cloop = 0; int stop_it; struct pci_bus lpci_bus, *pci_bus; memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); pci_bus = &lpci_bus; pci_bus->number = new_slot->bus; ID = 0xFFFFFFFF; pci_bus_read_config_dword(pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID); if (ID != 0xFFFFFFFF) { /* device in slot */ pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code); pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type); if (header_type & 0x80) /* Multi-function device */ max_functions = 8; else max_functions = 1; function = 0; do { if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */ /* Recurse the subordinate bus */ pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus); sub_bus = (int) secondary_bus; /* Save the config headers for the secondary bus. */ rc = shpchp_save_config(ctrl, sub_bus, 0, 0); if (rc) return(rc); } /* End of IF */ new_slot->status = 0; for (cloop = 0; cloop < 0x20; cloop++) { pci_bus_read_config_dword(pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot->config_space [cloop])); dbg("%s: new_slot->config_space[%x] = %x\n", __FUNCTION__,cloop, new_slot->config_space[cloop]); } function++; stop_it = 0; /* this loop skips to the next present function * reading in the Class Code and the Header type. */ while ((function < max_functions) && (!stop_it)) { pci_bus_read_config_dword(pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID); if (ID == 0xFFFFFFFF) { /* nothing there. */ function++; } else { /* Something there */ pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code); pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type); stop_it++; } } } while (function < max_functions); } /* End of IF (device in slot?) */ else { return(2); } return(0); } /* * shpchp_save_used_resources * * Stores used resource information for existing boards. this is * for boards that were in the system when this driver was loaded. * this function is for hot plug ADD * * returns 0 if success * if disable == 1(DISABLE_CARD), * it loops for all functions of the slot and disables them. * else, it just get resources of the function and return. */ int shpchp_save_used_resources (struct controller *ctrl, struct pci_func *func, int disable) { u8 cloop; u8 header_type; u8 secondary_bus; u8 temp_byte; u16 command; u16 save_command; u16 w_base, w_length; u32 temp_register; u32 save_base; u32 base, length; u64 base64 = 0; int index = 0; unsigned int devfn; struct pci_resource *mem_node = NULL; struct pci_resource *p_mem_node = NULL; struct pci_resource *t_mem_node; struct pci_resource *io_node; struct pci_resource *bus_node; struct pci_bus lpci_bus, *pci_bus; memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); pci_bus = &lpci_bus; if (disable) func = shpchp_slot_find(func->bus, func->device, index++); while ((func != NULL) && func->is_a_board) { pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); /* Save the command register */ pci_bus_read_config_word (pci_bus, devfn, PCI_COMMAND, &save_command); if (disable) { /* disable card */ command = 0x00; pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); } /* Check for Bridge */ pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */ dbg("Save_used_res of PCI bridge b:d=0x%x:%x, sc=0x%x\n", func->bus, func->device, save_command); if (disable) { /* Clear Bridge Control Register */ command = 0x00; pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); } pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); pci_bus_read_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte); bus_node =(struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!bus_node) return -ENOMEM; bus_node->base = (ulong)secondary_bus; bus_node->length = (ulong)(temp_byte - secondary_bus + 1); bus_node->next = func->bus_head; func->bus_head = bus_node; /* Save IO base and Limit registers */ pci_bus_read_config_byte (pci_bus, devfn, PCI_IO_BASE, &temp_byte); base = temp_byte; pci_bus_read_config_byte (pci_bus, devfn, PCI_IO_LIMIT, &temp_byte); length = temp_byte; if ((base <= length) && (!disable || (save_command & PCI_COMMAND_IO))) { io_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!io_node) return -ENOMEM; io_node->base = (ulong)(base & PCI_IO_RANGE_MASK) << 8; io_node->length = (ulong)(length - base + 0x10) << 8; io_node->next = func->io_head; func->io_head = io_node; } /* Save memory base and Limit registers */ pci_bus_read_config_word (pci_bus, devfn, PCI_MEMORY_BASE, &w_base); pci_bus_read_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length); if ((w_base <= w_length) && (!disable || (save_command & PCI_COMMAND_MEMORY))) { mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!mem_node) return -ENOMEM; mem_node->base = (ulong)w_base << 16; mem_node->length = (ulong)(w_length - w_base + 0x10) << 16; mem_node->next = func->mem_head; func->mem_head = mem_node; } /* Save prefetchable memory base and Limit registers */ pci_bus_read_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base); pci_bus_read_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length); if ((w_base <= w_length) && (!disable || (save_command & PCI_COMMAND_MEMORY))) { p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!p_mem_node) return -ENOMEM; p_mem_node->base = (ulong)w_base << 16; p_mem_node->length = (ulong)(w_length - w_base + 0x10) << 16; p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } } else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) { dbg("Save_used_res of PCI adapter b:d=0x%x:%x, sc=0x%x\n", func->bus, func->device, save_command); /* Figure out IO and memory base lengths */ for (cloop = PCI_BASE_ADDRESS_0; cloop <= PCI_BASE_ADDRESS_5; cloop += 4) { pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base); temp_register = 0xFFFFFFFF; pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register); if (!disable) { pci_bus_write_config_dword (pci_bus, devfn, cloop, save_base); } if (!temp_register) continue; base = temp_register; if ((base & PCI_BASE_ADDRESS_SPACE_IO) && (!disable || (save_command & PCI_COMMAND_IO))) { /* IO base */ /* set temp_register = amount of IO space requested */ base = base & 0xFFFFFFFCL; base = (~base) + 1; io_node = (struct pci_resource *) kmalloc(sizeof (struct pci_resource), GFP_KERNEL); if (!io_node) return -ENOMEM; io_node->base = (ulong)save_base & PCI_BASE_ADDRESS_IO_MASK; io_node->length = (ulong)base; dbg("sur adapter: IO bar=0x%x(length=0x%x)\n", io_node->base, io_node->length); io_node->next = func->io_head; func->io_head = io_node; } else { /* map Memory */ int prefetchable = 1; /* struct pci_resources **res_node; */ char *res_type_str = "PMEM"; u32 temp_register2; t_mem_node = (struct pci_resource *) kmalloc(sizeof (struct pci_resource), GFP_KERNEL); if (!t_mem_node) return -ENOMEM; if (!(base & PCI_BASE_ADDRESS_MEM_PREFETCH) && (!disable || (save_command & PCI_COMMAND_MEMORY))) { prefetchable = 0; mem_node = t_mem_node; res_type_str++; } else p_mem_node = t_mem_node; base = base & 0xFFFFFFF0L; base = (~base) + 1; switch (temp_register & PCI_BASE_ADDRESS_MEM_TYPE_MASK) { case PCI_BASE_ADDRESS_MEM_TYPE_32: if (prefetchable) { p_mem_node->base = (ulong)save_base & PCI_BASE_ADDRESS_MEM_MASK; p_mem_node->length = (ulong)base; dbg("sur adapter: 32 %s bar=0x%x(length=0x%x)\n", res_type_str, p_mem_node->base, p_mem_node->length); p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } else { mem_node->base = (ulong)save_base & PCI_BASE_ADDRESS_MEM_MASK; mem_node->length = (ulong)base; dbg("sur adapter: 32 %s bar=0x%x(length=0x%x)\n", res_type_str, mem_node->base, mem_node->length); mem_node->next = func->mem_head; func->mem_head = mem_node; } break; case PCI_BASE_ADDRESS_MEM_TYPE_64: pci_bus_read_config_dword(pci_bus, devfn, cloop+4, &temp_register2); base64 = temp_register2; base64 = (base64 << 32) | save_base; if (temp_register2) { dbg("sur adapter: 64 %s high dword of base64(0x%x:%x) masked to 0\n", res_type_str, temp_register2, (u32)base64); base64 &= 0x00000000FFFFFFFFL; } if (prefetchable) { p_mem_node->base = base64 & PCI_BASE_ADDRESS_MEM_MASK; p_mem_node->length = base; dbg("sur adapter: 64 %s base=0x%x(len=0x%x)\n", res_type_str, p_mem_node->base, p_mem_node->length); p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } else { mem_node->base = base64 & PCI_BASE_ADDRESS_MEM_MASK; mem_node->length = base; dbg("sur adapter: 64 %s base=0x%x(len=0x%x)\n", res_type_str, mem_node->base, mem_node->length); mem_node->next = func->mem_head; func->mem_head = mem_node; } cloop += 4; break; default: dbg("asur: reserved BAR type=0x%x\n", temp_register); break; } } } /* End of base register loop */ } else { /* Some other unknown header type */ dbg("Save_used_res of PCI unknown type b:d=0x%x:%x. skip.\n", func->bus, func->device); } /* find the next device in this slot */ if (!disable) break; func = shpchp_slot_find(func->bus, func->device, index++); } return(0); } /* * shpchp_return_board_resources * * this routine returns all resources allocated to a board to * the available pool. * * returns 0 if success */ int shpchp_return_board_resources(struct pci_func * func, struct resource_lists * resources) { int rc = 0; struct pci_resource *node; struct pci_resource *t_node; dbg("%s\n", __FUNCTION__); if (!func) return(1); node = func->io_head; func->io_head = NULL; while (node) { t_node = node->next; return_resource(&(resources->io_head), node); node = t_node; } node = func->mem_head; func->mem_head = NULL; while (node) { t_node = node->next; return_resource(&(resources->mem_head), node); node = t_node; } node = func->p_mem_head; func->p_mem_head = NULL; while (node) { t_node = node->next; return_resource(&(resources->p_mem_head), node); node = t_node; } node = func->bus_head; func->bus_head = NULL; while (node) { t_node = node->next; return_resource(&(resources->bus_head), node); node = t_node; } rc |= shpchp_resource_sort_and_combine(&(resources->mem_head)); rc |= shpchp_resource_sort_and_combine(&(resources->p_mem_head)); rc |= shpchp_resource_sort_and_combine(&(resources->io_head)); rc |= shpchp_resource_sort_and_combine(&(resources->bus_head)); return(rc); } /* * shpchp_destroy_resource_list * * Puts node back in the resource list pointed to by head */ void shpchp_destroy_resource_list (struct resource_lists * resources) { struct pci_resource *res, *tres; res = resources->io_head; resources->io_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = resources->mem_head; resources->mem_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = resources->p_mem_head; resources->p_mem_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = resources->bus_head; resources->bus_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } } /* * shpchp_destroy_board_resources * * Puts node back in the resource list pointed to by head */ void shpchp_destroy_board_resources (struct pci_func * func) { struct pci_resource *res, *tres; dbg("%s: \n", __FUNCTION__); res = func->io_head; func->io_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = func->mem_head; func->mem_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = func->p_mem_head; func->p_mem_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = func->bus_head; func->bus_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } }