/* * PCI Express Hot Plug Controller Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001 IBM Corp. * Copyright (C) 2003-2004 Intel Corporation * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to , * */ #include #include #include #include #include #include #include #include #include #include #include #include "pciehp.h" #include "pciehprm.h" static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev); static int configure_new_function( struct controller *ctrl, struct pci_func *func, u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev); static void interrupt_event_handler(struct controller *ctrl); static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */ static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */ static int event_finished; static unsigned long pushbutton_pending; /* = 0 */ u8 pciehp_handle_attention_button(u8 hp_slot, void *inst_id) { struct controller *ctrl = (struct controller *) inst_id; struct slot *p_slot; u8 rc = 0; u8 getstatus; struct pci_func *func; struct event_info *taskInfo; /* Attention Button Change */ dbg("pciehp: Attention button interrupt received.\n"); func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); /* This is the structure that tells the worker thread what to do */ taskInfo = &(ctrl->event_queue[ctrl->next_event]); p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); ctrl->next_event = (ctrl->next_event + 1) % 10; taskInfo->hp_slot = hp_slot; rc++; /* * Button pressed - See if need to TAKE ACTION!!! */ info("Button pressed on Slot(%d)\n", ctrl->first_slot + hp_slot); taskInfo->event_type = INT_BUTTON_PRESS; if ((p_slot->state == BLINKINGON_STATE) || (p_slot->state == BLINKINGOFF_STATE)) { /* Cancel if we are still blinking; this means that we press the * attention again before the 5 sec. limit expires to cancel hot-add * or hot-remove */ taskInfo->event_type = INT_BUTTON_CANCEL; info("Button cancel on Slot(%d)\n", ctrl->first_slot + hp_slot); } else if ((p_slot->state == POWERON_STATE) || (p_slot->state == POWEROFF_STATE)) { /* Ignore if the slot is on power-on or power-off state; this * means that the previous attention button action to hot-add or * hot-remove is undergoing */ taskInfo->event_type = INT_BUTTON_IGNORE; info("Button ignore on Slot(%d)\n", ctrl->first_slot + hp_slot); } if (rc) up(&event_semaphore); /* signal event thread that new event is posted */ return 0; } u8 pciehp_handle_switch_change(u8 hp_slot, void *inst_id) { struct controller *ctrl = (struct controller *) inst_id; struct slot *p_slot; u8 rc = 0; u8 getstatus; struct pci_func *func; struct event_info *taskInfo; /* Switch Change */ dbg("pciehp: Switch interrupt received.\n"); func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); /* this is the structure that tells the worker thread * what to do */ taskInfo = &(ctrl->event_queue[ctrl->next_event]); ctrl->next_event = (ctrl->next_event + 1) % 10; taskInfo->hp_slot = hp_slot; rc++; p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); if (getstatus) { /* * Switch opened */ info("Latch open on Slot(%d)\n", ctrl->first_slot + hp_slot); func->switch_save = 0; taskInfo->event_type = INT_SWITCH_OPEN; } else { /* * Switch closed */ info("Latch close on Slot(%d)\n", ctrl->first_slot + hp_slot); func->switch_save = 0x10; taskInfo->event_type = INT_SWITCH_CLOSE; } if (rc) up(&event_semaphore); /* signal event thread that new event is posted */ return rc; } u8 pciehp_handle_presence_change(u8 hp_slot, void *inst_id) { struct controller *ctrl = (struct controller *) inst_id; struct slot *p_slot; u8 rc = 0; struct pci_func *func; struct event_info *taskInfo; /* Presence Change */ dbg("pciehp: Presence/Notify input change.\n"); func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); /* This is the structure that tells the worker thread * what to do */ taskInfo = &(ctrl->event_queue[ctrl->next_event]); ctrl->next_event = (ctrl->next_event + 1) % 10; taskInfo->hp_slot = hp_slot; rc++; p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); /* Switch is open, assume a presence change * Save the presence state */ p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); if (func->presence_save) { /* * Card Present */ info("Card present on Slot(%d)\n", ctrl->first_slot + hp_slot); taskInfo->event_type = INT_PRESENCE_ON; } else { /* * Not Present */ info("Card not present on Slot(%d)\n", ctrl->first_slot + hp_slot); taskInfo->event_type = INT_PRESENCE_OFF; } if (rc) up(&event_semaphore); /* signal event thread that new event is posted */ return rc; } u8 pciehp_handle_power_fault(u8 hp_slot, void *inst_id) { struct controller *ctrl = (struct controller *) inst_id; struct slot *p_slot; u8 rc = 0; struct pci_func *func; struct event_info *taskInfo; /* power fault */ dbg("pciehp: Power fault interrupt received.\n"); func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); /* This is the structure that tells the worker thread * what to do */ taskInfo = &(ctrl->event_queue[ctrl->next_event]); ctrl->next_event = (ctrl->next_event + 1) % 10; taskInfo->hp_slot = hp_slot; rc++; p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); if ( !(p_slot->hpc_ops->query_power_fault(p_slot))) { /* * Power fault cleared */ info("Power fault cleared on Slot(%d)\n", ctrl->first_slot + hp_slot); func->status = 0x00; taskInfo->event_type = INT_POWER_FAULT_CLEAR; } else { /* * Power fault */ info("Power fault on Slot(%d)\n", ctrl->first_slot + hp_slot); taskInfo->event_type = INT_POWER_FAULT; /* Set power fault status for this board */ func->status = 0xFF; info("power fault bit %x set\n", hp_slot); } if (rc) up(&event_semaphore); /* Signal event thread that new event is posted */ return rc; } /* * sort_by_size * * Sorts nodes on the list by their length. * Smallest first. * */ static int sort_by_size(struct pci_resource **head) { struct pci_resource *current_res; struct pci_resource *next_res; int out_of_order = 1; if (!(*head)) return(1); if (!((*head)->next)) return(0); while (out_of_order) { out_of_order = 0; /* Special case for swapping list head */ if (((*head)->next) && ((*head)->length > (*head)->next->length)) { out_of_order++; current_res = *head; *head = (*head)->next; current_res->next = (*head)->next; (*head)->next = current_res; } current_res = *head; while (current_res->next && current_res->next->next) { if (current_res->next->length > current_res->next->next->length) { out_of_order++; next_res = current_res->next; current_res->next = current_res->next->next; current_res = current_res->next; next_res->next = current_res->next; current_res->next = next_res; } else current_res = current_res->next; } } /* End of out_of_order loop */ return(0); } /* * sort_by_max_size * * Sorts nodes on the list by their length. * Largest first. * */ static int sort_by_max_size(struct pci_resource **head) { struct pci_resource *current_res; struct pci_resource *next_res; int out_of_order = 1; if (!(*head)) return(1); if (!((*head)->next)) return(0); while (out_of_order) { out_of_order = 0; /* Special case for swapping list head */ if (((*head)->next) && ((*head)->length < (*head)->next->length)) { out_of_order++; current_res = *head; *head = (*head)->next; current_res->next = (*head)->next; (*head)->next = current_res; } current_res = *head; while (current_res->next && current_res->next->next) { if (current_res->next->length < current_res->next->next->length) { out_of_order++; next_res = current_res->next; current_res->next = current_res->next->next; current_res = current_res->next; next_res->next = current_res->next; current_res->next = next_res; } else current_res = current_res->next; } } /* End of out_of_order loop */ return(0); } /* * do_pre_bridge_resource_split * * Returns zero or one node of resources that aren't in use * */ static struct pci_resource *do_pre_bridge_resource_split (struct pci_resource **head, struct pci_resource **orig_head, u32 alignment) { struct pci_resource *prevnode = NULL; struct pci_resource *node; struct pci_resource *split_node; u32 rc; u32 temp_dword; dbg("do_pre_bridge_resource_split\n"); if (!(*head) || !(*orig_head)) return(NULL); rc = pciehp_resource_sort_and_combine(head); if (rc) return(NULL); if ((*head)->base != (*orig_head)->base) return(NULL); if ((*head)->length == (*orig_head)->length) return(NULL); /* If we got here, there the bridge requires some of the resource, but * we may be able to split some off of the front */ node = *head; if (node->length & (alignment -1)) { /* This one isn't an aligned length, so we'll make a new entry * and split it up. */ split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); temp_dword = (node->length | (alignment-1)) + 1 - alignment; split_node->base = node->base; split_node->length = temp_dword; node->length -= temp_dword; node->base += split_node->length; /* Put it in the list */ *head = split_node; split_node->next = node; } if (node->length < alignment) { return(NULL); } /* Now unlink it */ if (*head == node) { *head = node->next; node->next = NULL; } else { prevnode = *head; while (prevnode->next != node) prevnode = prevnode->next; prevnode->next = node->next; node->next = NULL; } return(node); } /* * do_bridge_resource_split * * Returns zero or one node of resources that aren't in use * */ static struct pci_resource *do_bridge_resource_split (struct pci_resource **head, u32 alignment) { struct pci_resource *prevnode = NULL; struct pci_resource *node; u32 rc; u32 temp_dword; if (!(*head)) return(NULL); rc = pciehp_resource_sort_and_combine(head); if (rc) return(NULL); node = *head; while (node->next) { prevnode = node; node = node->next; kfree(prevnode); } if (node->length < alignment) { kfree(node); return(NULL); } if (node->base & (alignment - 1)) { /* Short circuit if adjusted size is too small */ temp_dword = (node->base | (alignment-1)) + 1; if ((node->length - (temp_dword - node->base)) < alignment) { kfree(node); return(NULL); } node->length -= (temp_dword - node->base); node->base = temp_dword; } if (node->length & (alignment - 1)) { /* There's stuff in use after this node */ kfree(node); return(NULL); } return(node); } /* * get_io_resource * * this function sorts the resource list by size and then * returns the first node of "size" length that is not in the * ISA aliasing window. If it finds a node larger than "size" * it will split it up. * * size must be a power of two. */ static struct pci_resource *get_io_resource (struct pci_resource **head, u32 size) { struct pci_resource *prevnode; struct pci_resource *node; struct pci_resource *split_node = NULL; u32 temp_dword; if (!(*head)) return(NULL); if ( pciehp_resource_sort_and_combine(head) ) return(NULL); if ( sort_by_size(head) ) return(NULL); for (node = *head; node; node = node->next) { if (node->length < size) continue; if (node->base & (size - 1)) { /* This one isn't base aligned properly so we'll make a new entry and split it up */ temp_dword = (node->base | (size-1)) + 1; /*/ Short circuit if adjusted size is too small */ if ((node->length - (temp_dword - node->base)) < size) continue; split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); split_node->base = node->base; split_node->length = temp_dword - node->base; node->base = temp_dword; node->length -= split_node->length; /* Put it in the list */ split_node->next = node->next; node->next = split_node; } /* End of non-aligned base */ /* Don't need to check if too small since we already did */ if (node->length > size) { /* This one is longer than we need so we'll make a new entry and split it up */ split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); split_node->base = node->base + size; split_node->length = node->length - size; node->length = size; /* Put it in the list */ split_node->next = node->next; node->next = split_node; } /* End of too big on top end */ /* For IO make sure it's not in the ISA aliasing space */ if (node->base & 0x300L) continue; /* If we got here, then it is the right size Now take it out of the list */ if (*head == node) { *head = node->next; } else { prevnode = *head; while (prevnode->next != node) prevnode = prevnode->next; prevnode->next = node->next; } node->next = NULL; /* Stop looping */ break; } return(node); } /* * get_max_resource * * Gets the largest node that is at least "size" big from the * list pointed to by head. It aligns the node on top and bottom * to "size" alignment before returning it. * J.I. modified to put max size limits of; 64M->32M->16M->8M->4M->1M * This is needed to avoid allocating entire ACPI _CRS res to one child bridge/slot. */ static struct pci_resource *get_max_resource (struct pci_resource **head, u32 size) { struct pci_resource *max; struct pci_resource *temp; struct pci_resource *split_node; u32 temp_dword; u32 max_size[] = { 0x4000000, 0x2000000, 0x1000000, 0x0800000, 0x0400000, 0x0200000, 0x0100000, 0x00 }; int i; if (!(*head)) return(NULL); if (pciehp_resource_sort_and_combine(head)) return(NULL); if (sort_by_max_size(head)) return(NULL); for (max = *head;max; max = max->next) { /* If not big enough we could probably just bail, instead we'll continue to the next. */ if (max->length < size) continue; if (max->base & (size - 1)) { /* This one isn't base aligned properly so we'll make a new entry and split it up */ temp_dword = (max->base | (size-1)) + 1; /* Short circuit if adjusted size is too small */ if ((max->length - (temp_dword - max->base)) < size) continue; split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); split_node->base = max->base; split_node->length = temp_dword - max->base; max->base = temp_dword; max->length -= split_node->length; /* Put it next in the list */ split_node->next = max->next; max->next = split_node; } if ((max->base + max->length) & (size - 1)) { /* This one isn't end aligned properly at the top so we'll make a new entry and split it up */ split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); temp_dword = ((max->base + max->length) & ~(size - 1)); split_node->base = temp_dword; split_node->length = max->length + max->base - split_node->base; max->length -= split_node->length; /* Put it in the list */ split_node->next = max->next; max->next = split_node; } /* Make sure it didn't shrink too much when we aligned it */ if (max->length < size) continue; for ( i = 0; max_size[i] > size; i++) { if (max->length > max_size[i]) { split_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) break; /* return (NULL); */ split_node->base = max->base + max_size[i]; split_node->length = max->length - max_size[i]; max->length = max_size[i]; /* Put it next in the list */ split_node->next = max->next; max->next = split_node; break; } } /* Now take it out of the list */ temp = (struct pci_resource*) *head; if (temp == max) { *head = max->next; } else { while (temp && temp->next != max) { temp = temp->next; } temp->next = max->next; } max->next = NULL; return(max); } /* If we get here, we couldn't find one */ return(NULL); } /* * get_resource * * this function sorts the resource list by size and then * returns the first node of "size" length. If it finds a node * larger than "size" it will split it up. * * size must be a power of two. */ static struct pci_resource *get_resource (struct pci_resource **head, u32 size) { struct pci_resource *prevnode; struct pci_resource *node; struct pci_resource *split_node; u32 temp_dword; if (!(*head)) return(NULL); if ( pciehp_resource_sort_and_combine(head) ) return(NULL); if ( sort_by_size(head) ) return(NULL); for (node = *head; node; node = node->next) { dbg("%s: req_size =0x%x node=%p, base=0x%x, length=0x%x\n", __FUNCTION__, size, node, node->base, node->length); if (node->length < size) continue; if (node->base & (size - 1)) { dbg("%s: not aligned\n", __FUNCTION__); /* This one isn't base aligned properly so we'll make a new entry and split it up */ temp_dword = (node->base | (size-1)) + 1; /* Short circuit if adjusted size is too small */ if ((node->length - (temp_dword - node->base)) < size) continue; split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); split_node->base = node->base; split_node->length = temp_dword - node->base; node->base = temp_dword; node->length -= split_node->length; /* Put it in the list */ split_node->next = node->next; node->next = split_node; } /* End of non-aligned base */ /* Don't need to check if too small since we already did */ if (node->length > size) { dbg("%s: too big\n", __FUNCTION__); /* This one is longer than we need so we'll make a new entry and split it up */ split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); split_node->base = node->base + size; split_node->length = node->length - size; node->length = size; /* Put it in the list */ split_node->next = node->next; node->next = split_node; } /* End of too big on top end */ dbg("%s: got one!!!\n", __FUNCTION__); /* If we got here, then it is the right size Now take it out of the list */ if (*head == node) { *head = node->next; } else { prevnode = *head; while (prevnode->next != node) prevnode = prevnode->next; prevnode->next = node->next; } node->next = NULL; /* Stop looping */ break; } return(node); } /* * pciehp_resource_sort_and_combine * * Sorts all of the nodes in the list in ascending order by * their base addresses. Also does garbage collection by * combining adjacent nodes. * * returns 0 if success */ int pciehp_resource_sort_and_combine(struct pci_resource **head) { struct pci_resource *node1; struct pci_resource *node2; int out_of_order = 1; dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head); if (!(*head)) return(1); dbg("*head->next = %p\n",(*head)->next); if (!(*head)->next) return(0); /* Only one item on the list, already sorted! */ dbg("*head->base = 0x%x\n",(*head)->base); dbg("*head->next->base = 0x%x\n",(*head)->next->base); while (out_of_order) { out_of_order = 0; /* Special case for swapping list head */ if (((*head)->next) && ((*head)->base > (*head)->next->base)) { node1 = *head; (*head) = (*head)->next; node1->next = (*head)->next; (*head)->next = node1; out_of_order++; } node1 = (*head); while (node1->next && node1->next->next) { if (node1->next->base > node1->next->next->base) { out_of_order++; node2 = node1->next; node1->next = node1->next->next; node1 = node1->next; node2->next = node1->next; node1->next = node2; } else node1 = node1->next; } } /* End of out_of_order loop */ node1 = *head; while (node1 && node1->next) { if ((node1->base + node1->length) == node1->next->base) { /* Combine */ dbg("8..\n"); node1->length += node1->next->length; node2 = node1->next; node1->next = node1->next->next; kfree(node2); } else node1 = node1->next; } return(0); } /** * pciehp_slot_create - Creates a node and adds it to the proper bus. * @busnumber - bus where new node is to be located * * Returns pointer to the new node or NULL if unsuccessful */ struct pci_func *pciehp_slot_create(u8 busnumber) { struct pci_func *new_slot; struct pci_func *next; dbg("%s: busnumber %x\n", __FUNCTION__, busnumber); new_slot = (struct pci_func *) kmalloc(sizeof(struct pci_func), GFP_KERNEL); if (new_slot == NULL) { return(new_slot); } memset(new_slot, 0, sizeof(struct pci_func)); new_slot->next = NULL; new_slot->configured = 1; if (pciehp_slot_list[busnumber] == NULL) { pciehp_slot_list[busnumber] = new_slot; } else { next = pciehp_slot_list[busnumber]; while (next->next != NULL) next = next->next; next->next = new_slot; } return(new_slot); } /* * slot_remove - Removes a node from the linked list of slots. * @old_slot: slot to remove * * Returns 0 if successful, !0 otherwise. */ static int slot_remove(struct pci_func * old_slot) { struct pci_func *next; if (old_slot == NULL) return(1); next = pciehp_slot_list[old_slot->bus]; if (next == NULL) { return(1); } if (next == old_slot) { pciehp_slot_list[old_slot->bus] = old_slot->next; pciehp_destroy_board_resources(old_slot); kfree(old_slot); return(0); } while ((next->next != old_slot) && (next->next != NULL)) { next = next->next; } if (next->next == old_slot) { next->next = old_slot->next; pciehp_destroy_board_resources(old_slot); kfree(old_slot); return(0); } else return(2); } /** * bridge_slot_remove - Removes a node from the linked list of slots. * @bridge: bridge to remove * * Returns 0 if successful, !0 otherwise. */ static int bridge_slot_remove(struct pci_func *bridge) { u8 subordinateBus, secondaryBus; u8 tempBus; struct pci_func *next; if (bridge == NULL) return(1); secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { next = pciehp_slot_list[tempBus]; while (!slot_remove(next)) { next = pciehp_slot_list[tempBus]; } } next = pciehp_slot_list[bridge->bus]; if (next == NULL) { return(1); } if (next == bridge) { pciehp_slot_list[bridge->bus] = bridge->next; kfree(bridge); return(0); } while ((next->next != bridge) && (next->next != NULL)) { next = next->next; } if (next->next == bridge) { next->next = bridge->next; kfree(bridge); return(0); } else return(2); } /** * pciehp_slot_find - Looks for a node by bus, and device, multiple functions accessed * @bus: bus to find * @device: device to find * @index: is 0 for first function found, 1 for the second... * * Returns pointer to the node if successful, %NULL otherwise. */ struct pci_func *pciehp_slot_find(u8 bus, u8 device, u8 index) { int found = -1; struct pci_func *func; func = pciehp_slot_list[bus]; dbg("%s: bus %x device %x index %x\n", __FUNCTION__, bus, device, index); if (func != NULL) { dbg("%s: func-> bus %x device %x function %x pci_dev %p\n", __FUNCTION__, func->bus, func->device, func->function, func->pci_dev); } else dbg("%s: func == NULL\n", __FUNCTION__); if ((func == NULL) || ((func->device == device) && (index == 0))) return(func); if (func->device == device) found++; while (func->next != NULL) { func = func->next; dbg("%s: In while loop, func-> bus %x device %x function %x pci_dev %p\n", __FUNCTION__, func->bus, func->device, func->function, func->pci_dev); if (func->device == device) found++; dbg("%s: while loop, found %d, index %d\n", __FUNCTION__, found, index); if ((found == index) ||(func->function == index)) { dbg("%s: Found bus %x dev %x func %x\n", __FUNCTION__, func->bus, func->device, func->function); return(func); } } return(NULL); } static int is_bridge(struct pci_func * func) { /* Check the header type */ if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) return 1; else return 0; } /* the following routines constitute the bulk of the hotplug controller logic */ static void set_slot_off(struct controller *ctrl, struct slot * pslot) { /* Wait for exclusive access to hardware */ down(&ctrl->crit_sect); /* turn off slot, turn on Amber LED, turn off Green LED */ if (pslot->hpc_ops->power_off_slot(pslot)) { err("%s: Issue of Slot Power Off command failed\n", __FUNCTION__); up(&ctrl->crit_sect); return; } wait_for_ctrl_irq (ctrl); pslot->hpc_ops->green_led_off(pslot); wait_for_ctrl_irq (ctrl); /* turn on Amber LED */ if (pslot->hpc_ops->set_attention_status(pslot, 1)) { err("%s: Issue of Set Attention Led command failed\n", __FUNCTION__); up(&ctrl->crit_sect); return; } wait_for_ctrl_irq (ctrl); /* Done with exclusive hardware access */ up(&ctrl->crit_sect); } /** * board_added - Called after a board has been added to the system. * * Turns power on for the board * Configures board * */ static u32 board_added(struct pci_func * func, struct controller * ctrl) { u8 hp_slot; int index; u32 temp_register = 0xFFFFFFFF; u32 rc = 0; struct pci_func *new_func = NULL; struct slot *p_slot; struct resource_lists res_lists; p_slot = pciehp_find_slot(ctrl, func->device); hp_slot = func->device - ctrl->slot_device_offset; dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot); /* Wait for exclusive access to hardware */ down(&ctrl->crit_sect); /* Power on slot */ rc = p_slot->hpc_ops->power_on_slot(p_slot); if (rc) { up(&ctrl->crit_sect); return -1; } /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); dbg("%s: after power on\n", __FUNCTION__); p_slot->hpc_ops->green_led_blink(p_slot); /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); dbg("%s: after green_led_blink", __FUNCTION__); /* Done with exclusive hardware access */ up(&ctrl->crit_sect); /* Wait for ~1 second */ dbg("%s: before long_delay\n", __FUNCTION__); wait_for_ctrl_irq (ctrl); dbg("%s: afterlong_delay\n", __FUNCTION__); dbg("%s: before check link status", __FUNCTION__); /* Check link training status */ rc = p_slot->hpc_ops->check_lnk_status(ctrl); if (rc) { err("%s: Failed to check link status\n", __FUNCTION__); set_slot_off(ctrl, p_slot); return -1; } dbg("%s: func status = %x\n", __FUNCTION__, func->status); /* Check for a power fault */ if (func->status == 0xFF) { /* power fault occurred, but it was benign */ temp_register = 0xFFFFFFFF; dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register); rc = POWER_FAILURE; func->status = 0; } else { /* Get vendor/device ID u32 */ rc = pci_bus_read_config_dword (ctrl->pci_dev->subordinate, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); dbg("%s: pci_bus_read_config_dword returns %d\n", __FUNCTION__, rc); dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register); if (rc != 0) { /* Something's wrong here */ temp_register = 0xFFFFFFFF; dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register); } /* Preset return code. It will be changed later if things go okay. */ rc = NO_ADAPTER_PRESENT; } /* All F's is an empty slot or an invalid board */ if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */ res_lists.io_head = ctrl->io_head; res_lists.mem_head = ctrl->mem_head; res_lists.p_mem_head = ctrl->p_mem_head; res_lists.bus_head = ctrl->bus_head; res_lists.irqs = NULL; rc = configure_new_device(ctrl, func, 0, &res_lists, 0, 0); dbg("%s: back from configure_new_device\n", __FUNCTION__); ctrl->io_head = res_lists.io_head; ctrl->mem_head = res_lists.mem_head; ctrl->p_mem_head = res_lists.p_mem_head; ctrl->bus_head = res_lists.bus_head; pciehp_resource_sort_and_combine(&(ctrl->mem_head)); pciehp_resource_sort_and_combine(&(ctrl->p_mem_head)); pciehp_resource_sort_and_combine(&(ctrl->io_head)); pciehp_resource_sort_and_combine(&(ctrl->bus_head)); if (rc) { set_slot_off(ctrl, p_slot); return(rc); } pciehp_save_slot_config(ctrl, func); func->status = 0; func->switch_save = 0x10; func->is_a_board = 0x01; /* Next, we will instantiate the linux pci_dev structures * (with appropriate driver notification, if already present) */ index = 0; do { new_func = pciehp_slot_find(ctrl->slot_bus, func->device, index++); if (new_func && !new_func->pci_dev) { dbg("%s:call pci_hp_configure_dev, func %x\n", __FUNCTION__, index); pciehp_configure_device(ctrl, new_func); } } while (new_func); /* Wait for exclusive access to hardware */ down(&ctrl->crit_sect); p_slot->hpc_ops->green_led_on(p_slot); /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); /* Done with exclusive hardware access */ up(&ctrl->crit_sect); } else { set_slot_off(ctrl, p_slot); return -1; } return 0; } /** * remove_board - Turns off slot and LED's * */ static u32 remove_board(struct pci_func *func, struct controller *ctrl) { int index; u8 skip = 0; u8 device; u8 hp_slot; u32 rc; struct resource_lists res_lists; struct pci_func *temp_func; struct slot *p_slot; if (func == NULL) return(1); if (pciehp_unconfigure_device(func)) return(1); device = func->device; hp_slot = func->device - ctrl->slot_device_offset; p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot); if ((ctrl->add_support) && !(func->bus_head || func->mem_head || func->p_mem_head || func->io_head)) { /* Here we check to see if we've saved any of the board's * resources already. If so, we'll skip the attempt to * determine what's being used. */ index = 0; temp_func = func; while ((temp_func = pciehp_slot_find(temp_func->bus, temp_func->device, index++))) { if (temp_func->bus_head || temp_func->mem_head || temp_func->p_mem_head || temp_func->io_head) { skip = 1; break; } } if (!skip) rc = pciehp_save_used_resources(ctrl, func, DISABLE_CARD); } /* Change status to shutdown */ if (func->is_a_board) func->status = 0x01; func->configured = 0; /* Wait for exclusive access to hardware */ down(&ctrl->crit_sect); /* Power off slot */ rc = p_slot->hpc_ops->power_off_slot(p_slot); if (rc) { err("%s: Issue of Slot Disable command failed\n", __FUNCTION__); up(&ctrl->crit_sect); return rc; } /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); /* Turn off Green LED */ p_slot->hpc_ops->green_led_off(p_slot); /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); /* Done with exclusive hardware access */ up(&ctrl->crit_sect); if (ctrl->add_support) { while (func) { res_lists.io_head = ctrl->io_head; res_lists.mem_head = ctrl->mem_head; res_lists.p_mem_head = ctrl->p_mem_head; res_lists.bus_head = ctrl->bus_head; dbg("Returning resources to ctlr lists for (B/D/F) = (%#x/%#x/%#x)\n", func->bus, func->device, func->function); pciehp_return_board_resources(func, &res_lists); ctrl->io_head = res_lists.io_head; ctrl->mem_head = res_lists.mem_head; ctrl->p_mem_head = res_lists.p_mem_head; ctrl->bus_head = res_lists.bus_head; pciehp_resource_sort_and_combine(&(ctrl->mem_head)); pciehp_resource_sort_and_combine(&(ctrl->p_mem_head)); pciehp_resource_sort_and_combine(&(ctrl->io_head)); pciehp_resource_sort_and_combine(&(ctrl->bus_head)); if (is_bridge(func)) { dbg("PCI Bridge Hot-Remove s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device, func->function); bridge_slot_remove(func); } else dbg("PCI Function Hot-Remove s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device, func->function); slot_remove(func); func = pciehp_slot_find(ctrl->slot_bus, device, 0); } /* Setup slot structure with entry for empty slot */ func = pciehp_slot_create(ctrl->slot_bus); if (func == NULL) { return(1); } func->bus = ctrl->slot_bus; func->device = device; func->function = 0; func->configured = 0; func->switch_save = 0x10; func->is_a_board = 0; } return 0; } static void pushbutton_helper_thread (unsigned long data) { pushbutton_pending = data; up(&event_semaphore); } /* this is the main worker thread */ static int event_thread(void* data) { struct controller *ctrl; lock_kernel(); daemonize(); /* New name */ strcpy(current->comm, "pciehpd_event"); unlock_kernel(); while (1) { dbg("!!!!event_thread sleeping\n"); down_interruptible (&event_semaphore); dbg("event_thread woken finished = %d\n", event_finished); if (event_finished || signal_pending(current)) break; /* Do stuff here */ if (pushbutton_pending) pciehp_pushbutton_thread(pushbutton_pending); else for (ctrl = pciehp_ctrl_list; ctrl; ctrl=ctrl->next) interrupt_event_handler(ctrl); } dbg("event_thread signals exit\n"); up(&event_exit); return 0; } int pciehp_event_start_thread (void) { int pid; /* Initialize our semaphores */ init_MUTEX_LOCKED(&event_exit); event_finished=0; init_MUTEX_LOCKED(&event_semaphore); pid = kernel_thread(event_thread, 0, 0); if (pid < 0) { err ("Can't start up our event thread\n"); return -1; } dbg("Our event thread pid = %d\n", pid); return 0; } void pciehp_event_stop_thread (void) { event_finished = 1; dbg("event_thread finish command given\n"); up(&event_semaphore); dbg("wait for event_thread to exit\n"); down(&event_exit); } static int update_slot_info (struct slot *slot) { struct hotplug_slot_info *info; char buffer[SLOT_NAME_SIZE]; int result; info = kmalloc (sizeof (struct hotplug_slot_info), GFP_KERNEL); if (!info) return -ENOMEM; make_slot_name (&buffer[0], SLOT_NAME_SIZE, slot); slot->hpc_ops->get_power_status(slot, &(info->power_status)); slot->hpc_ops->get_attention_status(slot, &(info->attention_status)); slot->hpc_ops->get_latch_status(slot, &(info->latch_status)); slot->hpc_ops->get_adapter_status(slot, &(info->adapter_status)); result = pci_hp_change_slot_info(buffer, info); kfree (info); return result; } static void interrupt_event_handler(struct controller *ctrl) { int loop = 0; int change = 1; struct pci_func *func; u8 hp_slot; u8 getstatus; struct slot *p_slot; while (change) { change = 0; for (loop = 0; loop < 10; loop++) { if (ctrl->event_queue[loop].event_type != 0) { hp_slot = ctrl->event_queue[loop].hp_slot; func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); dbg("hp_slot %d, func %p, p_slot %p\n", hp_slot, func, p_slot); if (ctrl->event_queue[loop].event_type == INT_BUTTON_CANCEL) { dbg("button cancel\n"); del_timer(&p_slot->task_event); switch (p_slot->state) { case BLINKINGOFF_STATE: /* Wait for exclusive access to hardware */ down(&ctrl->crit_sect); p_slot->hpc_ops->green_led_on(p_slot); /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); p_slot->hpc_ops->set_attention_status(p_slot, 0); /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); /* Done with exclusive hardware access */ up(&ctrl->crit_sect); break; case BLINKINGON_STATE: /* Wait for exclusive access to hardware */ down(&ctrl->crit_sect); p_slot->hpc_ops->green_led_off(p_slot); /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); p_slot->hpc_ops->set_attention_status(p_slot, 0); /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); /* Done with exclusive hardware access */ up(&ctrl->crit_sect); break; default: warn("Not a valid state\n"); return; } info(msg_button_cancel, p_slot->number); p_slot->state = STATIC_STATE; } /* ***********Button Pressed (No action on 1st press...) */ else if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { dbg("Button pressed\n"); p_slot->hpc_ops->get_power_status(p_slot, &getstatus); if (getstatus) { /* Slot is on */ dbg("Slot is on\n"); p_slot->state = BLINKINGOFF_STATE; info(msg_button_off, p_slot->number); } else { /* Slot is off */ dbg("Slot is off\n"); p_slot->state = BLINKINGON_STATE; info(msg_button_on, p_slot->number); } /* Wait for exclusive access to hardware */ down(&ctrl->crit_sect); /* blink green LED and turn off amber */ p_slot->hpc_ops->green_led_blink(p_slot); /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); p_slot->hpc_ops->set_attention_status(p_slot, 0); /* Wait for the command to complete */ wait_for_ctrl_irq(ctrl); /* Done with exclusive hardware access */ up(&ctrl->crit_sect); init_timer(&p_slot->task_event); p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ p_slot->task_event.function = (void (*)(unsigned long)) pushbutton_helper_thread; p_slot->task_event.data = (unsigned long) p_slot; dbg("add_timer p_slot = %p\n", (void *) p_slot); add_timer(&p_slot->task_event); } /***********POWER FAULT********************/ else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { dbg("power fault\n"); /* Wait for exclusive access to hardware */ down(&ctrl->crit_sect); p_slot->hpc_ops->set_attention_status(p_slot, 1); wait_for_ctrl_irq(ctrl); p_slot->hpc_ops->green_led_off(p_slot); wait_for_ctrl_irq(ctrl); /* Done with exclusive hardware access */ up(&ctrl->crit_sect); } else { /* refresh notification */ if (p_slot) update_slot_info(p_slot); } ctrl->event_queue[loop].event_type = 0; change = 1; } } /* End of FOR loop */ } return; } /** * pciehp_pushbutton_thread * * Scheduled procedure to handle blocking stuff for the pushbuttons * Handles all pending events and exits. * */ void pciehp_pushbutton_thread (unsigned long slot) { struct slot *p_slot = (struct slot *) slot; u8 getstatus; pushbutton_pending = 0; if (!p_slot) { dbg("%s: Error! slot NULL\n", __FUNCTION__); return; } p_slot->hpc_ops->get_power_status(p_slot, &getstatus); if (getstatus) { p_slot->state = POWEROFF_STATE; dbg("In power_down_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device); pciehp_disable_slot(p_slot); p_slot->state = STATIC_STATE; } else { p_slot->state = POWERON_STATE; dbg("In add_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device); if (pciehp_enable_slot(p_slot)) { /* Wait for exclusive access to hardware */ down(&p_slot->ctrl->crit_sect); p_slot->hpc_ops->green_led_off(p_slot); /* Wait for the command to complete */ wait_for_ctrl_irq (p_slot->ctrl); /* Done with exclusive hardware access */ up(&p_slot->ctrl->crit_sect); } p_slot->state = STATIC_STATE; } return; } int pciehp_enable_slot (struct slot *p_slot) { u8 getstatus = 0; int rc; struct pci_func *func; func = pciehp_slot_find(p_slot->bus, p_slot->device, 0); if (!func) { dbg("%s: Error! slot NULL\n", __FUNCTION__); return (1); } /* Check to see if (latch closed, card present, power off) */ down(&p_slot->ctrl->crit_sect); rc = p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus); if (rc || !getstatus) { info("%s: no adapter on slot(%x)\n", __FUNCTION__, p_slot->number); up(&p_slot->ctrl->crit_sect); return (1); } rc = p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); if (rc || getstatus) { info("%s: latch open on slot(%x)\n", __FUNCTION__, p_slot->number); up(&p_slot->ctrl->crit_sect); return (1); } rc = p_slot->hpc_ops->get_power_status(p_slot, &getstatus); if (rc || getstatus) { info("%s: already enabled on slot(%x)\n", __FUNCTION__, p_slot->number); up(&p_slot->ctrl->crit_sect); return (1); } up(&p_slot->ctrl->crit_sect); slot_remove(func); func = pciehp_slot_create(p_slot->bus); if (func == NULL) return (1); func->bus = p_slot->bus; func->device = p_slot->device; func->function = 0; func->configured = 0; func->is_a_board = 1; /* We have to save the presence info for these slots */ p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); func->switch_save = !getstatus? 0x10:0; rc = board_added(func, p_slot->ctrl); if (rc) { if (is_bridge(func)) bridge_slot_remove(func); else slot_remove(func); /* Setup slot structure with entry for empty slot */ func = pciehp_slot_create(p_slot->bus); if (func == NULL) return (1); /* Out of memory */ func->bus = p_slot->bus; func->device = p_slot->device; func->function = 0; func->configured = 0; func->is_a_board = 1; /* We have to save the presence info for these slots */ p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); func->switch_save = !getstatus? 0x10:0; } if (p_slot) update_slot_info(p_slot); return rc; } int pciehp_disable_slot (struct slot *p_slot) { u8 class_code, header_type, BCR; u8 index = 0; u8 getstatus = 0; u32 rc = 0; int ret = 0; unsigned int devfn; struct pci_bus *pci_bus = p_slot->ctrl->pci_dev->subordinate; struct pci_func *func; if (!p_slot->ctrl) return (1); /* Check to see if (latch closed, card present, power on) */ down(&p_slot->ctrl->crit_sect); ret = p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus); if (ret || !getstatus) { info("%s: no adapter on slot(%x)\n", __FUNCTION__, p_slot->number); up(&p_slot->ctrl->crit_sect); return (1); } ret = p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); if (ret || getstatus) { info("%s: latch open on slot(%x)\n", __FUNCTION__, p_slot->number); up(&p_slot->ctrl->crit_sect); return (1); } ret = p_slot->hpc_ops->get_power_status(p_slot, &getstatus); if (ret || !getstatus) { info("%s: already disabled slot(%x)\n", __FUNCTION__, p_slot->number); up(&p_slot->ctrl->crit_sect); return (1); } up(&p_slot->ctrl->crit_sect); func = pciehp_slot_find(p_slot->bus, p_slot->device, index++); /* Make sure there are no video controllers here * for all func of p_slot */ while (func && !rc) { pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); /* Check the Class Code */ rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); if (rc) return rc; if (class_code == PCI_BASE_CLASS_DISPLAY) { /* Display/Video adapter (not supported) */ rc = REMOVE_NOT_SUPPORTED; } else { /* See if it's a bridge */ rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); if (rc) return rc; /* If it's a bridge, check the VGA Enable bit */ if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); if (rc) return rc; /* If the VGA Enable bit is set, remove isn't supported */ if (BCR & PCI_BRIDGE_CTL_VGA) { rc = REMOVE_NOT_SUPPORTED; } } } func = pciehp_slot_find(p_slot->bus, p_slot->device, index++); } func = pciehp_slot_find(p_slot->bus, p_slot->device, 0); if ((func != NULL) && !rc) { rc = remove_board(func, p_slot->ctrl); } else if (!rc) rc = 1; if (p_slot) update_slot_info(p_slot); return(rc); } /** * configure_new_device - Configures the PCI header information of one board. * * @ctrl: pointer to controller structure * @func: pointer to function structure * @behind_bridge: 1 if this is a recursive call, 0 if not * @resources: pointer to set of resource lists * * Returns 0 if success * */ static u32 configure_new_device (struct controller * ctrl, struct pci_func * func, u8 behind_bridge, struct resource_lists * resources, u8 bridge_bus, u8 bridge_dev) { u8 temp_byte, function, max_functions, stop_it; int rc; u32 ID; struct pci_func *new_slot; struct pci_bus lpci_bus, *pci_bus; int index; new_slot = func; dbg("%s\n", __FUNCTION__); memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); pci_bus = &lpci_bus; pci_bus->number = func->bus; /* Check for Multi-function device */ rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); if (rc) { dbg("%s: rc = %d\n", __FUNCTION__, rc); return rc; } if (temp_byte & 0x80) /* Multi-function device */ max_functions = 8; else max_functions = 1; function = 0; do { rc = configure_new_function(ctrl, new_slot, behind_bridge, resources, bridge_bus, bridge_dev); if (rc) { dbg("configure_new_function failed %d\n",rc); index = 0; while (new_slot) { new_slot = pciehp_slot_find(new_slot->bus, new_slot->device, index++); if (new_slot) pciehp_return_board_resources(new_slot, resources); } return(rc); } function++; stop_it = 0; /* The following loop skips to the next present function * and creates a board structure */ while ((function < max_functions) && (!stop_it)) { pci_bus_read_config_dword(pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); if (ID == 0xFFFFFFFF) { /* There's nothing there. */ function++; } else { /* There's something there */ /* Setup slot structure. */ new_slot = pciehp_slot_create(func->bus); if (new_slot == NULL) { /* Out of memory */ return(1); } new_slot->bus = func->bus; new_slot->device = func->device; new_slot->function = function; new_slot->is_a_board = 1; new_slot->status = 0; stop_it++; } } } while (function < max_functions); dbg("returning from configure_new_device\n"); return 0; } /* * Configuration logic that involves the hotplug data structures and * their bookkeeping */ /** * configure_new_function - Configures the PCI header information of one device * * @ctrl: pointer to controller structure * @func: pointer to function structure * @behind_bridge: 1 if this is a recursive call, 0 if not * @resources: pointer to set of resource lists * * Calls itself recursively for bridged devices. * Returns 0 if success * */ static int configure_new_function (struct controller * ctrl, struct pci_func * func, u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev) { int cloop; u8 temp_byte; u8 device; u8 class_code; u16 temp_word; u32 rc; u32 temp_register; u32 base; u32 ID; unsigned int devfn; struct pci_resource *mem_node; struct pci_resource *p_mem_node; struct pci_resource *io_node; struct pci_resource *bus_node; struct pci_resource *hold_mem_node; struct pci_resource *hold_p_mem_node; struct pci_resource *hold_IO_node; struct pci_resource *hold_bus_node; struct irq_mapping irqs; struct pci_func *new_slot; struct pci_bus lpci_bus, *pci_bus; struct resource_lists temp_resources; memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); pci_bus = &lpci_bus; pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); /* Check for Bridge */ rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); if (rc) return rc; dbg("%s: bus %x dev %x func %x temp_byte = %x\n", __FUNCTION__, func->bus, func->device, func->function, temp_byte); if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */ /* Set Primary bus */ dbg("set Primary bus = 0x%x\n", func->bus); rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); if (rc) return rc; /* Find range of busses to use */ bus_node = get_max_resource(&resources->bus_head, 1L); /* If we don't have any busses to allocate, we can't continue */ if (!bus_node) { err("Got NO bus resource to use\n"); return -ENOMEM; } dbg("Got ranges of buses to use: base:len=0x%x:%x\n", bus_node->base, bus_node->length); /* Set Secondary bus */ dbg("set Secondary bus = 0x%x\n", temp_byte); dbg("func->bus %x\n", func->bus); temp_byte = (u8)bus_node->base; dbg("set Secondary bus = 0x%x\n", temp_byte); rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); if (rc) return rc; /* set subordinate bus */ temp_byte = (u8)(bus_node->base + bus_node->length - 1); dbg("set subordinate bus = 0x%x\n", temp_byte); rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); if (rc) return rc; /* Set HP parameters (Cache Line Size, Latency Timer) */ rc = pciehprm_set_hpp(ctrl, func, PCI_HEADER_TYPE_BRIDGE); if (rc) return rc; /* Setup the IO, memory, and prefetchable windows */ io_node = get_max_resource(&(resources->io_head), 0x1000L); if (io_node) { dbg("io_node(base, len, next) (%x, %x, %p)\n", io_node->base, io_node->length, io_node->next); } mem_node = get_max_resource(&(resources->mem_head), 0x100000L); if (mem_node) { dbg("mem_node(base, len, next) (%x, %x, %p)\n", mem_node->base, mem_node->length, mem_node->next); } if (resources->p_mem_head) p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000L); else { /* * In some platform implementation, MEM and PMEM are not * distinguished, and hence ACPI _CRS has only MEM entries * for both MEM and PMEM. */ dbg("using MEM for PMEM\n"); p_mem_node = get_max_resource(&(resources->mem_head), 0x100000L); } if (p_mem_node) { dbg("p_mem_node(base, len, next) (%x, %x, %p)\n", p_mem_node->base, p_mem_node->length, p_mem_node->next); } /* Set up the IRQ info */ if (!resources->irqs) { irqs.barber_pole = 0; irqs.interrupt[0] = 0; irqs.interrupt[1] = 0; irqs.interrupt[2] = 0; irqs.interrupt[3] = 0; irqs.valid_INT = 0; } else { irqs.barber_pole = resources->irqs->barber_pole; irqs.interrupt[0] = resources->irqs->interrupt[0]; irqs.interrupt[1] = resources->irqs->interrupt[1]; irqs.interrupt[2] = resources->irqs->interrupt[2]; irqs.interrupt[3] = resources->irqs->interrupt[3]; irqs.valid_INT = resources->irqs->valid_INT; } /* Set up resource lists that are now aligned on top and bottom * for anything behind the bridge. */ temp_resources.bus_head = bus_node; temp_resources.io_head = io_node; temp_resources.mem_head = mem_node; temp_resources.p_mem_head = p_mem_node; temp_resources.irqs = &irqs; /* Make copies of the nodes we are going to pass down so that * if there is a problem,we can just use these to free resources */ hold_bus_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); hold_IO_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); hold_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); hold_p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { if (hold_bus_node) kfree(hold_bus_node); if (hold_IO_node) kfree(hold_IO_node); if (hold_mem_node) kfree(hold_mem_node); if (hold_p_mem_node) kfree(hold_p_mem_node); return(1); } memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); bus_node->base += 1; bus_node->length -= 1; bus_node->next = NULL; /* If we have IO resources copy them and fill in the bridge's * IO range registers */ if (io_node) { memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); io_node->next = NULL; /* set IO base and Limit registers */ RES_CHECK(io_node->base, 8); temp_byte = (u8)(io_node->base >> 8); rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_BASE, temp_byte); RES_CHECK(io_node->base + io_node->length - 1, 8); temp_byte = (u8)((io_node->base + io_node->length - 1) >> 8); rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); } else { kfree(hold_IO_node); hold_IO_node = NULL; } /* If we have memory resources copy them and fill in the bridge's * memory range registers. Otherwise, fill in the range * registers with values that disable them. */ if (mem_node) { memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); mem_node->next = NULL; /* set Mem base and Limit registers */ RES_CHECK(mem_node->base, 16); temp_word = (u32)(mem_node->base >> 16); rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); RES_CHECK(mem_node->base + mem_node->length - 1, 16); temp_word = (u32)((mem_node->base + mem_node->length - 1) >> 16); rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); } else { temp_word = 0xFFFF; rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); temp_word = 0x0000; rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); kfree(hold_mem_node); hold_mem_node = NULL; } /* If we have prefetchable memory resources copy them and * fill in the bridge's memory range registers. Otherwise, * fill in the range registers with values that disable them. */ if (p_mem_node) { memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); p_mem_node->next = NULL; /* Set Pre Mem base and Limit registers */ RES_CHECK(p_mem_node->base, 16); temp_word = (u32)(p_mem_node->base >> 16); rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); RES_CHECK(p_mem_node->base + p_mem_node->length - 1, 16); temp_word = (u32)((p_mem_node->base + p_mem_node->length - 1) >> 16); rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); } else { temp_word = 0xFFFF; rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); temp_word = 0x0000; rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); kfree(hold_p_mem_node); hold_p_mem_node = NULL; } /* Adjust this to compensate for extra adjustment in first loop */ irqs.barber_pole--; rc = 0; /* Here we actually find the devices and configure them */ for (device = 0; (device <= 0x1F) && !rc; device++) { irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; ID = 0xFFFFFFFF; pci_bus->number = hold_bus_node->base; pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID); pci_bus->number = func->bus; if (ID != 0xFFFFFFFF) { /* device Present */ /* Setup slot structure. */ new_slot = pciehp_slot_create(hold_bus_node->base); if (new_slot == NULL) { /* Out of memory */ rc = -ENOMEM; continue; } new_slot->bus = hold_bus_node->base; new_slot->device = device; new_slot->function = 0; new_slot->is_a_board = 1; new_slot->status = 0; rc = configure_new_device(ctrl, new_slot, 1, &temp_resources, func->bus, func->device); dbg("configure_new_device rc=0x%x\n",rc); } /* End of IF (device in slot?) */ } /* End of FOR loop */ if (rc) { pciehp_destroy_resource_list(&temp_resources); return_resource(&(resources->bus_head), hold_bus_node); return_resource(&(resources->io_head), hold_IO_node); return_resource(&(resources->mem_head), hold_mem_node); return_resource(&(resources->p_mem_head), hold_p_mem_node); return(rc); } /* Save the interrupt routing information */ if (resources->irqs) { resources->irqs->interrupt[0] = irqs.interrupt[0]; resources->irqs->interrupt[1] = irqs.interrupt[1]; resources->irqs->interrupt[2] = irqs.interrupt[2]; resources->irqs->interrupt[3] = irqs.interrupt[3]; resources->irqs->valid_INT = irqs.valid_INT; } else if (!behind_bridge) { /* We need to hook up the interrupts here */ for (cloop = 0; cloop < 4; cloop++) { if (irqs.valid_INT & (0x01 << cloop)) { rc = pciehp_set_irq(func->bus, func->device, 0x0A + cloop, irqs.interrupt[cloop]); if (rc) { pciehp_destroy_resource_list (&temp_resources); return_resource(&(resources->bus_head), hold_bus_node); return_resource(&(resources->io_head), hold_IO_node); return_resource(&(resources->mem_head), hold_mem_node); return_resource(&(resources->p_mem_head), hold_p_mem_node); return rc; } } } /* end of for loop */ } /* Return unused bus resources * First use the temporary node to store information for the board */ if (hold_bus_node && bus_node && temp_resources.bus_head) { hold_bus_node->length = bus_node->base - hold_bus_node->base; hold_bus_node->next = func->bus_head; func->bus_head = hold_bus_node; temp_byte = (u8)(temp_resources.bus_head->base - 1); /* Set subordinate bus */ dbg("re-set subordinate bus = 0x%x\n", temp_byte); rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); if (temp_resources.bus_head->length == 0) { kfree(temp_resources.bus_head); temp_resources.bus_head = NULL; } else { dbg("return bus res of b:d(0x%x:%x) base:len(0x%x:%x)\n", func->bus, func->device, temp_resources.bus_head->base, temp_resources.bus_head->length); return_resource(&(resources->bus_head), temp_resources.bus_head); } } /* If we have IO space available and there is some left, * return the unused portion */ if (hold_IO_node && temp_resources.io_head) { io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), &hold_IO_node, 0x1000); /* Check if we were able to split something off */ if (io_node) { hold_IO_node->base = io_node->base + io_node->length; RES_CHECK(hold_IO_node->base, 8); temp_byte = (u8)((hold_IO_node->base) >> 8); rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_BASE, temp_byte); return_resource(&(resources->io_head), io_node); } io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); /* Check if we were able to split something off */ if (io_node) { /* First use the temporary node to store information for the board */ hold_IO_node->length = io_node->base - hold_IO_node->base; /* If we used any, add it to the board's list */ if (hold_IO_node->length) { hold_IO_node->next = func->io_head; func->io_head = hold_IO_node; RES_CHECK(io_node->base - 1, 8); temp_byte = (u8)((io_node->base - 1) >> 8); rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); return_resource(&(resources->io_head), io_node); } else { /* It doesn't need any IO */ temp_byte = 0x00; rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); return_resource(&(resources->io_head), io_node); kfree(hold_IO_node); } } else { /* It used most of the range */ hold_IO_node->next = func->io_head; func->io_head = hold_IO_node; } } else if (hold_IO_node) { /* It used the whole range */ hold_IO_node->next = func->io_head; func->io_head = hold_IO_node; } /* If we have memory space available and there is some left, * return the unused portion */ if (hold_mem_node && temp_resources.mem_head) { mem_node = do_pre_bridge_resource_split(&(temp_resources.mem_head), &hold_mem_node, 0x100000L); /* Check if we were able to split something off */ if (mem_node) { hold_mem_node->base = mem_node->base + mem_node->length; RES_CHECK(hold_mem_node->base, 16); temp_word = (u32)((hold_mem_node->base) >> 16); rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); return_resource(&(resources->mem_head), mem_node); } mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000L); /* Check if we were able to split something off */ if (mem_node) { /* First use the temporary node to store information for the board */ hold_mem_node->length = mem_node->base - hold_mem_node->base; if (hold_mem_node->length) { hold_mem_node->next = func->mem_head; func->mem_head = hold_mem_node; /* Configure end address */ RES_CHECK(mem_node->base - 1, 16); temp_word = (u32)((mem_node->base - 1) >> 16); rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); /* Return unused resources to the pool */ return_resource(&(resources->mem_head), mem_node); } else { /* It doesn't need any Mem */ temp_word = 0x0000; rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); return_resource(&(resources->mem_head), mem_node); kfree(hold_mem_node); } } else { /* It used most of the range */ hold_mem_node->next = func->mem_head; func->mem_head = hold_mem_node; } } else if (hold_mem_node) { /* It used the whole range */ hold_mem_node->next = func->mem_head; func->mem_head = hold_mem_node; } /* If we have prefetchable memory space available and there is some * left at the end, return the unused portion */ if (hold_p_mem_node && temp_resources.p_mem_head) { p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), &hold_p_mem_node, 0x100000L); /* Check if we were able to split something off */ if (p_mem_node) { hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; RES_CHECK(hold_p_mem_node->base, 16); temp_word = (u32)((hold_p_mem_node->base) >> 16); rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); return_resource(&(resources->p_mem_head), p_mem_node); } p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000L); /* Check if we were able to split something off */ if (p_mem_node) { /* First use the temporary node to store information for the board */ hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; /* If we used any, add it to the board's list */ if (hold_p_mem_node->length) { hold_p_mem_node->next = func->p_mem_head; func->p_mem_head = hold_p_mem_node; RES_CHECK(p_mem_node->base - 1, 16); temp_word = (u32)((p_mem_node->base - 1) >> 16); rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); return_resource(&(resources->p_mem_head), p_mem_node); } else { /* It doesn't need any PMem */ temp_word = 0x0000; rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); return_resource(&(resources->p_mem_head), p_mem_node); kfree(hold_p_mem_node); } } else { /* It used the most of the range */ hold_p_mem_node->next = func->p_mem_head; func->p_mem_head = hold_p_mem_node; } } else if (hold_p_mem_node) { /* It used the whole range */ hold_p_mem_node->next = func->p_mem_head; func->p_mem_head = hold_p_mem_node; } /* We should be configuring an IRQ and the bridge's base address * registers if it needs them. Although we have never seen such * a device */ pciehprm_enable_card(ctrl, func, PCI_HEADER_TYPE_BRIDGE); dbg("PCI Bridge Hot-Added s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device, func->function); } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { /* Standard device */ u64 base64; rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); if (class_code == PCI_BASE_CLASS_DISPLAY) return (DEVICE_TYPE_NOT_SUPPORTED); /* Figure out IO and memory needs */ for (cloop = PCI_BASE_ADDRESS_0; cloop <= PCI_BASE_ADDRESS_5; cloop += 4) { temp_register = 0xFFFFFFFF; rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register); dbg("Bar[%x]=0x%x on bus:dev:func(0x%x:%x:%x)\n", cloop, temp_register, func->bus, func->device, func->function); if (!temp_register) continue; base64 = 0L; if (temp_register & PCI_BASE_ADDRESS_SPACE_IO) { /* Map IO */ /* Set base = amount of IO space */ base = temp_register & 0xFFFFFFFC; base = ~base + 1; dbg("NEED IO length(0x%x)\n", base); io_node = get_io_resource(&(resources->io_head),(ulong)base); /* Allocate the resource to the board */ if (io_node) { dbg("Got IO base=0x%x(length=0x%x)\n", io_node->base, io_node->length); base = (u32)io_node->base; io_node->next = func->io_head; func->io_head = io_node; } else { err("Got NO IO resource(length=0x%x)\n", base); return -ENOMEM; } } else { /* Map MEM */ int prefetchable = 1; struct pci_resource **res_node = &func->p_mem_head; char *res_type_str = "PMEM"; u32 temp_register2; if (!(temp_register & PCI_BASE_ADDRESS_MEM_PREFETCH)) { prefetchable = 0; res_node = &func->mem_head; res_type_str++; } base = temp_register & 0xFFFFFFF0; base = ~base + 1; switch (temp_register & PCI_BASE_ADDRESS_MEM_TYPE_MASK) { case PCI_BASE_ADDRESS_MEM_TYPE_32: dbg("NEED 32 %s bar=0x%x(length=0x%x)\n", res_type_str, temp_register, base); if (prefetchable && resources->p_mem_head) mem_node=get_resource(&(resources->p_mem_head), (ulong)base); else { if (prefetchable) dbg("using MEM for PMEM\n"); mem_node=get_resource(&(resources->mem_head), (ulong)base); } /* Allocate the resource to the board */ if (mem_node) { base = (u32)mem_node->base; mem_node->next = *res_node; *res_node = mem_node; dbg("Got 32 %s base=0x%x(length=0x%x)\n", res_type_str, mem_node->base, mem_node->length); } else { err("Got NO 32 %s resource(length=0x%x)\n", res_type_str, base); return -ENOMEM; } break; case PCI_BASE_ADDRESS_MEM_TYPE_64: rc = pci_bus_read_config_dword(pci_bus, devfn, cloop+4, &temp_register2); dbg("NEED 64 %s bar=0x%x:%x(length=0x%x)\n", res_type_str, temp_register2, temp_register, base); if (prefetchable && resources->p_mem_head) mem_node = get_resource(&(resources->p_mem_head), (ulong)base); else { if (prefetchable) dbg("using MEM for PMEM\n"); mem_node = get_resource(&(resources->mem_head), (ulong)base); } /* Allocate the resource to the board */ if (mem_node) { base64 = mem_node->base; mem_node->next = *res_node; *res_node = mem_node; dbg("Got 64 %s base=0x%x:%x(length=%x)\n", res_type_str, (u32)(base64 >> 32), (u32)base64, mem_node->length); } else { err("Got NO 64 %s resource(length=0x%x)\n", res_type_str, base); return -ENOMEM; } break; default: dbg("reserved BAR type=0x%x\n", temp_register); break; } } if (base64) { rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, (u32)base64); cloop += 4; base64 >>= 32; if (base64) { dbg("%s: high dword of base64(0x%x) set to 0\n", __FUNCTION__, (u32)base64); base64 = 0x0L; } rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, (u32)base64); } else { rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); } } /* End of base register loop */ /* Disable ROM base Address */ temp_word = 0x00L; rc = pci_bus_write_config_word (pci_bus, devfn, PCI_ROM_ADDRESS, temp_word); /* Set HP parameters (Cache Line Size, Latency Timer) */ rc = pciehprm_set_hpp(ctrl, func, PCI_HEADER_TYPE_NORMAL); if (rc) return rc; pciehprm_enable_card(ctrl, func, PCI_HEADER_TYPE_NORMAL); dbg("PCI function Hot-Added s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device, func->function); } /* End of Not-A-Bridge else */ else { /* It's some strange type of PCI adapter (Cardbus?) */ return(DEVICE_TYPE_NOT_SUPPORTED); } func->configured = 1; dbg("%s: exit\n", __FUNCTION__); return 0; }