/* * IBM Hot Plug Controller Driver * * Written By: Tong Yu, IBM Corporation * * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001,2002 IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to * */ #include #include #include #include #include #include #include #include #include "ibmphp.h" /* * POST builds data blocks(in this data block definition, a char-1 * byte, short(or word)-2 byte, long(dword)-4 byte) in the Extended * BIOS Data Area which describe the configuration of the hot-plug * controllers and resources used by the PCI Hot-Plug devices. * * This file walks EBDA, maps data block from physical addr, * reconstruct linked lists about all system resource(MEM, PFM, IO) * already assigned by POST, as well as linked lists about hot plug * controllers (ctlr#, slot#, bus&slot features...) */ /* Global lists */ LIST_HEAD (ibmphp_ebda_pci_rsrc_head); LIST_HEAD (ibmphp_slot_head); /* Local variables */ static struct ebda_hpc_list *hpc_list_ptr; static struct ebda_rsrc_list *rsrc_list_ptr; static struct rio_table_hdr *rio_table_ptr = NULL; static LIST_HEAD (ebda_hpc_head); static LIST_HEAD (bus_info_head); static LIST_HEAD (rio_vg_head); static LIST_HEAD (rio_lo_head); static LIST_HEAD (opt_vg_head); static LIST_HEAD (opt_lo_head); static void *io_mem; /* Local functions */ static int ebda_rsrc_controller (void); static int ebda_rsrc_rsrc (void); static int ebda_rio_table (void); static struct ebda_hpc_list * __init alloc_ebda_hpc_list (void) { struct ebda_hpc_list *list; list = kmalloc (sizeof (struct ebda_hpc_list), GFP_KERNEL); if (!list) return NULL; memset (list, 0, sizeof (*list)); return list; } static struct controller *alloc_ebda_hpc (u32 slot_count, u32 bus_count) { struct controller *controller; struct ebda_hpc_slot *slots; struct ebda_hpc_bus *buses; controller = kmalloc (sizeof (struct controller), GFP_KERNEL); if (!controller) return NULL; memset (controller, 0, sizeof (*controller)); slots = kmalloc (sizeof (struct ebda_hpc_slot) * slot_count, GFP_KERNEL); if (!slots) { kfree (controller); return NULL; } memset (slots, 0, sizeof (*slots) * slot_count); controller->slots = slots; buses = kmalloc (sizeof (struct ebda_hpc_bus) * bus_count, GFP_KERNEL); if (!buses) { kfree (controller->slots); kfree (controller); return NULL; } memset (buses, 0, sizeof (*buses) * bus_count); controller->buses = buses; return controller; } static void free_ebda_hpc (struct controller *controller) { kfree (controller->slots); controller->slots = NULL; kfree (controller->buses); controller->buses = NULL; controller->ctrl_dev = NULL; kfree (controller); } static struct ebda_rsrc_list * __init alloc_ebda_rsrc_list (void) { struct ebda_rsrc_list *list; list = kmalloc (sizeof (struct ebda_rsrc_list), GFP_KERNEL); if (!list) return NULL; memset (list, 0, sizeof (*list)); return list; } static struct ebda_pci_rsrc *alloc_ebda_pci_rsrc (void) { struct ebda_pci_rsrc *resource; resource = kmalloc (sizeof (struct ebda_pci_rsrc), GFP_KERNEL); if (!resource) return NULL; memset (resource, 0, sizeof (*resource)); return resource; } static void __init print_bus_info (void) { struct bus_info *ptr; struct list_head *ptr1; list_for_each (ptr1, &bus_info_head) { ptr = list_entry (ptr1, struct bus_info, bus_info_list); debug ("%s - slot_min = %x\n", __FUNCTION__, ptr->slot_min); debug ("%s - slot_max = %x\n", __FUNCTION__, ptr->slot_max); debug ("%s - slot_count = %x\n", __FUNCTION__, ptr->slot_count); debug ("%s - bus# = %x\n", __FUNCTION__, ptr->busno); debug ("%s - current_speed = %x\n", __FUNCTION__, ptr->current_speed); debug ("%s - controller_id = %x\n", __FUNCTION__, ptr->controller_id); debug ("%s - slots_at_33_conv = %x\n", __FUNCTION__, ptr->slots_at_33_conv); debug ("%s - slots_at_66_conv = %x\n", __FUNCTION__, ptr->slots_at_66_conv); debug ("%s - slots_at_66_pcix = %x\n", __FUNCTION__, ptr->slots_at_66_pcix); debug ("%s - slots_at_100_pcix = %x\n", __FUNCTION__, ptr->slots_at_100_pcix); debug ("%s - slots_at_133_pcix = %x\n", __FUNCTION__, ptr->slots_at_133_pcix); } } static void print_lo_info (void) { struct rio_detail *ptr; struct list_head *ptr1; debug ("print_lo_info ---- \n"); list_for_each (ptr1, &rio_lo_head) { ptr = list_entry (ptr1, struct rio_detail, rio_detail_list); debug ("%s - rio_node_id = %x\n", __FUNCTION__, ptr->rio_node_id); debug ("%s - rio_type = %x\n", __FUNCTION__, ptr->rio_type); debug ("%s - owner_id = %x\n", __FUNCTION__, ptr->owner_id); debug ("%s - first_slot_num = %x\n", __FUNCTION__, ptr->first_slot_num); debug ("%s - wpindex = %x\n", __FUNCTION__, ptr->wpindex); debug ("%s - chassis_num = %x\n", __FUNCTION__, ptr->chassis_num); } } static void print_vg_info (void) { struct rio_detail *ptr; struct list_head *ptr1; debug ("%s --- \n", __FUNCTION__); list_for_each (ptr1, &rio_vg_head) { ptr = list_entry (ptr1, struct rio_detail, rio_detail_list); debug ("%s - rio_node_id = %x\n", __FUNCTION__, ptr->rio_node_id); debug ("%s - rio_type = %x\n", __FUNCTION__, ptr->rio_type); debug ("%s - owner_id = %x\n", __FUNCTION__, ptr->owner_id); debug ("%s - first_slot_num = %x\n", __FUNCTION__, ptr->first_slot_num); debug ("%s - wpindex = %x\n", __FUNCTION__, ptr->wpindex); debug ("%s - chassis_num = %x\n", __FUNCTION__, ptr->chassis_num); } } static void __init print_ebda_pci_rsrc (void) { struct ebda_pci_rsrc *ptr; struct list_head *ptr1; list_for_each (ptr1, &ibmphp_ebda_pci_rsrc_head) { ptr = list_entry (ptr1, struct ebda_pci_rsrc, ebda_pci_rsrc_list); debug ("%s - rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n", __FUNCTION__, ptr->rsrc_type ,ptr->bus_num, ptr->dev_fun,ptr->start_addr, ptr->end_addr); } } static void __init print_ibm_slot (void) { struct slot *ptr; struct list_head *ptr1; list_for_each (ptr1, &ibmphp_slot_head) { ptr = list_entry (ptr1, struct slot, ibm_slot_list); debug ("%s - slot_number: %x \n", __FUNCTION__, ptr->number); } } static void __init print_opt_vg (void) { struct opt_rio *ptr; struct list_head *ptr1; debug ("%s --- \n", __FUNCTION__); list_for_each (ptr1, &opt_vg_head) { ptr = list_entry (ptr1, struct opt_rio, opt_rio_list); debug ("%s - rio_type %x \n", __FUNCTION__, ptr->rio_type); debug ("%s - chassis_num: %x \n", __FUNCTION__, ptr->chassis_num); debug ("%s - first_slot_num: %x \n", __FUNCTION__, ptr->first_slot_num); debug ("%s - middle_num: %x \n", __FUNCTION__, ptr->middle_num); } } static void __init print_ebda_hpc (void) { struct controller *hpc_ptr; struct list_head *ptr1; u16 index; list_for_each (ptr1, &ebda_hpc_head) { hpc_ptr = list_entry (ptr1, struct controller, ebda_hpc_list); for (index = 0; index < hpc_ptr->slot_count; index++) { debug ("%s - physical slot#: %x\n", __FUNCTION__, hpc_ptr->slots[index].slot_num); debug ("%s - pci bus# of the slot: %x\n", __FUNCTION__, hpc_ptr->slots[index].slot_bus_num); debug ("%s - index into ctlr addr: %x\n", __FUNCTION__, hpc_ptr->slots[index].ctl_index); debug ("%s - cap of the slot: %x\n", __FUNCTION__, hpc_ptr->slots[index].slot_cap); } for (index = 0; index < hpc_ptr->bus_count; index++) { debug ("%s - bus# of each bus controlled by this ctlr: %x\n", __FUNCTION__, hpc_ptr->buses[index].bus_num); } debug ("%s - type of hpc: %x\n", __FUNCTION__, hpc_ptr->ctlr_type); switch (hpc_ptr->ctlr_type) { case 1: debug ("%s - bus: %x\n", __FUNCTION__, hpc_ptr->u.pci_ctlr.bus); debug ("%s - dev_fun: %x\n", __FUNCTION__, hpc_ptr->u.pci_ctlr.dev_fun); debug ("%s - irq: %x\n", __FUNCTION__, hpc_ptr->irq); break; case 0: debug ("%s - io_start: %x\n", __FUNCTION__, hpc_ptr->u.isa_ctlr.io_start); debug ("%s - io_end: %x\n", __FUNCTION__, hpc_ptr->u.isa_ctlr.io_end); debug ("%s - irq: %x\n", __FUNCTION__, hpc_ptr->irq); break; case 2: case 4: debug ("%s - wpegbbar: %lx\n", __FUNCTION__, hpc_ptr->u.wpeg_ctlr.wpegbbar); debug ("%s - i2c_addr: %x\n", __FUNCTION__, hpc_ptr->u.wpeg_ctlr.i2c_addr); debug ("%s - irq: %x\n", __FUNCTION__, hpc_ptr->irq); break; } } } int __init ibmphp_access_ebda (void) { u8 format, num_ctlrs, rio_complete, hs_complete; u16 ebda_seg, num_entries, next_offset, offset, blk_id, sub_addr, rc, re, rc_id, re_id, base; rio_complete = 0; hs_complete = 0; /* FIXME: This is x86-32 specific, and even then PC specific.. */ io_mem = ioremap ((0x40 << 4) + 0x0e, 2); if (!io_mem ) return -ENOMEM; ebda_seg = readw (io_mem); iounmap (io_mem); debug ("returned ebda segment: %x\n", ebda_seg); if(ebda_seg == 0) /* No EBDA */ return -ENOENT; io_mem = ioremap (ebda_seg<<4, 65000); if (!io_mem ) return -ENOMEM; next_offset = 0x180; for (;;) { offset = next_offset; next_offset = readw (io_mem + offset); /* offset of next blk */ offset += 2; if (next_offset == 0) /* 0 indicate it's last blk */ break; blk_id = readw (io_mem + offset); /* this blk id */ offset += 2; /* check if it is hot swap block or rio block */ if (blk_id != 0x4853 && blk_id != 0x4752) continue; /* found hs table */ if (blk_id == 0x4853) { debug ("now enter hot swap block---\n"); debug ("hot blk id: %x\n", blk_id); format = readb (io_mem + offset); offset += 1; if (format != 4) { iounmap (io_mem); return -ENODEV; } debug ("hot blk format: %x\n", format); /* hot swap sub blk */ base = offset; sub_addr = base; re = readw (io_mem + sub_addr); /* next sub blk */ sub_addr += 2; rc_id = readw (io_mem + sub_addr); /* sub blk id */ sub_addr += 2; if (rc_id != 0x5243) { iounmap (io_mem); return -ENODEV; } /* rc sub blk signature */ num_ctlrs = readb (io_mem + sub_addr); sub_addr += 1; hpc_list_ptr = alloc_ebda_hpc_list (); if (!hpc_list_ptr) { iounmap (io_mem); return -ENOMEM; } hpc_list_ptr->format = format; hpc_list_ptr->num_ctlrs = num_ctlrs; hpc_list_ptr->phys_addr = sub_addr; /* offset of RSRC_CONTROLLER blk */ debug ("info about hpc descriptor---\n"); debug ("hot blk format: %x\n", format); debug ("num of controller: %x\n", num_ctlrs); debug ("offset of hpc data structure enteries: %x\n ", sub_addr); sub_addr = base + re; /* re sub blk */ rc = readw (io_mem + sub_addr); /* next sub blk */ sub_addr += 2; re_id = readw (io_mem + sub_addr); /* sub blk id */ sub_addr += 2; if (re_id != 0x5245) { iounmap (io_mem); return -ENODEV; } /* signature of re */ num_entries = readw (io_mem + sub_addr); sub_addr += 2; /* offset of RSRC_ENTRIES blk */ rsrc_list_ptr = alloc_ebda_rsrc_list (); if (!rsrc_list_ptr ) { iounmap (io_mem); return -ENOMEM; } rsrc_list_ptr->format = format; rsrc_list_ptr->num_entries = num_entries; rsrc_list_ptr->phys_addr = sub_addr; debug ("info about rsrc descriptor---\n"); debug ("format: %x\n", format); debug ("num of rsrc: %x\n", num_entries); debug ("offset of rsrc data structure enteries: %x\n ", sub_addr); hs_complete = 1; } /* found rio table */ else if (blk_id == 0x4752) { debug ("now enter io table ---\n"); debug ("rio blk id: %x\n", blk_id); rio_table_ptr = kmalloc (sizeof (struct rio_table_hdr), GFP_KERNEL); if (!rio_table_ptr) return -ENOMEM; memset (rio_table_ptr, 0, sizeof (struct rio_table_hdr) ); rio_table_ptr->ver_num = readb (io_mem + offset); rio_table_ptr->scal_count = readb (io_mem + offset + 1); rio_table_ptr->riodev_count = readb (io_mem + offset + 2); rio_table_ptr->offset = offset +3 ; debug ("info about rio table hdr ---\n"); debug ("ver_num: %x\nscal_count: %x\nriodev_count: %x\noffset of rio table: %x\n ", rio_table_ptr->ver_num, rio_table_ptr->scal_count, rio_table_ptr->riodev_count, rio_table_ptr->offset); rio_complete = 1; } } if (!hs_complete && !rio_complete) { iounmap (io_mem); return -ENODEV; } if (rio_table_ptr) { if (rio_complete == 1 && rio_table_ptr->ver_num == 3) { rc = ebda_rio_table (); if (rc) { iounmap (io_mem); return rc; } } } rc = ebda_rsrc_controller (); if (rc) { iounmap (io_mem); return rc; } rc = ebda_rsrc_rsrc (); if (rc) { iounmap (io_mem); return rc; } iounmap (io_mem); return 0; } /* * map info of scalability details and rio details from physical address */ static int __init ebda_rio_table (void) { u16 offset; u8 i; struct rio_detail *rio_detail_ptr; offset = rio_table_ptr->offset; offset += 12 * rio_table_ptr->scal_count; // we do concern about rio details for (i = 0; i < rio_table_ptr->riodev_count; i++) { rio_detail_ptr = kmalloc (sizeof (struct rio_detail), GFP_KERNEL); if (!rio_detail_ptr) return -ENOMEM; memset (rio_detail_ptr, 0, sizeof (struct rio_detail)); rio_detail_ptr->rio_node_id = readb (io_mem + offset); rio_detail_ptr->bbar = readl (io_mem + offset + 1); rio_detail_ptr->rio_type = readb (io_mem + offset + 5); rio_detail_ptr->owner_id = readb (io_mem + offset + 6); rio_detail_ptr->port0_node_connect = readb (io_mem + offset + 7); rio_detail_ptr->port0_port_connect = readb (io_mem + offset + 8); rio_detail_ptr->port1_node_connect = readb (io_mem + offset + 9); rio_detail_ptr->port1_port_connect = readb (io_mem + offset + 10); rio_detail_ptr->first_slot_num = readb (io_mem + offset + 11); rio_detail_ptr->status = readb (io_mem + offset + 12); rio_detail_ptr->wpindex = readb (io_mem + offset + 13); rio_detail_ptr->chassis_num = readb (io_mem + offset + 14); // debug ("rio_node_id: %x\nbbar: %x\nrio_type: %x\nowner_id: %x\nport0_node: %x\nport0_port: %x\nport1_node: %x\nport1_port: %x\nfirst_slot_num: %x\nstatus: %x\n", rio_detail_ptr->rio_node_id, rio_detail_ptr->bbar, rio_detail_ptr->rio_type, rio_detail_ptr->owner_id, rio_detail_ptr->port0_node_connect, rio_detail_ptr->port0_port_connect, rio_detail_ptr->port1_node_connect, rio_detail_ptr->port1_port_connect, rio_detail_ptr->first_slot_num, rio_detail_ptr->status); //create linked list of chassis if (rio_detail_ptr->rio_type == 4 || rio_detail_ptr->rio_type == 5) list_add (&rio_detail_ptr->rio_detail_list, &rio_vg_head); //create linked list of expansion box else if (rio_detail_ptr->rio_type == 6 || rio_detail_ptr->rio_type == 7) list_add (&rio_detail_ptr->rio_detail_list, &rio_lo_head); else // not in my concern kfree (rio_detail_ptr); offset += 15; } print_lo_info (); print_vg_info (); return 0; } /* * reorganizing linked list of chassis */ static struct opt_rio *search_opt_vg (u8 chassis_num) { struct opt_rio *ptr; struct list_head *ptr1; list_for_each (ptr1, &opt_vg_head) { ptr = list_entry (ptr1, struct opt_rio, opt_rio_list); if (ptr->chassis_num == chassis_num) return ptr; } return NULL; } static int __init combine_wpg_for_chassis (void) { struct opt_rio *opt_rio_ptr = NULL; struct rio_detail *rio_detail_ptr = NULL; struct list_head *list_head_ptr = NULL; list_for_each (list_head_ptr, &rio_vg_head) { rio_detail_ptr = list_entry (list_head_ptr, struct rio_detail, rio_detail_list); opt_rio_ptr = search_opt_vg (rio_detail_ptr->chassis_num); if (!opt_rio_ptr) { opt_rio_ptr = (struct opt_rio *) kmalloc (sizeof (struct opt_rio), GFP_KERNEL); if (!opt_rio_ptr) return -ENOMEM; memset (opt_rio_ptr, 0, sizeof (struct opt_rio)); opt_rio_ptr->rio_type = rio_detail_ptr->rio_type; opt_rio_ptr->chassis_num = rio_detail_ptr->chassis_num; opt_rio_ptr->first_slot_num = rio_detail_ptr->first_slot_num; opt_rio_ptr->middle_num = rio_detail_ptr->first_slot_num; list_add (&opt_rio_ptr->opt_rio_list, &opt_vg_head); } else { opt_rio_ptr->first_slot_num = min (opt_rio_ptr->first_slot_num, rio_detail_ptr->first_slot_num); opt_rio_ptr->middle_num = max (opt_rio_ptr->middle_num, rio_detail_ptr->first_slot_num); } } print_opt_vg (); return 0; } /* * reorgnizing linked list of expansion box */ static struct opt_rio_lo *search_opt_lo (u8 chassis_num) { struct opt_rio_lo *ptr; struct list_head *ptr1; list_for_each (ptr1, &opt_lo_head) { ptr = list_entry (ptr1, struct opt_rio_lo, opt_rio_lo_list); if (ptr->chassis_num == chassis_num) return ptr; } return NULL; } static int combine_wpg_for_expansion (void) { struct opt_rio_lo *opt_rio_lo_ptr = NULL; struct rio_detail *rio_detail_ptr = NULL; struct list_head *list_head_ptr = NULL; list_for_each (list_head_ptr, &rio_lo_head) { rio_detail_ptr = list_entry (list_head_ptr, struct rio_detail, rio_detail_list); opt_rio_lo_ptr = search_opt_lo (rio_detail_ptr->chassis_num); if (!opt_rio_lo_ptr) { opt_rio_lo_ptr = (struct opt_rio_lo *) kmalloc (sizeof (struct opt_rio_lo), GFP_KERNEL); if (!opt_rio_lo_ptr) return -ENOMEM; memset (opt_rio_lo_ptr, 0, sizeof (struct opt_rio_lo)); opt_rio_lo_ptr->rio_type = rio_detail_ptr->rio_type; opt_rio_lo_ptr->chassis_num = rio_detail_ptr->chassis_num; opt_rio_lo_ptr->first_slot_num = rio_detail_ptr->first_slot_num; opt_rio_lo_ptr->middle_num = rio_detail_ptr->first_slot_num; opt_rio_lo_ptr->pack_count = 1; list_add (&opt_rio_lo_ptr->opt_rio_lo_list, &opt_lo_head); } else { opt_rio_lo_ptr->first_slot_num = min (opt_rio_lo_ptr->first_slot_num, rio_detail_ptr->first_slot_num); opt_rio_lo_ptr->middle_num = max (opt_rio_lo_ptr->middle_num, rio_detail_ptr->first_slot_num); opt_rio_lo_ptr->pack_count = 2; } } return 0; } /* Since we don't know the max slot number per each chassis, hence go * through the list of all chassis to find out the range * Arguments: slot_num, 1st slot number of the chassis we think we are on, * var (0 = chassis, 1 = expansion box) */ static int first_slot_num (u8 slot_num, u8 first_slot, u8 var) { struct opt_rio *opt_vg_ptr = NULL; struct opt_rio_lo *opt_lo_ptr = NULL; struct list_head *ptr = NULL; int rc = 0; if (!var) { list_for_each (ptr, &opt_vg_head) { opt_vg_ptr = list_entry (ptr, struct opt_rio, opt_rio_list); if ((first_slot < opt_vg_ptr->first_slot_num) && (slot_num >= opt_vg_ptr->first_slot_num)) { rc = -ENODEV; break; } } } else { list_for_each (ptr, &opt_lo_head) { opt_lo_ptr = list_entry (ptr, struct opt_rio_lo, opt_rio_lo_list); if ((first_slot < opt_lo_ptr->first_slot_num) && (slot_num >= opt_lo_ptr->first_slot_num)) { rc = -ENODEV; break; } } } return rc; } static struct opt_rio_lo * find_rxe_num (u8 slot_num) { struct opt_rio_lo *opt_lo_ptr; struct list_head *ptr; list_for_each (ptr, &opt_lo_head) { opt_lo_ptr = list_entry (ptr, struct opt_rio_lo, opt_rio_lo_list); //check to see if this slot_num belongs to expansion box if ((slot_num >= opt_lo_ptr->first_slot_num) && (!first_slot_num (slot_num, opt_lo_ptr->first_slot_num, 1))) return opt_lo_ptr; } return NULL; } static struct opt_rio * find_chassis_num (u8 slot_num) { struct opt_rio *opt_vg_ptr; struct list_head *ptr; list_for_each (ptr, &opt_vg_head) { opt_vg_ptr = list_entry (ptr, struct opt_rio, opt_rio_list); //check to see if this slot_num belongs to chassis if ((slot_num >= opt_vg_ptr->first_slot_num) && (!first_slot_num (slot_num, opt_vg_ptr->first_slot_num, 0))) return opt_vg_ptr; } return NULL; } /* This routine will find out how many slots are in the chassis, so that * the slot numbers for rxe100 would start from 1, and not from 7, or 6 etc */ static u8 calculate_first_slot (u8 slot_num) { u8 first_slot = 1; struct list_head * list; struct slot * slot_cur; list_for_each (list, &ibmphp_slot_head) { slot_cur = list_entry (list, struct slot, ibm_slot_list); if (slot_cur->ctrl) { if ((slot_cur->ctrl->ctlr_type != 4) && (slot_cur->ctrl->ending_slot_num > first_slot) && (slot_num > slot_cur->ctrl->ending_slot_num)) first_slot = slot_cur->ctrl->ending_slot_num; } } return first_slot + 1; } static char *create_file_name (struct slot * slot_cur) { struct opt_rio *opt_vg_ptr = NULL; struct opt_rio_lo *opt_lo_ptr = NULL; static char str[30]; int which = 0; /* rxe = 1, chassis = 0 */ u8 number = 1; /* either chassis or rxe # */ u8 first_slot = 1; u8 slot_num; u8 flag = 0; if (!slot_cur) { err ("Structure passed is empty \n"); return NULL; } slot_num = slot_cur->number; memset (str, 0, sizeof(str)); if (rio_table_ptr) { if (rio_table_ptr->ver_num == 3) { opt_vg_ptr = find_chassis_num (slot_num); opt_lo_ptr = find_rxe_num (slot_num); } } if (opt_vg_ptr) { if (opt_lo_ptr) { if ((slot_num - opt_vg_ptr->first_slot_num) > (slot_num - opt_lo_ptr->first_slot_num)) { number = opt_lo_ptr->chassis_num; first_slot = opt_lo_ptr->first_slot_num; which = 1; /* it is RXE */ } else { first_slot = opt_vg_ptr->first_slot_num; number = opt_vg_ptr->chassis_num; which = 0; } } else { first_slot = opt_vg_ptr->first_slot_num; number = opt_vg_ptr->chassis_num; which = 0; } ++flag; } else if (opt_lo_ptr) { number = opt_lo_ptr->chassis_num; first_slot = opt_lo_ptr->first_slot_num; which = 1; ++flag; } else if (rio_table_ptr) { if (rio_table_ptr->ver_num == 3) { /* if both NULL and we DO have correct RIO table in BIOS */ return NULL; } } if (!flag) { if (slot_cur->ctrl->ctlr_type == 4) { first_slot = calculate_first_slot (slot_num); which = 1; } else { which = 0; } } sprintf(str, "%s%dslot%d", which == 0 ? "chassis" : "rxe", number, slot_num - first_slot + 1); return str; } static struct pci_driver ibmphp_driver; /* * map info (ctlr-id, slot count, slot#.. bus count, bus#, ctlr type...) of * each hpc from physical address to a list of hot plug controllers based on * hpc descriptors. */ static int __init ebda_rsrc_controller (void) { u16 addr, addr_slot, addr_bus; u8 ctlr_id, temp, bus_index; u16 ctlr, slot, bus; u16 slot_num, bus_num, index; struct hotplug_slot *hp_slot_ptr; struct controller *hpc_ptr; struct ebda_hpc_bus *bus_ptr; struct ebda_hpc_slot *slot_ptr; struct bus_info *bus_info_ptr1, *bus_info_ptr2; int rc; struct slot *tmp_slot; struct list_head *list; addr = hpc_list_ptr->phys_addr; for (ctlr = 0; ctlr < hpc_list_ptr->num_ctlrs; ctlr++) { bus_index = 1; ctlr_id = readb (io_mem + addr); addr += 1; slot_num = readb (io_mem + addr); addr += 1; addr_slot = addr; /* offset of slot structure */ addr += (slot_num * 4); bus_num = readb (io_mem + addr); addr += 1; addr_bus = addr; /* offset of bus */ addr += (bus_num * 9); /* offset of ctlr_type */ temp = readb (io_mem + addr); addr += 1; /* init hpc structure */ hpc_ptr = alloc_ebda_hpc (slot_num, bus_num); if (!hpc_ptr ) { rc = -ENOMEM; goto error_no_hpc; } hpc_ptr->ctlr_id = ctlr_id; hpc_ptr->ctlr_relative_id = ctlr; hpc_ptr->slot_count = slot_num; hpc_ptr->bus_count = bus_num; debug ("now enter ctlr data struture ---\n"); debug ("ctlr id: %x\n", ctlr_id); debug ("ctlr_relative_id: %x\n", hpc_ptr->ctlr_relative_id); debug ("count of slots controlled by this ctlr: %x\n", slot_num); debug ("count of buses controlled by this ctlr: %x\n", bus_num); /* init slot structure, fetch slot, bus, cap... */ slot_ptr = hpc_ptr->slots; for (slot = 0; slot < slot_num; slot++) { slot_ptr->slot_num = readb (io_mem + addr_slot); slot_ptr->slot_bus_num = readb (io_mem + addr_slot + slot_num); slot_ptr->ctl_index = readb (io_mem + addr_slot + 2*slot_num); slot_ptr->slot_cap = readb (io_mem + addr_slot + 3*slot_num); // create bus_info lined list --- if only one slot per bus: slot_min = slot_max bus_info_ptr2 = ibmphp_find_same_bus_num (slot_ptr->slot_bus_num); if (!bus_info_ptr2) { bus_info_ptr1 = (struct bus_info *) kmalloc (sizeof (struct bus_info), GFP_KERNEL); if (!bus_info_ptr1) { rc = -ENOMEM; goto error_no_hp_slot; } memset (bus_info_ptr1, 0, sizeof (struct bus_info)); bus_info_ptr1->slot_min = slot_ptr->slot_num; bus_info_ptr1->slot_max = slot_ptr->slot_num; bus_info_ptr1->slot_count += 1; bus_info_ptr1->busno = slot_ptr->slot_bus_num; bus_info_ptr1->index = bus_index++; bus_info_ptr1->current_speed = 0xff; bus_info_ptr1->current_bus_mode = 0xff; bus_info_ptr1->controller_id = hpc_ptr->ctlr_id; list_add_tail (&bus_info_ptr1->bus_info_list, &bus_info_head); } else { bus_info_ptr2->slot_min = min (bus_info_ptr2->slot_min, slot_ptr->slot_num); bus_info_ptr2->slot_max = max (bus_info_ptr2->slot_max, slot_ptr->slot_num); bus_info_ptr2->slot_count += 1; } // end of creating the bus_info linked list slot_ptr++; addr_slot += 1; } /* init bus structure */ bus_ptr = hpc_ptr->buses; for (bus = 0; bus < bus_num; bus++) { bus_ptr->bus_num = readb (io_mem + addr_bus + bus); bus_ptr->slots_at_33_conv = readb (io_mem + addr_bus + bus_num + 8 * bus); bus_ptr->slots_at_66_conv = readb (io_mem + addr_bus + bus_num + 8 * bus + 1); bus_ptr->slots_at_66_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 2); bus_ptr->slots_at_100_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 3); bus_ptr->slots_at_133_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 4); bus_info_ptr2 = ibmphp_find_same_bus_num (bus_ptr->bus_num); if (bus_info_ptr2) { bus_info_ptr2->slots_at_33_conv = bus_ptr->slots_at_33_conv; bus_info_ptr2->slots_at_66_conv = bus_ptr->slots_at_66_conv; bus_info_ptr2->slots_at_66_pcix = bus_ptr->slots_at_66_pcix; bus_info_ptr2->slots_at_100_pcix = bus_ptr->slots_at_100_pcix; bus_info_ptr2->slots_at_133_pcix = bus_ptr->slots_at_133_pcix; } bus_ptr++; } hpc_ptr->ctlr_type = temp; switch (hpc_ptr->ctlr_type) { case 1: hpc_ptr->u.pci_ctlr.bus = readb (io_mem + addr); hpc_ptr->u.pci_ctlr.dev_fun = readb (io_mem + addr + 1); hpc_ptr->irq = readb (io_mem + addr + 2); addr += 3; debug ("ctrl bus = %x, ctlr devfun = %x, irq = %x\n", hpc_ptr->u.pci_ctlr.bus, hpc_ptr->u.pci_ctlr.dev_fun, hpc_ptr->irq); break; case 0: hpc_ptr->u.isa_ctlr.io_start = readw (io_mem + addr); hpc_ptr->u.isa_ctlr.io_end = readw (io_mem + addr + 2); if (!request_region (hpc_ptr->u.isa_ctlr.io_start, (hpc_ptr->u.isa_ctlr.io_end - hpc_ptr->u.isa_ctlr.io_start + 1), "ibmphp")) { rc = -ENODEV; goto error_no_hp_slot; } hpc_ptr->irq = readb (io_mem + addr + 4); addr += 5; break; case 2: case 4: hpc_ptr->u.wpeg_ctlr.wpegbbar = readl (io_mem + addr); hpc_ptr->u.wpeg_ctlr.i2c_addr = readb (io_mem + addr + 4); hpc_ptr->irq = readb (io_mem + addr + 5); addr += 6; break; default: rc = -ENODEV; goto error_no_hp_slot; } //reorganize chassis' linked list combine_wpg_for_chassis (); combine_wpg_for_expansion (); hpc_ptr->revision = 0xff; hpc_ptr->options = 0xff; hpc_ptr->starting_slot_num = hpc_ptr->slots[0].slot_num; hpc_ptr->ending_slot_num = hpc_ptr->slots[slot_num-1].slot_num; // register slots with hpc core as well as create linked list of ibm slot for (index = 0; index < hpc_ptr->slot_count; index++) { hp_slot_ptr = (struct hotplug_slot *) kmalloc (sizeof (struct hotplug_slot), GFP_KERNEL); if (!hp_slot_ptr) { rc = -ENOMEM; goto error_no_hp_slot; } memset (hp_slot_ptr, 0, sizeof (struct hotplug_slot)); hp_slot_ptr->info = (struct hotplug_slot_info *) kmalloc (sizeof (struct hotplug_slot_info), GFP_KERNEL); if (!hp_slot_ptr->info) { rc = -ENOMEM; goto error_no_hp_info; } memset (hp_slot_ptr->info, 0, sizeof (struct hotplug_slot_info)); hp_slot_ptr->name = (char *) kmalloc (30, GFP_KERNEL); if (!hp_slot_ptr->name) { rc = -ENOMEM; goto error_no_hp_name; } tmp_slot = kmalloc (sizeof (struct slot), GFP_KERNEL); if (!tmp_slot) { rc = -ENOMEM; goto error_no_slot; } memset (tmp_slot, 0, sizeof (*tmp_slot)); tmp_slot->flag = TRUE; tmp_slot->capabilities = hpc_ptr->slots[index].slot_cap; if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_133_MAX) == EBDA_SLOT_133_MAX) tmp_slot->supported_speed = 3; else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_100_MAX) == EBDA_SLOT_100_MAX) tmp_slot->supported_speed = 2; else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_66_MAX) == EBDA_SLOT_66_MAX) tmp_slot->supported_speed = 1; if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_PCIX_CAP) == EBDA_SLOT_PCIX_CAP) tmp_slot->supported_bus_mode = 1; else tmp_slot->supported_bus_mode = 0; tmp_slot->bus = hpc_ptr->slots[index].slot_bus_num; bus_info_ptr1 = ibmphp_find_same_bus_num (hpc_ptr->slots[index].slot_bus_num); if (!bus_info_ptr1) { rc = -ENODEV; goto error; } tmp_slot->bus_on = bus_info_ptr1; bus_info_ptr1 = NULL; tmp_slot->ctrl = hpc_ptr; tmp_slot->ctlr_index = hpc_ptr->slots[index].ctl_index; tmp_slot->number = hpc_ptr->slots[index].slot_num; tmp_slot->hotplug_slot = hp_slot_ptr; hp_slot_ptr->private = tmp_slot; rc = ibmphp_hpc_fillhpslotinfo (hp_slot_ptr); if (rc) goto error; rc = ibmphp_init_devno ((struct slot **) &hp_slot_ptr->private); if (rc) goto error; hp_slot_ptr->ops = &ibmphp_hotplug_slot_ops; // end of registering ibm slot with hotplug core list_add (& ((struct slot *)(hp_slot_ptr->private))->ibm_slot_list, &ibmphp_slot_head); } print_bus_info (); list_add (&hpc_ptr->ebda_hpc_list, &ebda_hpc_head ); } /* each hpc */ list_for_each (list, &ibmphp_slot_head) { tmp_slot = list_entry (list, struct slot, ibm_slot_list); snprintf (tmp_slot->hotplug_slot->name, 30, "%s", create_file_name (tmp_slot)); pci_hp_register (tmp_slot->hotplug_slot); } print_ebda_hpc (); print_ibm_slot (); return 0; error: kfree (hp_slot_ptr->private); error_no_slot: kfree (hp_slot_ptr->name); error_no_hp_name: kfree (hp_slot_ptr->info); error_no_hp_info: kfree (hp_slot_ptr); error_no_hp_slot: free_ebda_hpc (hpc_ptr); error_no_hpc: iounmap (io_mem); return rc; } /* * map info (bus, devfun, start addr, end addr..) of i/o, memory, * pfm from the physical addr to a list of resource. */ static int __init ebda_rsrc_rsrc (void) { u16 addr; short rsrc; u8 type, rsrc_type; struct ebda_pci_rsrc *rsrc_ptr; addr = rsrc_list_ptr->phys_addr; debug ("now entering rsrc land\n"); debug ("offset of rsrc: %x\n", rsrc_list_ptr->phys_addr); for (rsrc = 0; rsrc < rsrc_list_ptr->num_entries; rsrc++) { type = readb (io_mem + addr); addr += 1; rsrc_type = type & EBDA_RSRC_TYPE_MASK; if (rsrc_type == EBDA_IO_RSRC_TYPE) { rsrc_ptr = alloc_ebda_pci_rsrc (); if (!rsrc_ptr) { iounmap (io_mem); return -ENOMEM; } rsrc_ptr->rsrc_type = type; rsrc_ptr->bus_num = readb (io_mem + addr); rsrc_ptr->dev_fun = readb (io_mem + addr + 1); rsrc_ptr->start_addr = readw (io_mem + addr + 2); rsrc_ptr->end_addr = readw (io_mem + addr + 4); addr += 6; debug ("rsrc from io type ----\n"); debug ("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n", rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr); list_add (&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head); } if (rsrc_type == EBDA_MEM_RSRC_TYPE || rsrc_type == EBDA_PFM_RSRC_TYPE) { rsrc_ptr = alloc_ebda_pci_rsrc (); if (!rsrc_ptr ) { iounmap (io_mem); return -ENOMEM; } rsrc_ptr->rsrc_type = type; rsrc_ptr->bus_num = readb (io_mem + addr); rsrc_ptr->dev_fun = readb (io_mem + addr + 1); rsrc_ptr->start_addr = readl (io_mem + addr + 2); rsrc_ptr->end_addr = readl (io_mem + addr + 6); addr += 10; debug ("rsrc from mem or pfm ---\n"); debug ("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n", rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr); list_add (&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head); } } kfree (rsrc_list_ptr); rsrc_list_ptr = NULL; print_ebda_pci_rsrc (); return 0; } u16 ibmphp_get_total_controllers (void) { return hpc_list_ptr->num_ctlrs; } struct slot *ibmphp_get_slot_from_physical_num (u8 physical_num) { struct slot *slot; struct list_head *list; list_for_each (list, &ibmphp_slot_head) { slot = list_entry (list, struct slot, ibm_slot_list); if (slot->number == physical_num) return slot; } return NULL; } /* To find: * - the smallest slot number * - the largest slot number * - the total number of the slots based on each bus * (if only one slot per bus slot_min = slot_max ) */ struct bus_info *ibmphp_find_same_bus_num (u32 num) { struct bus_info *ptr; struct list_head *ptr1; list_for_each (ptr1, &bus_info_head) { ptr = list_entry (ptr1, struct bus_info, bus_info_list); if (ptr->busno == num) return ptr; } return NULL; } /* Finding relative bus number, in order to map corresponding * bus register */ int ibmphp_get_bus_index (u8 num) { struct bus_info *ptr; struct list_head *ptr1; list_for_each (ptr1, &bus_info_head) { ptr = list_entry (ptr1, struct bus_info, bus_info_list); if (ptr->busno == num) return ptr->index; } return -ENODEV; } void ibmphp_free_bus_info_queue (void) { struct bus_info *bus_info; struct list_head *list; struct list_head *next; list_for_each_safe (list, next, &bus_info_head ) { bus_info = list_entry (list, struct bus_info, bus_info_list); kfree (bus_info); } } void ibmphp_free_ebda_hpc_queue (void) { struct controller *controller = NULL; struct list_head *list; struct list_head *next; int pci_flag = 0; list_for_each_safe (list, next, &ebda_hpc_head) { controller = list_entry (list, struct controller, ebda_hpc_list); if (controller->ctlr_type == 0) release_region (controller->u.isa_ctlr.io_start, (controller->u.isa_ctlr.io_end - controller->u.isa_ctlr.io_start + 1)); else if ((controller->ctlr_type == 1) && (!pci_flag)) { ++pci_flag; pci_unregister_driver (&ibmphp_driver); } free_ebda_hpc (controller); } } void ibmphp_free_ebda_pci_rsrc_queue (void) { struct ebda_pci_rsrc *resource; struct list_head *list; struct list_head *next; list_for_each_safe (list, next, &ibmphp_ebda_pci_rsrc_head) { resource = list_entry (list, struct ebda_pci_rsrc, ebda_pci_rsrc_list); kfree (resource); resource = NULL; } } static struct pci_device_id id_table[] __devinitdata = { { vendor: PCI_VENDOR_ID_IBM, device: HPC_DEVICE_ID, subvendor: PCI_VENDOR_ID_IBM, subdevice: HPC_SUBSYSTEM_ID, class: ((PCI_CLASS_SYSTEM_PCI_HOTPLUG << 8) | 0x00), }, {} }; MODULE_DEVICE_TABLE(pci, id_table); static int ibmphp_probe (struct pci_dev *, const struct pci_device_id *); static struct pci_driver ibmphp_driver = { name: "ibmphp", id_table: id_table, probe: ibmphp_probe, }; int ibmphp_register_pci (void) { struct controller *ctrl; struct list_head *tmp; int rc = 0; list_for_each (tmp, &ebda_hpc_head) { ctrl = list_entry (tmp, struct controller, ebda_hpc_list); if (ctrl->ctlr_type == 1) { rc = pci_module_init (&ibmphp_driver); break; } } return rc; } static int ibmphp_probe (struct pci_dev * dev, const struct pci_device_id *ids) { struct controller *ctrl; struct list_head *tmp; debug ("inside ibmphp_probe \n"); list_for_each (tmp, &ebda_hpc_head) { ctrl = list_entry (tmp, struct controller, ebda_hpc_list); if (ctrl->ctlr_type == 1) { if ((dev->devfn == ctrl->u.pci_ctlr.dev_fun) && (dev->bus->number == ctrl->u.pci_ctlr.bus)) { ctrl->ctrl_dev = dev; debug ("found device!!! \n"); debug ("dev->device = %x, dev->subsystem_device = %x\n", dev->device, dev->subsystem_device); return 0; } } } return -ENODEV; }