/* * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3 * * (C) 2001 San Mehat * (C) 2001 Johannes Erdfelt * (C) 2001 NeilBrown * * This driver for the Micro Memory PCI Memory Module with Battery Backup * is Copyright Micro Memory Inc 2001-2002. All rights reserved. * * This driver is released to the public under the terms of the * GNU GENERAL PUBLIC LICENSE version 2 * See the file COPYING for details. * * This driver provides a standard block device interface for Micro Memory(tm) * PCI based RAM boards. * 10/05/01: Phap Nguyen - Rebuilt the driver * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn * - use stand disk partitioning (so fdisk works). * 08nov2001:NeilBrown - change driver name from "mm" to "umem" * - incorporate into main kernel * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet * - use spin_lock_bh instead of _irq * - Never block on make_request. queue * bh's instead. * - unregister umem from devfs at mod unload * - Change version to 2.3 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal) * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* O_ACCMODE */ #include /* HDIO_GETGEO */ #include #include #include #define PRINTK(x...) do {} while (0) #define dprintk(x...) do {} while (0) /*#define dprintk(x...) printk(x) */ #define MM_MAXCARDS 4 #define MM_RAHEAD 2 /* two sectors */ #define MM_BLKSIZE 1024 /* 1k blocks */ #define MM_HARDSECT 512 /* 512-byte hardware sectors */ #define MM_SHIFT 6 /* max 64 partitions on 4 cards */ #define DEVICE_NR(device) (MINOR(device)>>MM_SHIFT) /* * Version Information */ #define DRIVER_VERSION "v2.3" #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown" #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver" static int debug; /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */ #define HW_TRACE(x) #define DEBUG_LED_ON_TRANSFER 0x01 #define DEBUG_BATTERY_POLLING 0x02 MODULE_PARM(debug, "i"); MODULE_PARM_DESC(debug, "Debug bitmask"); static int init_mem = 0; MODULE_PARM(init_mem, "i"); MODULE_PARM_DESC(init_mem, "Initialize memory"); static int pci_read_cmd = 0x0C; /* Read Multiple */ MODULE_PARM(pci_read_cmd, "i"); MODULE_PARM_DESC(pci_read_cmd, "PCI read command"); static int pci_write_cmd = 0x0F; /* Write and Invalidate */ MODULE_PARM(pci_write_cmd, "i"); MODULE_PARM_DESC(pci_write_cmd, "PCI write command"); static int pci_cmds; #define MAJOR_NR UMEM_MAJOR #include #include static devfs_handle_t devfs_handle; /* For the directory */ struct cardinfo { int card_number; struct pci_dev *dev; int irq; unsigned long csr_base; unsigned char *csr_remap; unsigned long csr_len; #ifdef CONFIG_MM_MAP_MEMORY unsigned long mem_base; unsigned char *mem_remap; unsigned long mem_len; #endif unsigned int win_size; /* PCI window size */ unsigned int mm_size; /* size in kbytes */ struct buffer_head *bh, **bhtail; struct mm_page { dma_addr_t page_dma; struct mm_dma_desc *desc; int cnt, headcnt; struct buffer_head *bh, **bhtail; } mm_pages[2]; #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc)) int Active, Ready; struct tasklet_struct tasklet; unsigned int dma_status; struct tq_struct plug_tq; struct { int good; int warned; unsigned long last_change; } battery[2]; atomic_t usage; spinlock_t lock; int check_batteries; int flags; }; static struct cardinfo cards[MM_MAXCARDS]; static struct block_device_operations mm_fops; static struct timer_list battery_timer; static int mm_hardsect [MM_MAXCARDS << MM_SHIFT]; static int mm_blocksizes[MM_MAXCARDS << MM_SHIFT]; static int mm_sizes[MM_MAXCARDS << MM_SHIFT]; static struct hd_struct mm_partitions[MM_MAXCARDS << MM_SHIFT]; static int num_cards = 0; struct gendisk mm_gendisk = { major: MAJOR_NR, /* Major number assigned later */ major_name: "umem", /* Name of the major device */ minor_shift: MM_SHIFT, /* Shift to get device number */ max_p: 1 << MM_SHIFT, /* Number of partitions */ fops: &mm_fops, /* Block dev operations */ /* everything else is dynamic */ }; static void check_batteries(struct cardinfo *card); /* ----------------------------------------------------------------------------------- -- get_userbit ----------------------------------------------------------------------------------- */ static int get_userbit(struct cardinfo *card, int bit) { unsigned char led; led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); return led & bit; } /* ----------------------------------------------------------------------------------- -- set_userbit ----------------------------------------------------------------------------------- */ static int set_userbit(struct cardinfo *card, int bit, unsigned char state) { unsigned char led; led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); if (state) led |= bit; else led &= ~bit; writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL); return 0; } /* ----------------------------------------------------------------------------------- -- set_led ----------------------------------------------------------------------------------- */ /* * NOTE: For the power LED, use the LED_POWER_* macros since they differ */ static void set_led(struct cardinfo *card, int shift, unsigned char state) { unsigned char led; led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); if (state == LED_FLIP) led ^= (1<csr_remap + MEMCTRLCMD_LEDCTRL); } #ifdef MM_DIAG /* ----------------------------------------------------------------------------------- -- dump_regs ----------------------------------------------------------------------------------- */ static void dump_regs(struct cardinfo *card) { unsigned char *p; int i, i1; p = card->csr_remap; for (i = 0; i < 8; i++) { printk(KERN_DEBUG "%p ", p); for (i1 = 0; i1 < 16; i1++) printk("%02x ", *p++); printk("\n"); } } #endif /* ----------------------------------------------------------------------------------- -- dump_dmastat ----------------------------------------------------------------------------------- */ static void dump_dmastat(struct cardinfo *card, unsigned int dmastat) { printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number); if (dmastat & DMASCR_ANY_ERR) printk("ANY_ERR "); if (dmastat & DMASCR_MBE_ERR) printk("MBE_ERR "); if (dmastat & DMASCR_PARITY_ERR_REP) printk("PARITY_ERR_REP "); if (dmastat & DMASCR_PARITY_ERR_DET) printk("PARITY_ERR_DET "); if (dmastat & DMASCR_SYSTEM_ERR_SIG) printk("SYSTEM_ERR_SIG "); if (dmastat & DMASCR_TARGET_ABT) printk("TARGET_ABT "); if (dmastat & DMASCR_MASTER_ABT) printk("MASTER_ABT "); if (dmastat & DMASCR_CHAIN_COMPLETE) printk("CHAIN_COMPLETE "); if (dmastat & DMASCR_DMA_COMPLETE) printk("DMA_COMPLETE "); printk("\n"); } /* * Theory of request handling * * Each buffer_head is assigned to one mm_dma_desc. * We have two pages of mm_dma_desc, holding about 64 descriptors * each. These are allocated at init time. * One page is "Ready" and is either full, or can have request added. * The other page might be "Active", which DMA is happening on it. * * Whenever IO on the active page completes, the Ready page is activated * and the ex-Active page is clean out and made Ready. * Otherwise the Ready page is only activated when it becomes full, or * when mm_unplug_device is called via run_task_queue(&tq_disk). * * If a request arrives while both pages a full, it is queued, and b_rdev is * overloaded to record whether it was a read or a write. * * The interrupt handler only polls the device to clear the interrupt. * The processing of the result is done in a tasklet. */ static void mm_start_io(struct cardinfo *card) { /* we have the lock, we know there is * no IO active, and we know that card->Active * is set */ struct mm_dma_desc *desc; struct mm_page *page; int offset; /* make the last descriptor end the chain */ page = &card->mm_pages[card->Active]; PRINTK("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1); desc = &page->desc[page->cnt-1]; desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN); desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN); desc->sem_control_bits = desc->control_bits; if (debug & DEBUG_LED_ON_TRANSFER) set_led(card, LED_REMOVE, LED_ON); desc = &page->desc[page->headcnt]; writel(0, card->csr_remap + DMA_PCI_ADDR); writel(0, card->csr_remap + DMA_PCI_ADDR + 4); writel(0, card->csr_remap + DMA_LOCAL_ADDR); writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4); writel(0, card->csr_remap + DMA_TRANSFER_SIZE); writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4); writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR); writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4); offset = ((char*)desc) - ((char*)page->desc); writel(cpu_to_le32((page->page_dma+offset)&0xffffffff), card->csr_remap + DMA_DESCRIPTOR_ADDR); writel(cpu_to_le32((page->page_dma)>>31>>1), card->csr_remap + DMA_DESCRIPTOR_ADDR + 4); /* Go, go, go */ writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds), card->csr_remap + DMA_STATUS_CTRL); } static int add_bh(struct cardinfo *card); static void activate(struct cardinfo *card) { /* if No page is Active, and Ready is * not empty, then switch Ready page * to active and start IO. * Then add any bh's that are available to Ready */ do { while (add_bh(card)) ; if (card->Active == -1 && card->mm_pages[card->Ready].cnt > 0) { card->Active = card->Ready; card->Ready = 1-card->Ready; mm_start_io(card); } } while (card->Active == -1 && add_bh(card)); } static inline void reset_page(struct mm_page *page) { page->cnt = 0; page->headcnt = 0; page->bh = NULL; page->bhtail = & page->bh; } static void mm_unplug_device(void *data) { struct cardinfo *card = data; spin_lock_bh(&card->lock); activate(card); spin_unlock_bh(&card->lock); } /* * If there is room on Ready page, take * one bh off list and add it. * return 1 if there was room, else 0. */ static int add_bh(struct cardinfo *card) { struct mm_page *p; struct mm_dma_desc *desc; dma_addr_t dma_handle; int offset; struct buffer_head *bh; int rw; bh = card->bh; if (!bh) return 0; if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE) return 0; card->bh = bh->b_reqnext; if (card->bh == NULL) card->bhtail = &card->bh; rw = bh->b_rdev; dma_handle = pci_map_page(card->dev, bh->b_page, bh_offset(bh), bh->b_size, (rw==READ) ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE); p = &card->mm_pages[card->Ready]; desc = &p->desc[p->cnt]; p->cnt++; *(p->bhtail) = bh; p->bhtail = &(bh->b_reqnext); bh->b_reqnext = NULL; desc->data_dma_handle = dma_handle; desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle); desc->local_addr= cpu_to_le64(bh->b_rsector << 9); desc->transfer_size = cpu_to_le32(bh->b_size); offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc)); desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset)); desc->zero1 = desc->zero2 = 0; offset = ( ((char*)(desc+1)) - ((char*)p->desc)); desc->next_desc_addr = cpu_to_le64(p->page_dma+offset); desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN| DMASCR_PARITY_INT_EN| DMASCR_CHAIN_EN | DMASCR_SEM_EN | pci_cmds); if (rw == WRITE) desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ); desc->sem_control_bits = desc->control_bits; return 1; } static void process_page(unsigned long data) { /* check if any of the requests in the page are DMA_COMPLETE, * and deal with them appropriately. * If we find a descriptor without DMA_COMPLETE in the semaphore, then * dma must have hit an error on that descriptor, so use dma_status instead * and assume that all following descriptors must be re-tried. */ struct mm_page *page; struct buffer_head *ok=NULL, *fail=NULL; struct cardinfo *card = (struct cardinfo *)data; unsigned int dma_status = card->dma_status; spin_lock_bh(&card->lock); if (card->Active < 0) goto out_unlock; page = &card->mm_pages[card->Active]; while (page->bh != NULL) { struct buffer_head *bh = page->bh; struct mm_dma_desc *desc = &page->desc[page->headcnt]; int control = le32_to_cpu(desc->sem_control_bits); int last=0; if (!(control & DMASCR_DMA_COMPLETE)) { control = dma_status; last=1; } page->headcnt++; page->bh = bh->b_reqnext; pci_unmap_page(card->dev, desc->data_dma_handle, bh->b_size, (control& DMASCR_TRANSFER_READ) ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); if (!(control & DMASCR_HARD_ERROR)) { /* it worked just fine */ bh->b_reqnext = ok; ok = bh; } else { /* error */ bh->b_reqnext = fail; fail = bh; printk(KERN_WARNING "MM%d: I/O error on sector %lx/%x\n", card->card_number, bh->b_rsector, bh->b_size); dump_dmastat(card, control); } if (last) break; } if (debug & DEBUG_LED_ON_TRANSFER) set_led(card, LED_REMOVE, LED_OFF); if (card->check_batteries) { card->check_batteries = 0; check_batteries(card); } if (page->headcnt >= page->cnt) { reset_page(page); card->Active = -1; activate(card); } else { /* haven't finished with this one yet */ PRINTK("do some more\n"); mm_start_io(card); } out_unlock: spin_unlock_bh(&card->lock); while(ok) { struct buffer_head *bh = ok; ok = bh->b_reqnext; bh->b_reqnext = NULL; bh->b_end_io(bh, 1); } while(fail) { struct buffer_head *bh = fail; fail = bh->b_reqnext; bh->b_reqnext = NULL; bh->b_end_io(bh, 0); } } /* ----------------------------------------------------------------------------------- -- mm_make_request ----------------------------------------------------------------------------------- */ static int mm_make_request(request_queue_t *q, int rw, struct buffer_head *bh) { struct cardinfo *card = &cards[DEVICE_NR(bh->b_rdev)]; PRINTK("mm_make_request %d %ld %d\n", rw, bh->b_rsector, bh->b_size); bh->b_rsector += mm_partitions[MINOR(bh->b_rdev)].start_sect; bh->b_rdev = rw; /* overloading... */ spin_lock_bh(&card->lock); *card->bhtail = bh; bh->b_reqnext = NULL; card->bhtail = &bh->b_reqnext; spin_unlock_bh(&card->lock); queue_task(&card->plug_tq, &tq_disk); return 0; } /* ----------------------------------------------------------------------------------- -- mm_interrupt ----------------------------------------------------------------------------------- */ static void mm_interrupt(int irq, void *__card, struct pt_regs *regs) { struct cardinfo *card = (struct cardinfo *) __card; unsigned int dma_status; unsigned short cfg_status; HW_TRACE(0x30); dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL)); if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) { /* interrupt wasn't for me ... */ return; } /* clear COMPLETION interrupts */ if (card->flags & UM_FLAG_NO_BYTE_STATUS) writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE), card->csr_remap+ DMA_STATUS_CTRL); else writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16, card->csr_remap+ DMA_STATUS_CTRL + 2); /* log errors and clear interrupt status */ if (dma_status & DMASCR_ANY_ERR) { unsigned int data_log1, data_log2; unsigned int addr_log1, addr_log2; unsigned char stat, count, syndrome, check; stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS); data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG)); data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4)); addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG)); addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4); count = readb(card->csr_remap + ERROR_COUNT); syndrome = readb(card->csr_remap + ERROR_SYNDROME); check = readb(card->csr_remap + ERROR_CHECK); dump_dmastat(card, dma_status); if (stat & 0x01) printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n", card->card_number, count); if (stat & 0x02) printk(KERN_ERR "MM%d*: Multi-bit EDC error\n", card->card_number); printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n", card->card_number, addr_log2, addr_log1, data_log2, data_log1); printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n", card->card_number, check, syndrome); writeb(0, card->csr_remap + ERROR_COUNT); } if (dma_status & DMASCR_PARITY_ERR_REP) { printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number); pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); pci_write_config_word(card->dev, PCI_STATUS, cfg_status); } if (dma_status & DMASCR_PARITY_ERR_DET) { printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number); pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); pci_write_config_word(card->dev, PCI_STATUS, cfg_status); } if (dma_status & DMASCR_SYSTEM_ERR_SIG) { printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number); pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); pci_write_config_word(card->dev, PCI_STATUS, cfg_status); } if (dma_status & DMASCR_TARGET_ABT) { printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number); pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); pci_write_config_word(card->dev, PCI_STATUS, cfg_status); } if (dma_status & DMASCR_MASTER_ABT) { printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number); pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); pci_write_config_word(card->dev, PCI_STATUS, cfg_status); } /* and process the DMA descriptors */ card->dma_status = dma_status; tasklet_schedule(&card->tasklet); HW_TRACE(0x36); } /* ----------------------------------------------------------------------------------- -- set_fault_to_battery_status ----------------------------------------------------------------------------------- */ /* * If both batteries are good, no LED * If either battery has been warned, solid LED * If both batteries are bad, flash the LED quickly * If either battery is bad, flash the LED semi quickly */ static void set_fault_to_battery_status(struct cardinfo *card) { if (card->battery[0].good && card->battery[1].good) set_led(card, LED_FAULT, LED_OFF); else if (card->battery[0].warned || card->battery[1].warned) set_led(card, LED_FAULT, LED_ON); else if (!card->battery[0].good && !card->battery[1].good) set_led(card, LED_FAULT, LED_FLASH_7_0); else set_led(card, LED_FAULT, LED_FLASH_3_5); } static void init_battery_timer(void); /* ----------------------------------------------------------------------------------- -- check_battery ----------------------------------------------------------------------------------- */ static int check_battery(struct cardinfo *card, int battery, int status) { if (status != card->battery[battery].good) { card->battery[battery].good = !card->battery[battery].good; card->battery[battery].last_change = jiffies; if (card->battery[battery].good) { printk(KERN_ERR "MM%d: Battery %d now good\n", card->card_number, battery + 1); card->battery[battery].warned = 0; } else printk(KERN_ERR "MM%d: Battery %d now FAILED\n", card->card_number, battery + 1); return 1; } else if (!card->battery[battery].good && !card->battery[battery].warned && time_after_eq(jiffies, card->battery[battery].last_change + (HZ * 60 * 60 * 5))) { printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n", card->card_number, battery + 1); card->battery[battery].warned = 1; return 1; } return 0; } /* ----------------------------------------------------------------------------------- -- check_batteries ----------------------------------------------------------------------------------- */ static void check_batteries(struct cardinfo *card) { /* NOTE: this must *never* be called while the card * is doing (bus-to-card) DMA, or you will need the * reset switch */ unsigned char status; int ret1, ret2; status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY); if (debug & DEBUG_BATTERY_POLLING) printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n", card->card_number, (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK", (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK"); ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE)); ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE)); if (ret1 || ret2) set_fault_to_battery_status(card); } static void check_all_batteries(unsigned long ptr) { int i; for (i = 0; i < num_cards; i++) if (!(cards[i].flags & UM_FLAG_NO_BATT)) { struct cardinfo *card = &cards[i]; spin_lock_bh(&card->lock); if (card->Active >= 0) card->check_batteries = 1; else check_batteries(card); spin_unlock_bh(&card->lock); } init_battery_timer(); } /* ----------------------------------------------------------------------------------- -- init_battery_timer ----------------------------------------------------------------------------------- */ static void init_battery_timer(void) { init_timer(&battery_timer); battery_timer.function = check_all_batteries; battery_timer.expires = jiffies + (HZ * 60); add_timer(&battery_timer); } /* ----------------------------------------------------------------------------------- -- del_battery_timer ----------------------------------------------------------------------------------- */ static void del_battery_timer(void) { del_timer(&battery_timer); } /* ----------------------------------------------------------------------------------- -- mm_revalidate ----------------------------------------------------------------------------------- */ /* * Note no locks taken out here. In a worst case scenario, we could drop * a chunk of system memory. But that should never happen, since validation * happens at open or mount time, when locks are held. */ static int mm_revalidate(kdev_t i_rdev) { int i; int card_number = DEVICE_NR(i_rdev); /* first partition, # of partitions */ int part1 = (DEVICE_NR(i_rdev) << MM_SHIFT) + 1; int npart = (1 << MM_SHIFT) -1; /* first clear old partition information */ for (i=0; ii_rdev) return -EINVAL; minor = MINOR(i->i_rdev); card_number = (minor >> MM_SHIFT); switch(cmd) { case BLKGETSIZE: /* Return the device size, expressed in sectors */ err = ! access_ok (VERIFY_WRITE, arg, sizeof(long)); if (err) return -EFAULT; size = mm_gendisk.part[minor].nr_sects; if (copy_to_user((long *) arg, &size, sizeof (long))) return -EFAULT; return 0; case BLKRAGET: /* return the readahead value */ err = ! access_ok(VERIFY_WRITE, arg, sizeof(long)); if (err) return -EFAULT; copy_to_user((long *)arg, &read_ahead[MAJOR(i->i_rdev)],sizeof(long)); return 0; case BLKRASET: /* set the readahead value */ if (!capable(CAP_SYS_RAWIO)) return -EACCES; if (arg > 0xff) return -EINVAL; /* limit it */ read_ahead[MAJOR(i->i_rdev)] = arg; return 0; case BLKRRPART: return (mm_revalidate(i->i_rdev)); case HDIO_GETGEO: /* * get geometry: we have to fake one... trim the size to a * multiple of 2048 (1M): tell we have 32 sectors, 64 heads, * whatever cylinders. */ err = ! access_ok(VERIFY_WRITE, arg, sizeof(geo)); if (err) return -EFAULT; size = cards[card_number].mm_size * (1024 / MM_HARDSECT); geo.heads = 64; geo.sectors = 32; geo.start = mm_gendisk.part[minor].start_sect; geo.cylinders = size / (geo.heads * geo.sectors); if (copy_to_user((void *) arg, &geo, sizeof(geo))) return -EFAULT; return 0; default: return blk_ioctl(i->i_rdev, cmd, arg); } return -ENOTTY; /* unknown command */ } /* ----------------------------------------------------------------------------------- -- mm_check_change ----------------------------------------------------------------------------------- Future support for removable devices */ static int mm_check_change(kdev_t i_rdev) { int card_number = DEVICE_NR(i_rdev); /* struct cardinfo *dev = cards + card_number; */ if (card_number >= num_cards) /* paranoid */ return 0; return 0; } /* ----------------------------------------------------------------------------------- -- mm_open ----------------------------------------------------------------------------------- */ static int mm_open(struct inode *i, struct file *filp) { int num; struct cardinfo *card; num = DEVICE_NR(i->i_rdev); if (num >= num_cards) return -ENXIO; card = cards + num; atomic_inc(&card->usage); MOD_INC_USE_COUNT; return 0; } /* ----------------------------------------------------------------------------------- -- mm_do_release ----------------------------------------------------------------------------------- */ static int mm_do_release(struct inode *i, struct file *filp) { int num; struct cardinfo *card; num = DEVICE_NR(i->i_rdev); card = cards + num; if (atomic_dec_and_test(&card->usage)) invalidate_device(i->i_rdev, 1); MOD_DEC_USE_COUNT; return 0; } #define INITIALIZE_BHS 32 /* ----------------------------------------------------------------------------------- -- mm_init_mem ----------------------------------------------------------------------------------- */ static void mm_end_buffer_io_sync(struct buffer_head *bh, int uptodate) { mark_buffer_uptodate(bh, uptodate); unlock_buffer(bh); } static int __devinit mm_init_mem(struct cardinfo *card) { struct buffer_head *bhlist, *bhactive, *bh; unsigned int i; int rc = 0; struct page *zero_page; /* Turn this off when we flush the contents of memory and have */ /* the card rebuild ECC */ writeb(EDC_NONE_DEFAULT, card->csr_remap + MEMCTRLCMD_ERRCTRL); printk("MM%d: initializing memory\n", card->card_number); zero_page = alloc_page(GFP_KERNEL); if (!zero_page) { printk(KERN_ERR "unable to allocate page for zeroing memory\n"); rc = -ENOMEM; goto out_alloc_zero_page; } memset(page_address(zero_page), 0, PAGE_SIZE); i=0; bhlist = NULL; while (i < INITIALIZE_BHS) { bh = kmem_cache_alloc(bh_cachep, SLAB_KERNEL); if (bh == NULL) break; bh->b_next = bhlist; bhlist = bh; bh->b_size = PAGE_SIZE; init_buffer(bh, mm_end_buffer_io_sync, NULL); set_bh_page(bh, zero_page, 0); bh->b_dev = bh->b_rdev = MKDEV(MAJOR_NR, card->card_number<b_wait); i++; } if (bhlist == NULL) { printk(KERN_ERR "MM: count not allocate buffer heads!!\n"); rc = -ENOMEM; goto out_alloc_bh; } bhactive = NULL; for (i = 0; i < card->mm_size / (PAGE_SIZE / 1024);i++) { if (bhlist == NULL) { /* time to wait for some buffers */ while (bhactive) { bh = bhactive; bhactive = bh->b_next; wait_on_buffer(bh); if (!test_bit(BH_Uptodate, &bh->b_state)) rc = -EIO; bh->b_next = bhlist; bhlist = bh; } } bh = bhlist; bhlist = bh->b_next; bh->b_blocknr = i; bh->b_rsector = i*(PAGE_SIZE/512); set_bit(BH_Lock, &bh->b_state); clear_bit(BH_Uptodate, &bh->b_state); mm_make_request(NULL, WRITE, bh); bh->b_next = bhactive; bhactive = bh; } while (bhactive) { bh = bhactive; bhactive = bh->b_next; wait_on_buffer(bh); bh->b_next = bhlist; bhlist = bh; } if (!rc) set_userbit(card, MEMORY_INITIALIZED, 1); while (bhlist) { bh = bhlist; bhlist = bh->b_next; kmem_cache_free(bh_cachep, bh); } out_alloc_bh: free_page((unsigned long) zero_page); out_alloc_zero_page: return rc; } /* ----------------------------------------------------------------------------------- -- mm_fops ----------------------------------------------------------------------------------- */ static struct block_device_operations mm_fops = { owner: THIS_MODULE, open: mm_open, release: mm_do_release, ioctl: mm_ioctl, revalidate: mm_revalidate, check_media_change: mm_check_change, }; /* ----------------------------------------------------------------------------------- -- mm_pci_probe ----------------------------------------------------------------------------------- */ static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { int ret = -ENODEV; struct cardinfo *card = &cards[num_cards]; unsigned char mem_present; unsigned char batt_status; unsigned int saved_bar, data; int magic_number; if (pci_enable_device(dev) < 0) return -ENODEV; pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8); pci_set_master(dev); card->dev = dev; card->card_number = num_cards; card->csr_base = pci_resource_start(dev, 0); card->csr_len = pci_resource_len(dev, 0); #ifdef CONFIG_MM_MAP_MEMORY card->mem_base = pci_resource_start(dev, 1); card->mem_len = pci_resource_len(dev, 1); #endif printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n", card->card_number, dev->bus->number, dev->devfn); if (pci_set_dma_mask(dev, 0xffffffffffffffffLL) && !pci_set_dma_mask(dev, 0xffffffffLL)) { printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards); return -ENOMEM; } if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) { printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number); ret = -ENOMEM; goto failed_req_csr; } card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len); if (!card->csr_remap) { printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number); ret = -ENOMEM; goto failed_remap_csr; } printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number, card->csr_base, card->csr_remap, card->csr_len); #ifdef CONFIG_MM_MAP_MEMORY if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) { printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number); ret = -ENOMEM; goto failed_req_mem; } if (!(card->mem_remap = (unsigned char *)ioremap(card->mem_base, cards->mem_len))) { printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number); ret = -ENOMEM; goto failed_remap_mem; } printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number, card->mem_base, card->mem_remap, card->mem_len); #else printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n", card->card_number); #endif switch(card->dev->device) { case 0x5415: card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG; magic_number = 0x59; break; case 0x5425: magic_number = 0x5C; break; case 0x6155: card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT; magic_number = 0x99; break; default: magic_number = 0x100; break; } if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) { printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number); ret = -ENOMEM; goto failed_magic; } card->mm_pages[0].desc = pci_alloc_consistent(card->dev, PAGE_SIZE*2, &card->mm_pages[0].page_dma); card->mm_pages[1].desc = pci_alloc_consistent(card->dev, PAGE_SIZE*2, &card->mm_pages[1].page_dma); if (card->mm_pages[0].desc == NULL || card->mm_pages[1].desc == NULL) { printk(KERN_ERR "MM%d: alloc failed\n", card->card_number); goto failed_alloc; } reset_page(&card->mm_pages[0]); reset_page(&card->mm_pages[1]); card->Ready = 0; /* page 0 is ready */ card->Active = -1; /* no page is active */ card->bh = NULL; card->bhtail = &card->bh; tasklet_init(&card->tasklet, process_page, (unsigned long)card); card->plug_tq.sync = 0; card->plug_tq.routine = &mm_unplug_device; card->plug_tq.data = card; card->check_batteries = 0; mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY); switch (mem_present) { case MEM_128_MB: card->mm_size = 1024 * 128; break; case MEM_256_MB: card->mm_size = 1024 * 256; break; case MEM_512_MB: card->mm_size = 1024 * 512; break; case MEM_1_GB: card->mm_size = 1024 * 1024; break; case MEM_2_GB: card->mm_size = 1024 * 2048; break; default: card->mm_size = 0; break; } /* Clear the LED's we control */ set_led(card, LED_REMOVE, LED_OFF); set_led(card, LED_FAULT, LED_OFF); batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY); card->battery[0].good = !(batt_status & BATTERY_1_FAILURE); card->battery[1].good = !(batt_status & BATTERY_2_FAILURE); card->battery[0].last_change = card->battery[1].last_change = jiffies; if (card->flags & UM_FLAG_NO_BATT) printk(KERN_INFO "MM%d: Size %d KB\n", card->card_number, card->mm_size); else { printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n", card->card_number, card->mm_size, (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"), card->battery[0].good ? "OK" : "FAILURE", (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"), card->battery[1].good ? "OK" : "FAILURE"); set_fault_to_battery_status(card); } pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar); data = 0xffffffff; pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data); pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data); pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar); data &= 0xfffffff0; data = ~data; data += 1; card->win_size = data; if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) { printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number); ret = -ENODEV; goto failed_req_irq; } card->irq = dev->irq; printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number, card->win_size, card->irq); spin_lock_init(&card->lock); pci_set_drvdata(dev, card); if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */ pci_write_cmd = 0x07; /* then Memory Write command */ if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */ unsigned short cfg_command; pci_read_config_word(dev, PCI_COMMAND, &cfg_command); cfg_command |= 0x10; /* Memory Write & Invalidate Enable */ pci_write_config_word(dev, PCI_COMMAND, cfg_command); } pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24); num_cards++; if (init_mem) mm_init_mem(card); else { if (!get_userbit(card, MEMORY_INITIALIZED)) printk(KERN_INFO "MM%d: memory NOT initialized. perhaps load with init_mem=1?\n", card->card_number); else printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number); } /* Enable ECC */ writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL); return 0; failed_req_irq: failed_alloc: if (card->mm_pages[0].desc) pci_free_consistent(card->dev, PAGE_SIZE*2, card->mm_pages[0].desc, card->mm_pages[0].page_dma); if (card->mm_pages[1].desc) pci_free_consistent(card->dev, PAGE_SIZE*2, card->mm_pages[1].desc, card->mm_pages[1].page_dma); failed_magic: #ifdef CONFIG_MM_MAP_MEMORY iounmap((void *) card->mem_remap); failed_remap_mem: release_mem_region(card->mem_base, card->mem_len); failed_req_mem: #endif iounmap((void *) card->csr_remap); failed_remap_csr: release_mem_region(card->csr_base, card->csr_len); failed_req_csr: return ret; } /* ----------------------------------------------------------------------------------- -- mm_pci_remove ----------------------------------------------------------------------------------- */ static void mm_pci_remove(struct pci_dev *dev) { struct cardinfo *card = pci_get_drvdata(dev); tasklet_kill(&card->tasklet); iounmap(card->csr_remap); release_mem_region(card->csr_base, card->csr_len); #ifdef CONFIG_MM_MAP_MEMORY iounmap(card->mem_remap); release_mem_region(card->mem_base, card->mem_len); #endif free_irq(card->irq, card); if (card->mm_pages[0].desc) pci_free_consistent(card->dev, PAGE_SIZE*2, card->mm_pages[0].desc, card->mm_pages[0].page_dma); if (card->mm_pages[1].desc) pci_free_consistent(card->dev, PAGE_SIZE*2, card->mm_pages[1].desc, card->mm_pages[1].page_dma); } static const struct pci_device_id __devinitdata mm_pci_ids[] = { { vendor: PCI_VENDOR_ID_MICRO_MEMORY, device: PCI_DEVICE_ID_MICRO_MEMORY_5415CN, }, { vendor: PCI_VENDOR_ID_MICRO_MEMORY, device: PCI_DEVICE_ID_MICRO_MEMORY_5425CN, }, { .vendor = PCI_VENDOR_ID_MICRO_MEMORY, .device = PCI_DEVICE_ID_MICRO_MEMORY_6155, }, { .vendor = 0x8086, .device = 0xB555, .subvendor= 0x1332, .subdevice= 0x5460, .class = 0x050000, .class_mask= 0, }, { /* end: all zeroes */ } }; MODULE_DEVICE_TABLE(pci, mm_pci_ids); static struct pci_driver mm_pci_driver = { name: "umem", id_table: mm_pci_ids, probe: mm_pci_probe, remove: mm_pci_remove, }; /* ----------------------------------------------------------------------------------- -- mm_init ----------------------------------------------------------------------------------- */ int __init mm_init(void) { int retval, i; int err; printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n"); memset (cards, 0, MM_MAXCARDS * sizeof(struct cardinfo)); memset (mm_sizes, 0, (MM_MAXCARDS << MM_SHIFT) * sizeof (int)); memset (mm_partitions, 0, (MM_MAXCARDS << MM_SHIFT) * sizeof(struct hd_struct)); retval = pci_module_init(&mm_pci_driver); if (retval) return -ENOMEM; err = devfs_register_blkdev(MAJOR_NR, "umem", &mm_fops); if (err < 0) { printk(KERN_ERR "MM: Could not register block device\n"); return -EIO; } devfs_handle = devfs_mk_dir(NULL, "umem", NULL); read_ahead[MAJOR_NR] = MM_RAHEAD; /* Initialize partition size: partion 0 of each card is the entire card */ for (i = 0; i < num_cards; i++) { mm_sizes[i << MM_SHIFT] = cards[i].mm_size; } mm_gendisk.sizes = mm_sizes; for (i = 0; i < num_cards; i++) { spin_lock_init(&cards[i].lock); mm_partitions[i << MM_SHIFT].nr_sects = cards[i].mm_size * (1024 / MM_HARDSECT); } mm_gendisk.part = mm_partitions; mm_gendisk.nr_real = num_cards; add_gendisk(&mm_gendisk); blk_queue_make_request(BLK_DEFAULT_QUEUE(MAJOR_NR), mm_make_request); for (i = 0; i < num_cards << MM_SHIFT; i++) { mm_hardsect[i] = MM_HARDSECT; mm_blocksizes[i] = MM_BLKSIZE; } hardsect_size[MAJOR_NR] = mm_hardsect; blksize_size[MAJOR_NR] = mm_blocksizes; blk_size[MAJOR_NR] = mm_gendisk.sizes; for (i = 0; i < num_cards; i++) { register_disk(&mm_gendisk, MKDEV(MAJOR_NR, i<