/* * Driver for the SWIM3 (Super Woz Integrated Machine 3) * floppy controller found on Power Macintoshes. * * Copyright (C) 1996-2003 Paul Mackerras. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * TODO: * handle 2 drives * handle GCR disks */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAJOR_NR FLOPPY_MAJOR #include #include static int floppy_blocksizes[2] = {512,512}; static int floppy_sizes[2] = {1440,1440}; #define MAX_FLOPPIES 2 enum swim_state { idle, locating, seeking, settling, do_transfer, jogging, available, revalidating, ejecting }; #define REG(x) unsigned char x; char x ## _pad[15]; /* * The names for these registers mostly represent speculation on my part. * It will be interesting to see how close they are to the names Apple uses. */ struct swim3 { REG(data); REG(timer); /* counts down at 1MHz */ REG(error); REG(mode); REG(select); /* controls CA0, CA1, CA2 and LSTRB signals */ REG(setup); REG(control); /* writing bits clears them */ REG(status); /* writing bits sets them in control */ REG(intr); REG(nseek); /* # tracks to seek */ REG(ctrack); /* current track number */ REG(csect); /* current sector number */ REG(gap3); /* size of gap 3 in track format */ REG(sector); /* sector # to read or write */ REG(nsect); /* # sectors to read or write */ REG(intr_enable); }; #define control_bic control #define control_bis status /* Bits in select register */ #define CA_MASK 7 #define LSTRB 8 /* Bits in control register */ #define DO_SEEK 0x80 #define FORMAT 0x40 #define SELECT 0x20 #define WRITE_SECTORS 0x10 #define DO_ACTION 0x08 #define DRIVE2_ENABLE 0x04 #define DRIVE_ENABLE 0x02 #define INTR_ENABLE 0x01 /* Bits in status register */ #define FIFO_1BYTE 0x80 #define FIFO_2BYTE 0x40 #define ERROR 0x20 #define DATA 0x08 #define RDDATA 0x04 #define INTR_PENDING 0x02 #define MARK_BYTE 0x01 /* Bits in intr and intr_enable registers */ #define ERROR_INTR 0x20 #define DATA_CHANGED 0x10 #define TRANSFER_DONE 0x08 #define SEEN_SECTOR 0x04 #define SEEK_DONE 0x02 #define TIMER_DONE 0x01 /* Bits in error register */ #define ERR_DATA_CRC 0x80 #define ERR_ADDR_CRC 0x40 #define ERR_OVERRUN 0x04 #define ERR_UNDERRUN 0x01 /* Bits in setup register */ #define S_SW_RESET 0x80 #define S_GCR_WRITE 0x40 #define S_IBM_DRIVE 0x20 #define S_TEST_MODE 0x10 #define S_FCLK_DIV2 0x08 #define S_GCR 0x04 #define S_COPY_PROT 0x02 #define S_INV_WDATA 0x01 /* Select values for swim3_action */ #define SEEK_POSITIVE 0 #define SEEK_NEGATIVE 4 #define STEP 1 #define MOTOR_ON 2 #define MOTOR_OFF 6 #define INDEX 3 #define EJECT 7 #define SETMFM 9 #define SETGCR 13 /* Select values for swim3_select and swim3_readbit */ #define STEP_DIR 0 #define STEPPING 1 #define MOTOR_ON 2 #define RELAX 3 /* also eject in progress */ #define READ_DATA_0 4 #define TWOMEG_DRIVE 5 #define SINGLE_SIDED 6 /* drive or diskette is 4MB type? */ #define DRIVE_PRESENT 7 #define DISK_IN 8 #define WRITE_PROT 9 #define TRACK_ZERO 10 #define TACHO 11 #define READ_DATA_1 12 #define MFM_MODE 13 #define SEEK_COMPLETE 14 #define ONEMEG_MEDIA 15 /* Definitions of values used in writing and formatting */ #define DATA_ESCAPE 0x99 #define GCR_SYNC_EXC 0x3f #define GCR_SYNC_CONV 0x80 #define GCR_FIRST_MARK 0xd5 #define GCR_SECOND_MARK 0xaa #define GCR_ADDR_MARK "\xd5\xaa\x00" #define GCR_DATA_MARK "\xd5\xaa\x0b" #define GCR_SLIP_BYTE "\x27\xaa" #define GCR_SELF_SYNC "\x3f\xbf\x1e\x34\x3c\x3f" #define DATA_99 "\x99\x99" #define MFM_ADDR_MARK "\x99\xa1\x99\xa1\x99\xa1\x99\xfe" #define MFM_INDEX_MARK "\x99\xc2\x99\xc2\x99\xc2\x99\xfc" #define MFM_GAP_LEN 12 struct floppy_state { enum swim_state state; volatile struct swim3 *swim3; /* hardware registers */ struct dbdma_regs *dma; /* DMA controller registers */ int swim3_intr; /* interrupt number for SWIM3 */ int dma_intr; /* interrupt number for DMA channel */ int cur_cyl; /* cylinder head is on, or -1 */ int cur_sector; /* last sector we saw go past */ int req_cyl; /* the cylinder for the current r/w request */ int head; /* head number ditto */ int req_sector; /* sector number ditto */ int scount; /* # sectors we're transferring at present */ int retries; int settle_time; int secpercyl; /* disk geometry information */ int secpertrack; int total_secs; int write_prot; /* 1 if write-protected, 0 if not, -1 dunno */ struct dbdma_cmd *dma_cmd; int ref_count; int expect_cyl; struct timer_list timeout; int timeout_pending; int ejected; wait_queue_head_t wait; int wanted; struct device_node* media_bay; /* NULL when not in bay */ char dbdma_cmd_space[5 * sizeof(struct dbdma_cmd)]; }; static struct floppy_state floppy_states[MAX_FLOPPIES]; static int floppy_count = 0; static unsigned short write_preamble[] = { 0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, /* gap field */ 0, 0, 0, 0, 0, 0, /* sync field */ 0x99a1, 0x99a1, 0x99a1, 0x99fb, /* data address mark */ 0x990f /* no escape for 512 bytes */ }; static unsigned short write_postamble[] = { 0x9904, /* insert CRC */ 0x4e4e, 0x4e4e, 0x9908, /* stop writing */ 0, 0, 0, 0, 0, 0 }; static void swim3_select(struct floppy_state *fs, int sel); static void swim3_action(struct floppy_state *fs, int action); static int swim3_readbit(struct floppy_state *fs, int bit); static void do_fd_request(request_queue_t * q); static void start_request(struct floppy_state *fs); static void set_timeout(struct floppy_state *fs, int nticks, void (*proc)(unsigned long)); static void scan_track(struct floppy_state *fs); static void seek_track(struct floppy_state *fs, int n); static void init_dma(struct dbdma_cmd *cp, int cmd, void *buf, int count); static void setup_transfer(struct floppy_state *fs); static void act(struct floppy_state *fs); static void scan_timeout(unsigned long data); static void seek_timeout(unsigned long data); static void settle_timeout(unsigned long data); static void xfer_timeout(unsigned long data); static void swim3_interrupt(int irq, void *dev_id, struct pt_regs *regs); /*static void fd_dma_interrupt(int irq, void *dev_id, struct pt_regs *regs);*/ static int grab_drive(struct floppy_state *fs, enum swim_state state, int interruptible); static void release_drive(struct floppy_state *fs); static int fd_eject(struct floppy_state *fs); static int floppy_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long param); static int floppy_open(struct inode *inode, struct file *filp); static int floppy_release(struct inode *inode, struct file *filp); static int floppy_check_change(kdev_t dev); static int floppy_revalidate(kdev_t dev); static int swim3_add_device(struct device_node *swims); int swim3_init(void); #ifndef CONFIG_PMAC_PBOOK #define check_media_bay(which, what) 1 #endif static void swim3_select(struct floppy_state *fs, int sel) { volatile struct swim3 *sw = fs->swim3; out_8(&sw->select, RELAX); if (sel & 8) out_8(&sw->control_bis, SELECT); else out_8(&sw->control_bic, SELECT); out_8(&sw->select, sel & CA_MASK); } static void swim3_action(struct floppy_state *fs, int action) { volatile struct swim3 *sw = fs->swim3; swim3_select(fs, action); udelay(1); out_8(&sw->select, sw->select | LSTRB); udelay(2); out_8(&sw->select, sw->select & ~LSTRB); udelay(1); } static int swim3_readbit(struct floppy_state *fs, int bit) { volatile struct swim3 *sw = fs->swim3; int stat; swim3_select(fs, bit); udelay(1); stat = in_8(&sw->status); return (stat & DATA) == 0; } static void do_fd_request(request_queue_t * q) { int i; for(i=0;istate == idle && fs->wanted) { fs->state = available; wake_up(&fs->wait); return; } while (!QUEUE_EMPTY && fs->state == idle) { if (MAJOR(CURRENT->rq_dev) != MAJOR_NR) panic(DEVICE_NAME ": request list destroyed"); if (CURRENT->bh && !buffer_locked(CURRENT->bh)) panic(DEVICE_NAME ": block not locked"); #if 0 printk("do_fd_req: dev=%x cmd=%d sec=%ld nr_sec=%ld buf=%p\n", kdev_t_to_nr(CURRENT->rq_dev), CURRENT->cmd, CURRENT->sector, CURRENT->nr_sectors, CURRENT->buffer); printk(" rq_status=%d errors=%d current_nr_sectors=%ld\n", CURRENT->rq_status, CURRENT->errors, CURRENT->current_nr_sectors); #endif if (CURRENT->sector < 0 || CURRENT->sector >= fs->total_secs) { end_request(0); continue; } if (CURRENT->current_nr_sectors == 0) { end_request(1); continue; } if (fs->ejected) { end_request(0); continue; } if (CURRENT->cmd == WRITE) { if (fs->write_prot < 0) fs->write_prot = swim3_readbit(fs, WRITE_PROT); if (fs->write_prot) { end_request(0); continue; } } fs->req_cyl = CURRENT->sector / fs->secpercyl; x = CURRENT->sector % fs->secpercyl; fs->head = x / fs->secpertrack; fs->req_sector = x % fs->secpertrack + 1; fs->state = do_transfer; fs->retries = 0; act(fs); } } static void set_timeout(struct floppy_state *fs, int nticks, void (*proc)(unsigned long)) { unsigned long flags; save_flags(flags); cli(); if (fs->timeout_pending) del_timer(&fs->timeout); fs->timeout.expires = jiffies + nticks; fs->timeout.function = proc; fs->timeout.data = (unsigned long) fs; add_timer(&fs->timeout); fs->timeout_pending = 1; restore_flags(flags); } static inline void scan_track(struct floppy_state *fs) { volatile struct swim3 *sw = fs->swim3; swim3_select(fs, READ_DATA_0); in_8(&sw->intr); /* clear SEEN_SECTOR bit */ in_8(&sw->error); out_8(&sw->intr_enable, SEEN_SECTOR); out_8(&sw->control_bis, DO_ACTION); /* enable intr when track found */ set_timeout(fs, HZ, scan_timeout); /* enable timeout */ } static inline void seek_track(struct floppy_state *fs, int n) { volatile struct swim3 *sw = fs->swim3; if (n >= 0) { swim3_action(fs, SEEK_POSITIVE); sw->nseek = n; } else { swim3_action(fs, SEEK_NEGATIVE); sw->nseek = -n; } fs->expect_cyl = (fs->cur_cyl >= 0)? fs->cur_cyl + n: -1; swim3_select(fs, STEP); in_8(&sw->error); /* enable intr when seek finished */ out_8(&sw->intr_enable, SEEK_DONE); out_8(&sw->control_bis, DO_SEEK); set_timeout(fs, 3*HZ, seek_timeout); /* enable timeout */ fs->settle_time = 0; } static inline void init_dma(struct dbdma_cmd *cp, int cmd, void *buf, int count) { st_le16(&cp->req_count, count); st_le16(&cp->command, cmd); st_le32(&cp->phy_addr, virt_to_bus(buf)); cp->xfer_status = 0; } static inline void setup_transfer(struct floppy_state *fs) { int n; volatile struct swim3 *sw = fs->swim3; struct dbdma_cmd *cp = fs->dma_cmd; struct dbdma_regs *dr = fs->dma; if (CURRENT->current_nr_sectors <= 0) { printk(KERN_ERR "swim3: transfer 0 sectors?\n"); return; } if (CURRENT->cmd == WRITE) n = 1; else { n = fs->secpertrack - fs->req_sector + 1; if (n > CURRENT->current_nr_sectors) n = CURRENT->current_nr_sectors; } fs->scount = n; swim3_select(fs, fs->head? READ_DATA_1: READ_DATA_0); out_8(&sw->sector, fs->req_sector); out_8(&sw->nsect, n); out_8(&sw->gap3, 0); st_le32(&dr->cmdptr, virt_to_bus(cp)); if (CURRENT->cmd == WRITE) { /* Set up 3 dma commands: write preamble, data, postamble */ init_dma(cp, OUTPUT_MORE, write_preamble, sizeof(write_preamble)); ++cp; init_dma(cp, OUTPUT_MORE, CURRENT->buffer, 512); ++cp; init_dma(cp, OUTPUT_LAST, write_postamble, sizeof(write_postamble)); } else { init_dma(cp, INPUT_LAST, CURRENT->buffer, n * 512); } ++cp; out_le16(&cp->command, DBDMA_STOP); out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS); in_8(&sw->error); out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS); if (CURRENT->cmd == WRITE) out_8(&sw->control_bis, WRITE_SECTORS); in_8(&sw->intr); out_le32(&dr->control, (RUN << 16) | RUN); /* enable intr when transfer complete */ out_8(&sw->intr_enable, TRANSFER_DONE); out_8(&sw->control_bis, DO_ACTION); set_timeout(fs, 2*HZ, xfer_timeout); /* enable timeout */ } static void act(struct floppy_state *fs) { for (;;) { switch (fs->state) { case idle: return; /* XXX shouldn't get here */ case locating: if (swim3_readbit(fs, TRACK_ZERO)) { fs->cur_cyl = 0; if (fs->req_cyl == 0) fs->state = do_transfer; else fs->state = seeking; break; } scan_track(fs); return; case seeking: if (fs->cur_cyl < 0) { fs->expect_cyl = -1; fs->state = locating; break; } if (fs->req_cyl == fs->cur_cyl) { printk("whoops, seeking 0\n"); fs->state = do_transfer; break; } seek_track(fs, fs->req_cyl - fs->cur_cyl); return; case settling: /* check for SEEK_COMPLETE after 30ms */ fs->settle_time = (HZ + 32) / 33; set_timeout(fs, fs->settle_time, settle_timeout); return; case do_transfer: if (fs->cur_cyl != fs->req_cyl) { if (fs->retries > 5) { end_request(0); fs->state = idle; return; } fs->state = seeking; break; } setup_transfer(fs); return; case jogging: seek_track(fs, -5); return; default: printk(KERN_ERR"swim3: unknown state %d\n", fs->state); return; } } } static void scan_timeout(unsigned long data) { struct floppy_state *fs = (struct floppy_state *) data; volatile struct swim3 *sw = fs->swim3; fs->timeout_pending = 0; out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS); out_8(&sw->select, RELAX); out_8(&sw->intr_enable, 0); fs->cur_cyl = -1; if (fs->retries > 5) { end_request(0); fs->state = idle; start_request(fs); } else { fs->state = jogging; act(fs); } } static void seek_timeout(unsigned long data) { struct floppy_state *fs = (struct floppy_state *) data; volatile struct swim3 *sw = fs->swim3; fs->timeout_pending = 0; out_8(&sw->control_bic, DO_SEEK); out_8(&sw->select, RELAX); out_8(&sw->intr_enable, 0); printk(KERN_ERR "swim3: seek timeout\n"); end_request(0); fs->state = idle; start_request(fs); } static void settle_timeout(unsigned long data) { struct floppy_state *fs = (struct floppy_state *) data; volatile struct swim3 *sw = fs->swim3; fs->timeout_pending = 0; if (swim3_readbit(fs, SEEK_COMPLETE)) { out_8(&sw->select, RELAX); fs->state = locating; act(fs); return; } out_8(&sw->select, RELAX); if (fs->settle_time < 2*HZ) { ++fs->settle_time; set_timeout(fs, 1, settle_timeout); return; } printk(KERN_ERR "swim3: seek settle timeout\n"); end_request(0); fs->state = idle; start_request(fs); } static void xfer_timeout(unsigned long data) { struct floppy_state *fs = (struct floppy_state *) data; volatile struct swim3 *sw = fs->swim3; struct dbdma_regs *dr = fs->dma; struct dbdma_cmd *cp = fs->dma_cmd; unsigned long s; int n; fs->timeout_pending = 0; st_le32(&dr->control, RUN << 16); /* We must wait a bit for dbdma to stop */ for (n = 0; (in_le32(&dr->status) & ACTIVE) && n < 1000; n++) udelay(1); out_8(&sw->intr_enable, 0); out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION); out_8(&sw->select, RELAX); if (CURRENT->cmd == WRITE) ++cp; if (ld_le16(&cp->xfer_status) != 0) s = fs->scount - ((ld_le16(&cp->res_count) + 511) >> 9); else s = 0; CURRENT->sector += s; CURRENT->current_nr_sectors -= s; printk(KERN_ERR "swim3: timeout %sing sector %ld\n", (CURRENT->cmd==WRITE? "writ": "read"), CURRENT->sector); end_request(0); fs->state = idle; start_request(fs); } static void swim3_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct floppy_state *fs = (struct floppy_state *) dev_id; volatile struct swim3 *sw = fs->swim3; int intr, err, n; int stat, resid; struct dbdma_regs *dr; struct dbdma_cmd *cp; intr = in_8(&sw->intr); err = (intr & ERROR_INTR)? in_8(&sw->error): 0; if ((intr & ERROR_INTR) && fs->state != do_transfer) printk(KERN_ERR "swim3_interrupt, state=%d, cmd=%x, intr=%x, err=%x\n", fs->state, CURRENT->cmd, intr, err); switch (fs->state) { case locating: if (intr & SEEN_SECTOR) { out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS); out_8(&sw->select, RELAX); out_8(&sw->intr_enable, 0); del_timer(&fs->timeout); fs->timeout_pending = 0; if (sw->ctrack == 0xff) { printk(KERN_ERR "swim3: seen sector but cyl=ff?\n"); fs->cur_cyl = -1; if (fs->retries > 5) { end_request(0); fs->state = idle; start_request(fs); } else { fs->state = jogging; act(fs); } break; } fs->cur_cyl = sw->ctrack; fs->cur_sector = sw->csect; if (fs->expect_cyl != -1 && fs->expect_cyl != fs->cur_cyl) printk(KERN_ERR "swim3: expected cyl %d, got %d\n", fs->expect_cyl, fs->cur_cyl); fs->state = do_transfer; act(fs); } break; case seeking: case jogging: if (sw->nseek == 0) { out_8(&sw->control_bic, DO_SEEK); out_8(&sw->select, RELAX); out_8(&sw->intr_enable, 0); del_timer(&fs->timeout); fs->timeout_pending = 0; if (fs->state == seeking) ++fs->retries; fs->state = settling; act(fs); } break; case settling: out_8(&sw->intr_enable, 0); del_timer(&fs->timeout); fs->timeout_pending = 0; act(fs); break; case do_transfer: if ((intr & (ERROR_INTR | TRANSFER_DONE)) == 0) break; out_8(&sw->intr_enable, 0); out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION); out_8(&sw->select, RELAX); del_timer(&fs->timeout); fs->timeout_pending = 0; dr = fs->dma; cp = fs->dma_cmd; if (CURRENT->cmd == WRITE) ++cp; /* * Check that the main data transfer has finished. * On writing, the swim3 sometimes doesn't use * up all the bytes of the postamble, so we can still * see DMA active here. That doesn't matter as long * as all the sector data has been transferred. */ if ((intr & ERROR_INTR) == 0 && cp->xfer_status == 0) { /* wait a little while for DMA to complete */ for (n = 0; n < 100; ++n) { if (cp->xfer_status != 0) break; udelay(1); barrier(); } } /* turn off DMA */ out_le32(&dr->control, (RUN | PAUSE) << 16); stat = ld_le16(&cp->xfer_status); resid = ld_le16(&cp->res_count); if (intr & ERROR_INTR) { n = fs->scount - 1 - resid / 512; if (n > 0) { CURRENT->sector += n; CURRENT->current_nr_sectors -= n; CURRENT->buffer += n * 512; fs->req_sector += n; } if (fs->retries < 5) { ++fs->retries; act(fs); } else { printk("swim3: error %sing block %ld (err=%x)\n", CURRENT->cmd == WRITE? "writ": "read", CURRENT->sector, err); end_request(0); fs->state = idle; } } else { if ((stat & ACTIVE) == 0 || resid != 0) { /* musta been an error */ printk(KERN_ERR "swim3: fd dma: stat=%x resid=%d\n", stat, resid); printk(KERN_ERR " state=%d, cmd=%x, intr=%x, err=%x\n", fs->state, CURRENT->cmd, intr, err); end_request(0); fs->state = idle; start_request(fs); break; } CURRENT->sector += fs->scount; CURRENT->current_nr_sectors -= fs->scount; CURRENT->buffer += fs->scount * 512; if (CURRENT->current_nr_sectors <= 0) { end_request(1); fs->state = idle; } else { fs->req_sector += fs->scount; if (fs->req_sector > fs->secpertrack) { fs->req_sector -= fs->secpertrack; if (++fs->head > 1) { fs->head = 0; ++fs->req_cyl; } } act(fs); } } if (fs->state == idle) start_request(fs); break; default: printk(KERN_ERR "swim3: don't know what to do in state %d\n", fs->state); } } /* static void fd_dma_interrupt(int irq, void *dev_id, struct pt_regs *regs) { } */ static int grab_drive(struct floppy_state *fs, enum swim_state state, int interruptible) { unsigned long flags; save_flags(flags); cli(); if (fs->state != idle) { ++fs->wanted; while (fs->state != available) { if (interruptible && signal_pending(current)) { --fs->wanted; restore_flags(flags); return -EINTR; } interruptible_sleep_on(&fs->wait); } --fs->wanted; } fs->state = state; restore_flags(flags); return 0; } static void release_drive(struct floppy_state *fs) { unsigned long flags; save_flags(flags); cli(); fs->state = idle; start_request(fs); restore_flags(flags); } static int fd_eject(struct floppy_state *fs) { int err, n; err = grab_drive(fs, ejecting, 1); if (err) return err; swim3_action(fs, EJECT); for (n = 20; n > 0; --n) { if (signal_pending(current)) { err = -EINTR; break; } swim3_select(fs, RELAX); current->state = TASK_INTERRUPTIBLE; schedule_timeout(1); if (swim3_readbit(fs, DISK_IN) == 0) break; } swim3_select(fs, RELAX); udelay(150); fs->ejected = 1; release_drive(fs); return err; } static struct floppy_struct floppy_type = { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,NULL }; /* 7 1.44MB 3.5" */ static int floppy_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long param) { struct floppy_state *fs; int err; int devnum = MINOR(inode->i_rdev); if (devnum >= floppy_count) return -ENODEV; if ((cmd & 0x80) && !suser()) return -EPERM; fs = &floppy_states[devnum]; if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD)) return -ENXIO; switch (cmd) { case FDEJECT: if (fs->ref_count != 1) return -EBUSY; err = fd_eject(fs); return err; case FDGETPRM: if (copy_to_user((void *) param, (void *)&floppy_type, sizeof(struct floppy_struct))) return -EFAULT; return 0; } return -ENOTTY; } static int floppy_open(struct inode *inode, struct file *filp) { struct floppy_state *fs; volatile struct swim3 *sw; int n, err; int devnum = MINOR(inode->i_rdev); if (devnum >= floppy_count) return -ENODEV; if (filp == 0) return -EIO; fs = &floppy_states[devnum]; sw = fs->swim3; err = 0; if (fs->ref_count == 0) { if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD)) return -ENXIO; out_8(&sw->setup, S_IBM_DRIVE | S_FCLK_DIV2); out_8(&sw->control_bic, 0xff); out_8(&sw->mode, 0x95); udelay(10); out_8(&sw->intr_enable, 0); out_8(&sw->control_bis, DRIVE_ENABLE | INTR_ENABLE); swim3_action(fs, MOTOR_ON); fs->write_prot = -1; fs->cur_cyl = -1; for (n = 0; n < 2 * HZ; ++n) { if (n >= HZ/30 && swim3_readbit(fs, SEEK_COMPLETE)) break; if (signal_pending(current)) { err = -EINTR; break; } swim3_select(fs, RELAX); current->state = TASK_INTERRUPTIBLE; schedule_timeout(1); } if (err == 0 && (swim3_readbit(fs, SEEK_COMPLETE) == 0 || swim3_readbit(fs, DISK_IN) == 0)) err = -ENXIO; swim3_action(fs, SETMFM); swim3_select(fs, RELAX); } else if (fs->ref_count == -1 || filp->f_flags & O_EXCL) return -EBUSY; if (err == 0 && (filp->f_flags & O_NDELAY) == 0 && (filp->f_mode & 3)) { check_disk_change(inode->i_rdev); if (fs->ejected) err = -ENXIO; } if (err == 0 && (filp->f_mode & 2)) { if (fs->write_prot < 0) fs->write_prot = swim3_readbit(fs, WRITE_PROT); if (fs->write_prot) err = -EROFS; } if (err) { if (fs->ref_count == 0) { swim3_action(fs, MOTOR_OFF); out_8(&sw->control_bic, DRIVE_ENABLE | INTR_ENABLE); swim3_select(fs, RELAX); } return err; } if (filp->f_flags & O_EXCL) fs->ref_count = -1; else ++fs->ref_count; return 0; } static int floppy_release(struct inode *inode, struct file *filp) { struct floppy_state *fs; volatile struct swim3 *sw; int devnum = MINOR(inode->i_rdev); if (devnum >= floppy_count) return -ENODEV; fs = &floppy_states[devnum]; sw = fs->swim3; if (fs->ref_count > 0 && --fs->ref_count == 0) { swim3_action(fs, MOTOR_OFF); out_8(&sw->control_bic, 0xff); swim3_select(fs, RELAX); } return 0; } static int floppy_check_change(kdev_t dev) { struct floppy_state *fs; int devnum = MINOR(dev); if (MAJOR(dev) != MAJOR_NR || (devnum >= floppy_count)) return 0; fs = &floppy_states[devnum]; return fs->ejected; } static int floppy_revalidate(kdev_t dev) { struct floppy_state *fs; volatile struct swim3 *sw; int ret, n; int devnum = MINOR(dev); if (MAJOR(dev) != MAJOR_NR || (devnum >= floppy_count)) return 0; fs = &floppy_states[devnum]; if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD)) return -ENXIO; sw = fs->swim3; grab_drive(fs, revalidating, 0); out_8(&sw->intr_enable, 0); out_8(&sw->control_bis, DRIVE_ENABLE); swim3_action(fs, MOTOR_ON); /* necessary? */ fs->write_prot = -1; fs->cur_cyl = -1; mdelay(1); for (n = HZ; n > 0; --n) { if (swim3_readbit(fs, SEEK_COMPLETE)) break; if (signal_pending(current)) break; swim3_select(fs, RELAX); current->state = TASK_INTERRUPTIBLE; schedule_timeout(1); } ret = swim3_readbit(fs, SEEK_COMPLETE) == 0 || swim3_readbit(fs, DISK_IN) == 0; if (ret) swim3_action(fs, MOTOR_OFF); else { fs->ejected = 0; swim3_action(fs, SETMFM); } swim3_select(fs, RELAX); release_drive(fs); return ret; } static void floppy_off(unsigned int nr) { } static struct block_device_operations floppy_fops = { open: floppy_open, release: floppy_release, ioctl: floppy_ioctl, check_media_change: floppy_check_change, revalidate: floppy_revalidate, }; static devfs_handle_t floppy_devfs_handle; int swim3_init(void) { struct device_node *swim; floppy_devfs_handle = devfs_mk_dir(NULL, "floppy", NULL); swim = find_devices("floppy"); while (swim && (floppy_count < MAX_FLOPPIES)) { swim3_add_device(swim); swim = swim->next; } swim = find_devices("swim3"); while (swim && (floppy_count < MAX_FLOPPIES)) { swim3_add_device(swim); swim = swim->next; } if (floppy_count > 0) { if (devfs_register_blkdev(MAJOR_NR, "fd", &floppy_fops)) { printk(KERN_ERR "Unable to get major %d for floppy\n", MAJOR_NR); return -EBUSY; } blk_init_queue(BLK_DEFAULT_QUEUE(MAJOR_NR), DEVICE_REQUEST); blksize_size[MAJOR_NR] = floppy_blocksizes; blk_size[MAJOR_NR] = floppy_sizes; } return 0; } static int swim3_add_device(struct device_node *swim) { struct device_node *mediabay; struct floppy_state *fs = &floppy_states[floppy_count]; char floppy_name[16]; devfs_handle_t floppy_handle; if (swim->n_addrs < 2) { printk(KERN_INFO "swim3: expecting 2 addrs (n_addrs:%d, n_intrs:%d)\n", swim->n_addrs, swim->n_intrs); return -EINVAL; } if (swim->n_intrs < 2) { printk(KERN_INFO "swim3: expecting 2 intrs (n_addrs:%d, n_intrs:%d)\n", swim->n_addrs, swim->n_intrs); return -EINVAL; } if (!request_OF_resource(swim, 0, NULL)) { printk(KERN_INFO "swim3: can't request IO resource !\n"); return -EINVAL; } mediabay = (strcasecmp(swim->parent->type, "media-bay") == 0) ? swim->parent : NULL; if (mediabay == NULL) pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 1); memset(fs, 0, sizeof(*fs)); fs->state = idle; fs->swim3 = (volatile struct swim3 *) ioremap(swim->addrs[0].address, 0x200); fs->dma = (struct dbdma_regs *) ioremap(swim->addrs[1].address, 0x200); fs->swim3_intr = swim->intrs[0].line; fs->dma_intr = swim->intrs[1].line; fs->cur_cyl = -1; fs->cur_sector = -1; fs->secpercyl = 36; fs->secpertrack = 18; fs->total_secs = 2880; fs->media_bay = mediabay; init_waitqueue_head(&fs->wait); fs->dma_cmd = (struct dbdma_cmd *) DBDMA_ALIGN(fs->dbdma_cmd_space); memset(fs->dma_cmd, 0, 2 * sizeof(struct dbdma_cmd)); st_le16(&fs->dma_cmd[1].command, DBDMA_STOP); if (request_irq(fs->swim3_intr, swim3_interrupt, 0, "SWIM3", fs)) { printk(KERN_ERR "Couldn't get irq %d for SWIM3\n", fs->swim3_intr); pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 0); return -EBUSY; } /* if (request_irq(fs->dma_intr, fd_dma_interrupt, 0, "SWIM3-dma", fs)) { printk(KERN_ERR "Couldn't get irq %d for SWIM3 DMA", fs->dma_intr); pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 0); return -EBUSY; } */ init_timer(&fs->timeout); do_floppy = NULL; printk(KERN_INFO "fd%d: SWIM3 floppy controller %s\n", floppy_count, mediabay ? "in media bay" : ""); sprintf(floppy_name, "%s%d", floppy_devfs_handle ? "" : "floppy", floppy_count); floppy_handle = devfs_register(floppy_devfs_handle, floppy_name, DEVFS_FL_DEFAULT, MAJOR_NR, floppy_count, S_IFBLK | S_IRUSR | S_IWUSR | S_IRGRP |S_IWGRP, &floppy_fops, NULL); floppy_count++; return 0; }