/* * Disk Array driver for Compaq SMART2 Controllers * Copyright 1998 Compaq Computer Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Questions/Comments/Bugfixes to Cpqarray-discuss@lists.sourceforge.net * */ #include /* CONFIG_PROC_FS */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SMART2_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin)) #define DRIVER_NAME "Compaq SMART2 Driver (v 2.4.28)" #define DRIVER_VERSION SMART2_DRIVER_VERSION(2,4,28) /* Embedded module documentation macros - see modules.h */ /* Original author Chris Frantz - Compaq Computer Corporation */ MODULE_AUTHOR("Compaq Computer Corporation"); MODULE_DESCRIPTION("Driver for Compaq Smart2 Array Controllers version 2.4.28"); MODULE_LICENSE("GPL"); #define MAJOR_NR COMPAQ_SMART2_MAJOR #include #include #include #include "cpqarray.h" #include "ida_cmd.h" #include "smart1,2.h" #include "ida_ioctl.h" #define READ_AHEAD 128 #define NR_CMDS 128 /* This could probably go as high as ~400 */ #define MAX_CTLR 8 #define CPQARRAY_DMA_MASK 0xFFFFFFFF /* 32 bit DMA */ static ctlr_info_t *hba[MAX_CTLR] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; static int eisa[8]; #define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type)) /* board_id = Subsystem Device ID & Vendor ID * product = Marketing Name for the board * access = Address of the struct of function pointers */ static struct board_type products[] = { { 0x0040110E, "IDA", &smart1_access }, { 0x0140110E, "IDA-2", &smart1_access }, { 0x1040110E, "IAES", &smart1_access }, { 0x2040110E, "SMART", &smart1_access }, { 0x3040110E, "SMART-2/E", &smart2e_access }, { 0x40300E11, "SMART-2/P", &smart2_access }, { 0x40310E11, "SMART-2SL", &smart2_access }, { 0x40320E11, "Smart Array 3200", &smart2_access }, { 0x40330E11, "Smart Array 3100ES", &smart2_access }, { 0x40340E11, "Smart Array 221", &smart2_access }, { 0x40400E11, "Integrated Array", &smart4_access }, { 0x40480E11, "Compaq Raid LC2", &smart4_access }, { 0x40500E11, "Smart Array 4200", &smart4_access }, { 0x40510E11, "Smart Array 4250ES", &smart4_access }, { 0x40580E11, "Smart Array 431", &smart4_access }, }; /* define the PCI info for the PCI cards this driver can control */ const struct pci_device_id cpqarray_pci_device_id[] = { { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX, 0x0E11, 0x4058, 0, 0, 0}, /* SA431 */ { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX, 0x0E11, 0x4051, 0, 0, 0}, /* SA4250ES */ { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX, 0x0E11, 0x4050, 0, 0, 0}, /* SA4200 */ { PCI_VENDOR_ID_NCR, PCI_DEVICE_ID_NCR_53C1510, 0x0E11, 0x4048, 0, 0, 0}, /* LC2 */ { PCI_VENDOR_ID_NCR, PCI_DEVICE_ID_NCR_53C1510, 0x0E11, 0x4040, 0, 0, 0}, /* Integrated Array */ { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 0x0E11, 0x4034, 0, 0, 0}, /* SA 221 */ { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 0x0E11, 0x4033, 0, 0, 0}, /* SA 3100ES*/ { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 0x0E11, 0x4032, 0, 0, 0}, /* SA 3200*/ { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 0x0E11, 0x4031, 0, 0, 0}, /* SA 2SL*/ { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 0x0E11, 0x4030, 0, 0, 0}, /* SA 2P */ { 0 } }; MODULE_DEVICE_TABLE(pci, cpqarray_pci_device_id); static struct proc_dir_entry *proc_array; /* Debug... */ #define DBG(s) do { s } while(0) /* Debug (general info)... */ #define DBGINFO(s) do { } while(0) /* Debug Paranoid... */ #define DBGP(s) do { } while(0) /* Debug Extra Paranoid... */ #define DBGPX(s) do { } while(0) int cpqarray_init(void); static int cpqarray_pci_init(ctlr_info_t *c, struct pci_dev *pdev); static void *remap_pci_mem(ulong base, ulong size); static int cpqarray_eisa_detect(void); static int pollcomplete(int ctlr); static void getgeometry(int ctlr); static void start_fwbk(int ctlr); static cmdlist_t * cmd_alloc(ctlr_info_t *h, int get_from_pool); static void cmd_free(ctlr_info_t *h, cmdlist_t *c, int got_from_pool); static void free_hba(int i); static int alloc_cpqarray_hba(void); static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size, unsigned int blk, unsigned int blkcnt, unsigned int log_unit ); static int ida_open(struct inode *inode, struct file *filep); static int ida_release(struct inode *inode, struct file *filep); static int ida_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, unsigned long arg); static int ida_ctlr_ioctl(int ctlr, int dsk, ida_ioctl_t *io); static int ida_ctlr_big_ioctl( int ctlr, int dsk, ida_big_ioctl_t *io); static void do_ida_request(request_queue_t *q); static void start_io(ctlr_info_t *h); static inline void addQ(cmdlist_t **Qptr, cmdlist_t *c); static inline cmdlist_t *removeQ(cmdlist_t **Qptr, cmdlist_t *c); static inline void complete_buffers(struct buffer_head *bh, int ok); static inline void complete_command(cmdlist_t *cmd, int timeout); static void do_ida_intr(int irq, void *dev_id, struct pt_regs * regs); static void ida_timer(unsigned long tdata); static int frevalidate_logvol(kdev_t dev); static int revalidate_logvol(kdev_t dev, int maxusage); static int revalidate_allvol(kdev_t dev); static int deregister_disk(int ctlr, int logvol); static int register_new_disk(int cltr,int logvol); static int cpqarray_register_ctlr(int ctlr, int type); #ifdef CONFIG_PROC_FS static void ida_procinit(int i); static int ida_proc_get_info(char *buffer, char **start, off_t offset, int length, int *eof, void *data); #else static void ida_procinit(int i) {} static int ida_proc_get_info(char *buffer, char **start, off_t offset, int length, int *eof, void *data) { return 0;} #endif static void ida_geninit(int ctlr) { int i,j; drv_info_t *drv; for(i=0; idrv[i]; if (!drv->nr_blks) continue; hba[ctlr]->hd[i<sizes[i<nr_blks; for(j=0; jblocksizes[(i<hardsizes[(i<blk_size; } } hba[ctlr]->gendisk.nr_real = hba[ctlr]->highest_lun +1; } static struct block_device_operations ida_fops = { owner: THIS_MODULE, open: ida_open, release: ida_release, ioctl: ida_ioctl, revalidate: frevalidate_logvol, }; #ifdef CONFIG_PROC_FS /* * Get us a file in /proc/array that says something about each controller. * Create /proc/array if it doesn't exist yet. */ static void __init ida_procinit(int i) { if (proc_array == NULL) { proc_array = proc_mkdir("cpqarray", proc_root_driver); if (!proc_array) return; } create_proc_read_entry(hba[i]->devname, 0, proc_array, ida_proc_get_info, hba[i]); } /* * Report information about this controller. */ static int ida_proc_get_info(char *buffer, char **start, off_t offset, int length, int *eof, void *data) { off_t pos = 0; off_t len = 0; int size, i, ctlr; ctlr_info_t *h = (ctlr_info_t*)data; drv_info_t *drv; #ifdef CPQ_PROC_PRINT_QUEUES cmdlist_t *c; #endif ctlr = h->ctlr; size = sprintf(buffer, "%s: Compaq %s Controller\n" " Board ID: 0x%08lx\n" " Firmware Revision: %c%c%c%c\n" " Controller Sig: 0x%08lx\n" " Memory Address: 0x%08lx\n" " I/O Port: 0x%04x\n" " IRQ: %d\n" " Logical drives: %d\n" " Highest Logical ID: %d\n" " Physical drives: %d\n\n" " Current Q depth: %d\n" " Max Q depth since init: %d\n\n", h->devname, h->product_name, (unsigned long)h->board_id, h->firm_rev[0], h->firm_rev[1], h->firm_rev[2], h->firm_rev[3], (unsigned long)h->ctlr_sig, (unsigned long)h->vaddr, (unsigned int) h->io_mem_addr, (unsigned int)h->intr, h->log_drives, h->highest_lun, h->phys_drives, h->Qdepth, h->maxQsinceinit); pos += size; len += size; size = sprintf(buffer+len, "Logical Drive Info:\n"); pos += size; len += size; for(i=0; i<=h->highest_lun; i++) { drv = &h->drv[i]; if(drv->nr_blks != 0) { size = sprintf(buffer+len, "ida/c%dd%d: blksz=%d nr_blks=%d\n", ctlr, i, drv->blk_size, drv->nr_blks); pos += size; len += size; } } #ifdef CPQ_PROC_PRINT_QUEUES size = sprintf(buffer+len, "\nCurrent Queues:\n"); pos += size; len += size; c = h->reqQ; size = sprintf(buffer+len, "reqQ = %p", c); pos += size; len += size; if (c) c=c->next; while(c && c != h->reqQ) { size = sprintf(buffer+len, "->%p", c); pos += size; len += size; c=c->next; } c = h->cmpQ; size = sprintf(buffer+len, "\ncmpQ = %p", c); pos += size; len += size; if (c) c=c->next; while(c && c != h->cmpQ) { size = sprintf(buffer+len, "->%p", c); pos += size; len += size; c=c->next; } size = sprintf(buffer+len, "\n"); pos += size; len += size; #endif size = sprintf(buffer+len, "nr_allocs = %d\nnr_frees = %d\n", h->nr_allocs, h->nr_frees); pos += size; len += size; *eof = 1; *start = buffer+offset; len -= offset; if (len>length) len = length; return len; } #endif /* CONFIG_PROC_FS */ MODULE_PARM(eisa, "1-8i"); EXPORT_NO_SYMBOLS; /* This is a bit of a hack... */ int __init init_cpqarray_module(void) { if (cpqarray_init() == 0) /* all the block dev numbers already used */ return -ENODEV; /* or no controllers were found */ return 0; } static void release_io_mem(ctlr_info_t *c) { /* if IO mem was not protected do nothing */ if( c->io_mem_addr == 0) return; release_region(c->io_mem_addr, c->io_mem_length); c->io_mem_addr = 0; c->io_mem_length = 0; } static void __devexit cpqarray_remove_one (struct pci_dev *pdev) { int i; ctlr_info_t *tmp_ptr; char buff[4]; tmp_ptr = pci_get_drvdata(pdev); if (tmp_ptr == NULL) { printk( KERN_ERR "cpqarray: Unable to remove device \n"); return; } i = tmp_ptr->ctlr; if (hba[i] == NULL) { printk(KERN_ERR "cpqarray: device appears to " "already be removed \n"); return; } /* sendcmd will turn off interrupt, and send the flush... * To write all data in the battery backed cache to disks */ memset(buff, 0 , 4); if( sendcmd(FLUSH_CACHE, i, buff, 4, 0, 0, 0)) { printk(KERN_WARNING "Unable to flush cache on controller %d\n", i); } free_irq(hba[i]->intr, hba[i]); pci_set_drvdata(pdev, NULL); /* remove it from the disk list */ del_gendisk(&(hba[i]->gendisk)); iounmap(hba[i]->vaddr); unregister_blkdev(MAJOR_NR+i, hba[i]->devname); del_timer(&hba[i]->timer); blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR + i)); remove_proc_entry(hba[i]->devname, proc_array); pci_free_consistent(hba[i]->pci_dev, NR_CMDS * sizeof(cmdlist_t), (hba[i]->cmd_pool), hba[i]->cmd_pool_dhandle); kfree(hba[i]->cmd_pool_bits); release_io_mem(hba[i]); free_hba(i); } /* removing an instance that was not removed automatically.. * must be an eisa card. */ static void __devexit cpqarray_remove_one_eisa (int i) { char buff[4]; if (hba[i] == NULL) { printk(KERN_ERR "cpqarray: device appears to " "already be removed \n"); return; } /* sendcmd will turn off interrupt, and send the flush... * To write all data in the battery backed cache to disks * no data returned, but don't want to send NULL to sendcmd */ if( sendcmd(FLUSH_CACHE, i, buff, 4, 0, 0, 0)) { printk(KERN_WARNING "Unable to flush cache on controller %d\n", i); } free_irq(hba[i]->intr, hba[i]); /* remove it from the disk list */ del_gendisk(&(hba[i]->gendisk)); iounmap(hba[i]->vaddr); unregister_blkdev(MAJOR_NR+i, hba[i]->devname); del_timer(&hba[i]->timer); blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR + i)); remove_proc_entry(hba[i]->devname, proc_array); pci_free_consistent(hba[i]->pci_dev, NR_CMDS * sizeof(cmdlist_t), (hba[i]->cmd_pool), hba[i]->cmd_pool_dhandle); kfree(hba[i]->cmd_pool_bits); release_io_mem(hba[i]); free_hba(i); } static inline int cpq_new_segment(request_queue_t *q, struct request *rq, int max_segments) { if (rq->nr_segments < SG_MAX) { rq->nr_segments++; return 1; } return 0; } static int cpq_back_merge_fn(request_queue_t *q, struct request *rq, struct buffer_head *bh, int max_segments) { if (blk_seg_merge_ok(rq->bhtail, bh)) return 1; return cpq_new_segment(q, rq, max_segments); } static int cpq_front_merge_fn(request_queue_t *q, struct request *rq, struct buffer_head *bh, int max_segments) { if (blk_seg_merge_ok(bh, rq->bh)) return 1; return cpq_new_segment(q, rq, max_segments); } static int cpq_merge_requests_fn(request_queue_t *q, struct request *rq, struct request *nxt, int max_segments) { int total_segments = rq->nr_segments + nxt->nr_segments; if (blk_seg_merge_ok(rq->bhtail, nxt->bh)) total_segments--; if (total_segments > SG_MAX) return 0; rq->nr_segments = total_segments; return 1; } static int cpqarray_register_ctlr(int ctlr, int type) { request_queue_t *q; int j; /* * register block devices * Find disks and fill in structs * Get an interrupt, set the Q depth and get into /proc */ /* If this successful it should insure that we are the only */ /* instance of the driver for this card */ if (register_blkdev(MAJOR_NR+ctlr, hba[ctlr]->devname, &ida_fops)) { printk(KERN_ERR "cpqarray: Unable to get major number %d\n", MAJOR_NR+ctlr); goto err_out; } hba[ctlr]->access.set_intr_mask(hba[ctlr], 0); if (request_irq(hba[ctlr]->intr, do_ida_intr, SA_INTERRUPT|SA_SHIRQ|SA_SAMPLE_RANDOM, hba[ctlr]->devname, hba[ctlr])) { printk(KERN_ERR "cpqarray: Unable to get irq %d for %s\n", hba[ctlr]->intr, hba[ctlr]->devname); unregister_blkdev(MAJOR_NR+ctlr, hba[ctlr]->devname); goto err_out; } hba[ctlr]->cmd_pool = (cmdlist_t *)pci_alloc_consistent( hba[ctlr]->pci_dev, NR_CMDS * sizeof(cmdlist_t), &(hba[ctlr]->cmd_pool_dhandle)); hba[ctlr]->cmd_pool_bits = (__u32*)kmalloc( ((NR_CMDS+31)/32)*sizeof(__u32), GFP_KERNEL); if (hba[ctlr]->cmd_pool_bits == NULL || hba[ctlr]->cmd_pool == NULL) { if (hba[ctlr]->cmd_pool_bits) kfree(hba[ctlr]->cmd_pool_bits); if (hba[ctlr]->cmd_pool) pci_free_consistent(hba[ctlr]->pci_dev, NR_CMDS * sizeof(cmdlist_t), hba[ctlr]->cmd_pool, hba[ctlr]->cmd_pool_dhandle); free_irq(hba[ctlr]->intr, hba[ctlr]); unregister_blkdev(MAJOR_NR+ctlr, hba[ctlr]->devname); printk( KERN_ERR "cpqarray: out of memory"); goto err_out; } memset(hba[ctlr]->cmd_pool, 0, NR_CMDS * sizeof(cmdlist_t)); memset(hba[ctlr]->cmd_pool_bits, 0, ((NR_CMDS+31)/32)*sizeof(__u32)); printk(KERN_INFO "cpqarray: Finding drives on %s", hba[ctlr]->devname); getgeometry(ctlr); start_fwbk(ctlr); hba[ctlr]->access.set_intr_mask(hba[ctlr], FIFO_NOT_EMPTY); ida_procinit(ctlr); q = BLK_DEFAULT_QUEUE(MAJOR_NR + ctlr); q->queuedata = hba[ctlr]; blk_init_queue(q, do_ida_request); if (type) blk_queue_bounce_limit(q, hba[ctlr]->pci_dev->dma_mask); blk_queue_headactive(q, 0); blksize_size[MAJOR_NR+ctlr] = hba[ctlr]->blocksizes; hardsect_size[MAJOR_NR+ctlr] = hba[ctlr]->hardsizes; read_ahead[MAJOR_NR+ctlr] = READ_AHEAD; q->back_merge_fn = cpq_back_merge_fn; q->front_merge_fn = cpq_front_merge_fn; q->merge_requests_fn = cpq_merge_requests_fn; hba[ctlr]->gendisk.major = MAJOR_NR + ctlr; hba[ctlr]->gendisk.major_name = "ida"; hba[ctlr]->gendisk.minor_shift = NWD_SHIFT; hba[ctlr]->gendisk.max_p = IDA_MAX_PART; hba[ctlr]->gendisk.part = hba[ctlr]->hd; hba[ctlr]->gendisk.sizes = hba[ctlr]->sizes; hba[ctlr]->gendisk.nr_real = hba[ctlr]->highest_lun+1; hba[ctlr]->gendisk.fops = &ida_fops; /* Get on the disk list */ add_gendisk(&(hba[ctlr]->gendisk)); init_timer(&hba[ctlr]->timer); hba[ctlr]->timer.expires = jiffies + IDA_TIMER; hba[ctlr]->timer.data = (unsigned long)hba[ctlr]; hba[ctlr]->timer.function = ida_timer; add_timer(&hba[ctlr]->timer); ida_geninit(ctlr); for(j=0; jgendisk), MKDEV(MAJOR_NR+ctlr,j<<4), IDA_MAX_PART, &ida_fops, hba[ctlr]->drv[j].nr_blks); return(ctlr); err_out: release_io_mem(hba[ctlr]); free_hba(ctlr); return (-1); } static int __init cpqarray_init_one( struct pci_dev *pdev, const struct pci_device_id *ent) { int i,j; printk(KERN_DEBUG "cpqarray: Device 0x%x has been found at" " bus %d dev %d func %d\n", pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); i = alloc_cpqarray_hba(); if( i < 0 ) return (-1); memset(hba[i], 0, sizeof(ctlr_info_t)); /* fill in default block size */ for(j=0;j<256;j++) hba[i]->hardsizes[j] = hba[i]->drv[j].blk_size; sprintf(hba[i]->devname, "ida%d", i); hba[i]->ctlr = i; /* Initialize the pdev driver private data */ pci_set_drvdata(pdev, hba[i]); if (cpqarray_pci_init(hba[i], pdev) != 0) { release_io_mem(hba[i]); free_hba(i); return (-1); } return (cpqarray_register_ctlr(i, 1)); } static struct pci_driver cpqarray_pci_driver = { name: "cpqarray", probe: cpqarray_init_one, remove: __devexit_p(cpqarray_remove_one), id_table: cpqarray_pci_device_id, }; /* * This is it. Find all the controllers and register them. I really hate * stealing all these major device numbers. * returns the number of block devices registered. */ int __init cpqarray_init(void) { int num_cntlrs_reg = 0; int i; /* detect controllers */ printk(DRIVER_NAME "\n"); pci_module_init(&cpqarray_pci_driver); cpqarray_eisa_detect(); for(i=0; i< MAX_CTLR; i++) { if (hba[i] != NULL) num_cntlrs_reg++; } return(num_cntlrs_reg); } /* Function to find the first free pointer into our hba[] array */ /* Returns -1 if no free entries are left. */ static int alloc_cpqarray_hba(void) { int i; for(i=0; i< MAX_CTLR; i++) { if (hba[i] == NULL) { hba[i] = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL); if(hba[i]==NULL) { printk(KERN_ERR "cpqarray: out of memory.\n"); return (-1); } return (i); } } printk(KERN_WARNING "cpqarray: This driver supports a maximum" " of 8 controllers.\n"); return(-1); } static void free_hba(int i) { kfree(hba[i]); hba[i]=NULL; } /* * Find the IO address of the controller, its IRQ and so forth. Fill * in some basic stuff into the ctlr_info_t structure. */ static int cpqarray_pci_init(ctlr_info_t *c, struct pci_dev *pdev) { ushort vendor_id, device_id, command; unchar cache_line_size, latency_timer; unchar irq, revision; unsigned long addr[6]; __u32 board_id; int i; pci_read_config_word(pdev, PCI_COMMAND, &command); /* check to see if controller has been disabled */ if(!(command & 0x02)) { printk(KERN_WARNING "cpqarray: controller appears to be disabled\n"); return(-1); } c->pci_dev = pdev; vendor_id = pdev->vendor; device_id = pdev->device; irq = pdev->irq; for(i=0; i<6; i++) addr[i] = pci_resource_start(pdev, i); if (pci_enable_device(pdev)) { printk(KERN_ERR "cpqarray: Unable to Enable PCI device\n"); return -1; } if (pci_set_dma_mask(pdev, CPQARRAY_DMA_MASK) != 0) { printk(KERN_ERR "cpqarray: Unable to set DMA mask\n"); return -1; } pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision); pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_line_size); pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency_timer); pci_read_config_dword(pdev, 0x2c, &board_id); DBGINFO( printk("vendor_id = %x\n", vendor_id); printk("device_id = %x\n", device_id); printk("command = %x\n", command); for(i=0; i<6; i++) printk("addr[%d] = %lx\n", i, addr[i]); printk("revision = %x\n", revision); printk("irq = %x\n", irq); printk("cache_line_size = %x\n", cache_line_size); printk("latency_timer = %x\n", latency_timer); printk("board_id = %x\n", board_id); ); c->intr = irq; for(i=0; i<6; i++) { if (pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE_IO) { /* IO space */ c->io_mem_addr = addr[i]; c->io_mem_length = pci_resource_end(pdev, i) - pci_resource_start(pdev, i) +1; // printk("IO Value found addr[%d] %lx %lx\n", // i, c->io_mem_addr, c->io_mem_length); if(!request_region( c->io_mem_addr, c->io_mem_length, "cpqarray")) { printk( KERN_WARNING "cpqarray I/O memory range already in use addr %lx length = %ld\n", c->io_mem_addr, c->io_mem_length); c->io_mem_addr = 0; c->io_mem_length = 0; } break; } } c->paddr = 0; for(i=0; i<6; i++) if (!(pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE_IO)) { c->paddr = pci_resource_start (pdev, i); break; } if (!c->paddr) return -1; c->vaddr = remap_pci_mem(c->paddr, 128); if (!c->vaddr) return -1; c->board_id = board_id; for(i=0; iproduct_name = products[i].product_name; c->access = *(products[i].access); break; } } if (i == NR_PRODUCTS) { printk(KERN_WARNING "cpqarray: Sorry, I don't know how" " to access the SMART Array controller %08lx\n", (unsigned long)board_id); return -1; } return 0; } /* * Map (physical) PCI mem into (virtual) kernel space */ static void *remap_pci_mem(ulong base, ulong size) { ulong page_base = ((ulong) base) & PAGE_MASK; ulong page_offs = ((ulong) base) - page_base; void *page_remapped = ioremap(page_base, page_offs+size); return (page_remapped ? (page_remapped + page_offs) : NULL); } #ifndef MODULE #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,13) /* * Config string is a comma seperated set of i/o addresses of EISA cards. */ static int cpqarray_setup(char *str) { int i, ints[9]; (void)get_options(str, ARRAY_SIZE(ints), ints); for(i=0; iio_mem_addr = eisa[i]; hba[ctlr]->io_mem_length = 0x7FF; if(!request_region( hba[ctlr]->io_mem_addr, hba[ctlr]->io_mem_length, "cpqarray")) { printk( KERN_WARNING "cpqarray: I/0 range already in use addr = %lx length=%ld\n", hba[ctlr]->io_mem_addr, hba[ctlr]->io_mem_length); free_hba(ctlr); continue; } /* * Read the config register to find our interrupt */ intr = inb(eisa[i]+0xCC0) >> 4; if (intr & 1) intr = 11; else if (intr & 2) intr = 10; else if (intr & 4) intr = 14; else if (intr & 8) intr = 15; hba[ctlr]->intr = intr; sprintf(hba[ctlr]->devname, "ida%d", ctlr); hba[ctlr]->product_name = products[j].product_name; hba[ctlr]->access = *(products[j].access); hba[ctlr]->ctlr = ctlr; hba[ctlr]->board_id = board_id; hba[ctlr]->pci_dev = NULL; /* not PCI */ DBGINFO( printk("i = %d, j = %d\n", i, j); printk("irq = %x\n", intr); printk("product name = %s\n", products[j].product_name); printk("board_id = %x\n", board_id); ); num_ctlr++; i++; if (cpqarray_register_ctlr(ctlr, 0) == -1) printk(KERN_WARNING "cpqarray%d: Can't register EISA controller\n", ctlr); } return num_ctlr; } /* * Open. Make sure the device is really there. */ static int ida_open(struct inode *inode, struct file *filep) { int ctlr = MAJOR(inode->i_rdev) - MAJOR_NR; int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT; DBGINFO(printk("ida_open %x (%x:%x)\n", inode->i_rdev, ctlr, dsk) ); if (ctlr > MAX_CTLR || hba[ctlr] == NULL) return -ENXIO; /* * Root is allowed to open raw volume zero even if its not configured * so array config can still work. I don't think I really like this, * but I'm already using way to many device nodes to claim another one * for "raw controller". */ if (hba[ctlr]->sizes[MINOR(inode->i_rdev)] == 0) { if (MINOR(inode->i_rdev) != 0) return -ENXIO; if (!capable(CAP_SYS_ADMIN)) return -EPERM; } hba[ctlr]->drv[dsk].usage_count++; hba[ctlr]->usage_count++; return 0; } /* * Close. Sync first. */ static int ida_release(struct inode *inode, struct file *filep) { int ctlr = MAJOR(inode->i_rdev) - MAJOR_NR; int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT; DBGINFO(printk("ida_release %x (%x:%x)\n", inode->i_rdev, ctlr, dsk) ); hba[ctlr]->drv[dsk].usage_count--; hba[ctlr]->usage_count--; return 0; } /* * Enqueuing and dequeuing functions for cmdlists. */ static inline void addQ(cmdlist_t **Qptr, cmdlist_t *c) { if (*Qptr == NULL) { *Qptr = c; c->next = c->prev = c; } else { c->prev = (*Qptr)->prev; c->next = (*Qptr); (*Qptr)->prev->next = c; (*Qptr)->prev = c; } } static inline cmdlist_t *removeQ(cmdlist_t **Qptr, cmdlist_t *c) { if (c && c->next != c) { if (*Qptr == c) *Qptr = c->next; c->prev->next = c->next; c->next->prev = c->prev; } else { *Qptr = NULL; } return c; } static inline void complete_buffers(struct buffer_head *bh, int ok) { struct buffer_head *xbh; while(bh) { xbh = bh->b_reqnext; bh->b_reqnext = NULL; blk_finished_io(bh->b_size >> 9); bh->b_end_io(bh, ok); bh = xbh; } } /* * Get a request and submit it to the controller. * This routine needs to grab all the requests it possibly can from the * req Q and submit them. Interrupts are off (and need to be off) when you * are in here (either via the dummy do_ida_request functions or by being * called from the interrupt handler */ static void do_ida_request(request_queue_t *q) { ctlr_info_t *h = q->queuedata; cmdlist_t *c; unsigned long lastdataend; struct list_head * queue_head = &q->queue_head; struct buffer_head *bh; struct request *creq; struct scatterlist tmp_sg[SG_MAX]; int i, seg; if (q->plugged) goto startio; next: if (list_empty(queue_head)) goto startio; creq = blkdev_entry_next_request(queue_head); if (creq->nr_segments > SG_MAX) BUG(); if (h->ctlr != MAJOR(creq->rq_dev)-MAJOR_NR ) { printk(KERN_WARNING "doreq cmd for %d, %x at %p\n", h->ctlr, creq->rq_dev, creq); blkdev_dequeue_request(creq); complete_buffers(creq->bh, 0); end_that_request_last(creq); goto startio; } if ((c = cmd_alloc(h,1)) == NULL) goto startio; blkdev_dequeue_request(creq); spin_unlock_irq(&io_request_lock); bh = creq->bh; c->ctlr = h->ctlr; c->hdr.unit = MINOR(creq->rq_dev) >> NWD_SHIFT; c->hdr.size = sizeof(rblk_t) >> 2; c->size += sizeof(rblk_t); c->req.hdr.blk = hba[h->ctlr]->hd[MINOR(creq->rq_dev)].start_sect + creq->sector; c->rq = creq; DBGPX( if (bh == NULL) panic("bh == NULL?"); printk("sector=%d, nr_sectors=%d\n", creq->sector, creq->nr_sectors); ); seg = 0; lastdataend = ~0UL; while(bh) { if (bh_phys(bh) == lastdataend) { tmp_sg[seg-1].length += bh->b_size; lastdataend += bh->b_size; } else { if (seg == SG_MAX) BUG(); tmp_sg[seg].page = bh->b_page; tmp_sg[seg].length = bh->b_size; tmp_sg[seg].offset = bh_offset(bh); lastdataend = bh_phys(bh) + bh->b_size; seg++; } bh = bh->b_reqnext; } /* Now do all the DMA Mappings */ for( i=0; i < seg; i++) { c->req.sg[i].size = tmp_sg[i].length; c->req.sg[i].addr = (__u32) pci_map_page( h->pci_dev, tmp_sg[i].page, tmp_sg[i].offset, tmp_sg[i].length, (creq->cmd == READ) ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE); } DBGPX( printk("Submitting %d sectors in %d segments\n", sect, seg); ); c->req.hdr.sg_cnt = seg; c->req.hdr.blk_cnt = creq->nr_sectors; c->req.hdr.cmd = (creq->cmd == READ) ? IDA_READ : IDA_WRITE; c->type = CMD_RWREQ; spin_lock_irq(&io_request_lock); /* Put the request on the tail of the request queue */ addQ(&h->reqQ, c); h->Qdepth++; if (h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; goto next; startio: start_io(h); } /* * start_io submits everything on a controller's request queue * and moves it to the completion queue. * * Interrupts had better be off if you're in here */ static void start_io(ctlr_info_t *h) { cmdlist_t *c; while((c = h->reqQ) != NULL) { /* Can't do anything if we're busy */ if (h->access.fifo_full(h) == 0) return; /* Get the first entry from the request Q */ removeQ(&h->reqQ, c); h->Qdepth--; /* Tell the controller to do our bidding */ h->access.submit_command(h, c); /* Get onto the completion Q */ addQ(&h->cmpQ, c); } } /* * Mark all buffers that cmd was responsible for */ static inline void complete_command(cmdlist_t *cmd, int timeout) { int ok=1; int i; if (cmd->req.hdr.rcode & RCODE_NONFATAL && (hba[cmd->ctlr]->misc_tflags & MISC_NONFATAL_WARN) == 0) { printk(KERN_NOTICE "Non Fatal error on ida/c%dd%d\n", cmd->ctlr, cmd->hdr.unit); hba[cmd->ctlr]->misc_tflags |= MISC_NONFATAL_WARN; } if (cmd->req.hdr.rcode & RCODE_FATAL) { printk(KERN_WARNING "Fatal error on ida/c%dd%d\n", cmd->ctlr, cmd->hdr.unit); ok = 0; } if (cmd->req.hdr.rcode & RCODE_INVREQ) { printk(KERN_WARNING "Invalid request on ida/c%dd%d = (cmd=%x sect=%d cnt=%d sg=%d ret=%x)\n", cmd->ctlr, cmd->hdr.unit, cmd->req.hdr.cmd, cmd->req.hdr.blk, cmd->req.hdr.blk_cnt, cmd->req.hdr.sg_cnt, cmd->req.hdr.rcode); ok = 0; } if (timeout) ok = 0; /* unmap the DMA mapping for all the scatter gather elements */ for(i=0; ireq.hdr.sg_cnt; i++) { pci_unmap_page(hba[cmd->ctlr]->pci_dev, cmd->req.sg[i].addr, cmd->req.sg[i].size, (cmd->req.hdr.cmd == IDA_READ) ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE); } complete_buffers(cmd->rq->bh, ok); DBGPX(printk("Done with %p\n", cmd->rq);); end_that_request_last(cmd->rq); } /* * The controller will interrupt us upon completion of commands. * Find the command on the completion queue, remove it, tell the OS and * try to queue up more IO */ static void do_ida_intr(int irq, void *dev_id, struct pt_regs *regs) { ctlr_info_t *h = dev_id; cmdlist_t *c; unsigned long istat; unsigned long flags; __u32 a,a1; istat = h->access.intr_pending(h); /* Is this interrupt for us? */ if (istat == 0) return; /* * If there are completed commands in the completion queue, * we had better do something about it. */ spin_lock_irqsave(&io_request_lock, flags); if (istat & FIFO_NOT_EMPTY) { while((a = h->access.command_completed(h))) { a1 = a; a &= ~3; if ((c = h->cmpQ) == NULL) { printk(KERN_WARNING "cpqarray: Completion of %08lx ignored\n", (unsigned long)a1); continue; } while(c->busaddr != a) { c = c->next; if (c == h->cmpQ) break; } /* * If we've found the command, take it off the * completion Q and free it */ if (c->busaddr == a) { removeQ(&h->cmpQ, c); /* Check for invalid command. * Controller returns command error, * But rcode = 0. */ if((a1 & 0x03) && (c->req.hdr.rcode == 0)) { c->req.hdr.rcode = RCODE_INVREQ; } if (c->type == CMD_RWREQ) { complete_command(c, 0); cmd_free(h, c, 1); } else if (c->type == CMD_IOCTL_PEND) { complete(c->waiting); } continue; } } } /* * See if we can queue up some more IO */ do_ida_request(BLK_DEFAULT_QUEUE(MAJOR_NR + h->ctlr)); spin_unlock_irqrestore(&io_request_lock, flags); } /* * This timer was for timing out requests that haven't happened after * IDA_TIMEOUT. That wasn't such a good idea. This timer is used to * reset a flags structure so we don't flood the user with * "Non-Fatal error" messages. */ static void ida_timer(unsigned long tdata) { ctlr_info_t *h = (ctlr_info_t*)tdata; h->timer.expires = jiffies + IDA_TIMER; add_timer(&h->timer); h->misc_tflags = 0; } /* * ida_ioctl does some miscellaneous stuff like reporting drive geometry, * setting readahead and submitting commands from userspace to the controller. */ static int ida_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, unsigned long arg) { int ctlr = MAJOR(inode->i_rdev) - MAJOR_NR; int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT; int error; switch(cmd) { case HDIO_GETGEO: { struct hd_geometry driver_geo; if (hba[ctlr]->drv[dsk].cylinders) { driver_geo.heads = hba[ctlr]->drv[dsk].heads; driver_geo.sectors = hba[ctlr]->drv[dsk].sectors; driver_geo.cylinders = hba[ctlr]->drv[dsk].cylinders; } else { driver_geo.heads = 0xff; driver_geo.sectors = 0x3f; driver_geo.cylinders = hba[ctlr]->drv[dsk].nr_blks / (0xff*0x3f); } driver_geo.start= hba[ctlr]->hd[MINOR(inode->i_rdev)].start_sect; if (copy_to_user((void *) arg, &driver_geo, sizeof( struct hd_geometry))) return -EFAULT; return(0); } case HDIO_GETGEO_BIG: { struct hd_big_geometry driver_geo; if (hba[ctlr]->drv[dsk].cylinders) { driver_geo.heads = hba[ctlr]->drv[dsk].heads; driver_geo.sectors = hba[ctlr]->drv[dsk].sectors; driver_geo.cylinders = hba[ctlr]->drv[dsk].cylinders; } else { driver_geo.heads = 0xff; driver_geo.sectors = 0x3f; driver_geo.cylinders = hba[ctlr]->drv[dsk].nr_blks / (0xff*0x3f); } driver_geo.start= hba[ctlr]->hd[MINOR(inode->i_rdev)].start_sect; if (copy_to_user((void *) arg, &driver_geo, sizeof( struct hd_big_geometry))) return -EFAULT; return(0); } case IDAGETDRVINFO: { ida_ioctl_t *io = (ida_ioctl_t*)arg; return copy_to_user(&io->c.drv,&hba[ctlr]->drv[dsk],sizeof(drv_info_t)); } case BLKRRPART: return revalidate_logvol(inode->i_rdev, 1); case IDAPASSTHRU: { ida_ioctl_t *io = (ida_ioctl_t*)arg; ida_ioctl_t my_io; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user(&my_io, io, sizeof(my_io))) return -EFAULT; error = ida_ctlr_ioctl(ctlr, dsk, &my_io); if (error) return error; if (copy_to_user(io, &my_io, sizeof(my_io))) return -EFAULT; return 0; } case IDABIGPASSTHRU: { ida_big_ioctl_t *io = (ida_big_ioctl_t*)arg; ida_big_ioctl_t my_io; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user(&my_io, io, sizeof(my_io))) return -EFAULT; error = ida_ctlr_big_ioctl(ctlr, dsk, &my_io); if (error) return error; if (copy_to_user(io, &my_io, sizeof(my_io))) return -EFAULT; return 0; } case IDAGETCTLRSIG: if (!arg) return -EINVAL; put_user(hba[ctlr]->ctlr_sig, (int*)arg); return 0; case IDAREVALIDATEVOLS: return revalidate_allvol(inode->i_rdev); case IDADRIVERVERSION: if (!arg) return -EINVAL; put_user(DRIVER_VERSION, (unsigned long*)arg); return 0; case IDAGETPCIINFO: { ida_pci_info_struct pciinfo; if (!arg) return -EINVAL; pciinfo.bus = hba[ctlr]->pci_dev->bus->number; pciinfo.dev_fn = hba[ctlr]->pci_dev->devfn; pciinfo.board_id = hba[ctlr]->board_id; if(copy_to_user((void *) arg, &pciinfo, sizeof( ida_pci_info_struct))) return -EFAULT; return(0); } case IDADEREGDISK: return( deregister_disk(ctlr,dsk)); case IDAREGNEWDISK: { int logvol = arg; return(register_new_disk(ctlr, logvol)); } case IDAGETLOGINFO: { idaLogvolInfo_struct luninfo; int num_parts = 0; int i, start; luninfo.LogVolID = dsk; luninfo.num_opens = hba[ctlr]->drv[dsk].usage_count; /* count partitions 1 to 15 with sizes > 0 */ start = (dsk << NWD_SHIFT); for(i=1; i sizes[minor] != 0) num_parts++; } luninfo.num_parts = num_parts; if (copy_to_user((void *) arg, &luninfo, sizeof( idaLogvolInfo_struct) )) return -EFAULT; return(0); } case BLKGETSIZE: case BLKGETSIZE64: case BLKFLSBUF: case BLKBSZSET: case BLKBSZGET: case BLKSSZGET: case BLKROSET: case BLKROGET: case BLKRASET: case BLKRAGET: case BLKELVGET: case BLKELVSET: case BLKPG: return blk_ioctl(inode->i_rdev, cmd, arg); default: return -EINVAL; } } /* * ida_ctlr_ioctl is for passing commands to the controller from userspace. * The command block (io) has already been copied to kernel space for us, * however, any elements in the sglist need to be copied to kernel space * or copied back to userspace. * * Only root may perform a controller passthru command, however I'm not doing * any serious sanity checking on the arguments. Doing an IDA_WRITE_MEDIA and * putting a 64M buffer in the sglist is probably a *bad* idea. */ static int ida_ctlr_ioctl(int ctlr, int dsk, ida_ioctl_t *io) { ctlr_info_t *h = hba[ctlr]; cmdlist_t *c; void *p = NULL; unsigned long flags; int error; DECLARE_COMPLETION(wait); if ((c = cmd_alloc(h, 0)) == NULL) return -ENOMEM; c->ctlr = ctlr; c->hdr.unit = (io->unit & UNITVALID) ? (io->unit & ~UNITVALID) : dsk; c->hdr.size = sizeof(rblk_t) >> 2; c->size += sizeof(rblk_t); c->req.hdr.cmd = io->cmd; c->req.hdr.blk = io->blk; c->req.hdr.blk_cnt = io->blk_cnt; c->type = CMD_IOCTL_PEND; /* Pre submit processing */ switch(io->cmd) { case PASSTHRU_A: p = kmalloc(io->sg[0].size, GFP_KERNEL); if (!p) { error = -ENOMEM; cmd_free(h, c, 0); return(error); } if (copy_from_user(p, (void*)io->sg[0].addr, io->sg[0].size)) { kfree(p); cmd_free(h, c, 0); return -EFAULT; } c->req.hdr.blk = pci_map_single(h->pci_dev, &(io->c), sizeof(ida_ioctl_t), PCI_DMA_BIDIRECTIONAL); c->req.sg[0].size = io->sg[0].size; c->req.sg[0].addr = pci_map_single(h->pci_dev, p, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); c->req.hdr.sg_cnt = 1; break; case IDA_READ: case SENSE_SURF_STATUS: case READ_FLASH_ROM: case SENSE_CONTROLLER_PERFORMANCE: p = kmalloc(io->sg[0].size, GFP_KERNEL); if (!p) { error = -ENOMEM; cmd_free(h, c, 0); return(error); } c->req.sg[0].size = io->sg[0].size; c->req.sg[0].addr = pci_map_single(h->pci_dev, p, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); c->req.hdr.sg_cnt = 1; break; case IDA_WRITE: case IDA_WRITE_MEDIA: case DIAG_PASS_THRU: case COLLECT_BUFFER: case WRITE_FLASH_ROM: p = kmalloc(io->sg[0].size, GFP_KERNEL); if (!p) { error = -ENOMEM; cmd_free(h, c, 0); return(error); } if (copy_from_user(p, (void*)io->sg[0].addr, io->sg[0].size)) { kfree(p); cmd_free(h, c, 0); return -EFAULT; } c->req.sg[0].size = io->sg[0].size; c->req.sg[0].addr = pci_map_single(h->pci_dev, p, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); c->req.hdr.sg_cnt = 1; break; default: c->req.sg[0].size = sizeof(io->c); c->req.sg[0].addr = pci_map_single(h->pci_dev,&io->c, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); c->req.hdr.sg_cnt = 1; } c->waiting = &wait; /* Put the request on the tail of the request queue */ spin_lock_irqsave(&io_request_lock, flags); addQ(&h->reqQ, c); h->Qdepth++; start_io(h); spin_unlock_irqrestore(&io_request_lock, flags); /* Wait for completion */ wait_for_completion(&wait); /* Unmap the DMA */ pci_unmap_single(h->pci_dev, c->req.sg[0].addr, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); /* Post submit processing */ switch(io->cmd) { case PASSTHRU_A: pci_unmap_single(h->pci_dev, c->req.hdr.blk, sizeof(ida_ioctl_t), PCI_DMA_BIDIRECTIONAL); case IDA_READ: case SENSE_SURF_STATUS: case DIAG_PASS_THRU: case SENSE_CONTROLLER_PERFORMANCE: case READ_FLASH_ROM: if (copy_to_user((void*)io->sg[0].addr, p, io->sg[0].size)) { kfree(p); return -EFAULT; } /* fall through and free p */ case IDA_WRITE: case IDA_WRITE_MEDIA: case COLLECT_BUFFER: case WRITE_FLASH_ROM: kfree(p); break; default:; /* Nothing to do */ } io->rcode = c->req.hdr.rcode; cmd_free(h, c, 0); return(0); } /* * ida_ctlr_big_ioctl is for passing commands to the controller from userspace. * The command block (io) has already been copied to kernel space for us, * * Only root may perform a controller passthru command, however I'm not doing * any serious sanity checking on the arguments. */ static int ida_ctlr_big_ioctl(int ctlr, int dsk, ida_big_ioctl_t *io) { ctlr_info_t *h = hba[ctlr]; cmdlist_t *c; __u8 *scsi_param = NULL; __u8 *buff[SG_MAX] = {NULL,}; size_t buff_size[SG_MAX]; __u8 sg_used = 0; unsigned long flags; int error = 0; int i; DECLARE_COMPLETION(wait); /* Check kmalloc limits using all SGs */ if( io->buff_malloc_size > IDA_MAX_KMALLOC_SIZE) return -EINVAL; if( io->buff_size > io->buff_malloc_size * SG_MAX) return -EINVAL; if ((c = cmd_alloc(h, 0)) == NULL) return -ENOMEM; c->ctlr = ctlr; c->hdr.unit = (io->unit & UNITVALID) ? (io->unit & ~UNITVALID) : dsk; c->hdr.size = sizeof(rblk_t) >> 2; c->size += sizeof(rblk_t); c->req.hdr.cmd = io->cmd; c->req.hdr.blk = io->blk; c->req.hdr.blk_cnt = io->blk_cnt; c->type = CMD_IOCTL_PEND; /* Pre submit processing */ /* for passthru_a the scsi command is in another record */ if (io->cmd == PASSTHRU_A) { if (io->scsi_param == NULL) { error = -EINVAL; cmd_free(h, c, 0); return(error); } scsi_param = kmalloc(sizeof(scsi_param_t), GFP_KERNEL); if (scsi_param == NULL) { error = -ENOMEM; cmd_free(h, c, 0); return(error); } /* copy the scsi command to get passed thru */ if (copy_from_user(scsi_param, io->scsi_param, sizeof(scsi_param_t))) { kfree(scsi_param); cmd_free(h, c, 0); return -EFAULT; } /* with this command the scsi command is seperate */ c->req.hdr.blk = pci_map_single(h->pci_dev, scsi_param, sizeof(scsi_param_t), PCI_DMA_BIDIRECTIONAL); } /* fill in the SG entries */ /* create buffers if we need to */ if(io->buff_size > 0) { size_t size_left_alloc = io->buff_size; __u8 *data_ptr = io->buff; while(size_left_alloc > 0) { buff_size[sg_used] = (size_left_alloc > io->buff_malloc_size) ? io->buff_malloc_size : size_left_alloc; buff[sg_used] = kmalloc( buff_size[sg_used], GFP_KERNEL); if (buff[sg_used] == NULL) { error = -ENOMEM; goto ida_alloc_cleanup; } if(io->xfer_type & IDA_XFER_WRITE) { /* Copy the data into the buffer created */ if (copy_from_user(buff[sg_used], data_ptr, buff_size[sg_used])) { error = -EFAULT; goto ida_alloc_cleanup; } } /* put the data into the scatter gather list */ c->req.sg[sg_used].size = buff_size[sg_used]; c->req.sg[sg_used].addr = pci_map_single(h->pci_dev, buff[sg_used], buff_size[sg_used], PCI_DMA_BIDIRECTIONAL); size_left_alloc -= buff_size[sg_used]; data_ptr += buff_size[sg_used]; sg_used++; } } c->req.hdr.sg_cnt = sg_used; c->waiting = &wait; /* Put the request on the tail of the request queue */ spin_lock_irqsave(&io_request_lock, flags); addQ(&h->reqQ, c); h->Qdepth++; start_io(h); spin_unlock_irqrestore(&io_request_lock, flags); /* Wait for completion */ wait_for_completion(&wait); /* Unmap the DMA */ for(i=0; ireq.hdr.sg_cnt; i++) { pci_unmap_single(h->pci_dev, c->req.sg[i].addr, c->req.sg[i].size, PCI_DMA_BIDIRECTIONAL); } /* if we are reading data from the hardware copy it back to user */ if (io->xfer_type & IDA_XFER_READ) { __u8 *data_ptr = io->buff; int i; for(i=0; ireq.hdr.sg_cnt; i++) { if (copy_to_user(data_ptr, buff[i], buff_size[i])) { error = -EFAULT; goto ida_alloc_cleanup; } data_ptr += buff_size[i]; } } io->rcode = c->req.hdr.rcode; if(scsi_param) { pci_unmap_single(h->pci_dev, c->req.hdr.blk, sizeof(scsi_param_t), PCI_DMA_BIDIRECTIONAL); /* copy the scsi_params back to the user */ if( copy_to_user(io->scsi_param, scsi_param, sizeof(scsi_param_t))) { error = -EFAULT; } kfree(scsi_param); } cmd_free(h, c, 0); return(error); ida_alloc_cleanup: if(scsi_param) { pci_unmap_single(h->pci_dev, c->req.hdr.blk, sizeof(scsi_param_t), PCI_DMA_BIDIRECTIONAL); kfree(scsi_param); } for (i=0; ipci_dev, c->req.sg[i].addr, buff_size[sg_used], PCI_DMA_BIDIRECTIONAL); kfree(buff[sg_used]); } } cmd_free(h, c, 0); return(error); } /* * Commands are pre-allocated in a large block. Here we use a simple bitmap * scheme to suballocte them to the driver. Operations that are not time * critical (and can wait for kmalloc and possibly sleep) can pass in NULL * as the first argument to get a new command. */ static cmdlist_t * cmd_alloc(ctlr_info_t *h, int get_from_pool) { cmdlist_t * c; int i; dma_addr_t cmd_dhandle; if (!get_from_pool) { c = (cmdlist_t*)pci_alloc_consistent(h->pci_dev, sizeof(cmdlist_t), &cmd_dhandle); if(c==NULL) return NULL; } else { do { i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS); if (i == NR_CMDS) return NULL; } while(test_and_set_bit(i%32, h->cmd_pool_bits+(i/32)) != 0); c = h->cmd_pool + i; cmd_dhandle = h->cmd_pool_dhandle + i*sizeof(cmdlist_t); h->nr_allocs++; } memset(c, 0, sizeof(cmdlist_t)); c->busaddr = cmd_dhandle; return c; } static void cmd_free(ctlr_info_t *h, cmdlist_t *c, int got_from_pool) { int i; if (!got_from_pool) { pci_free_consistent(h->pci_dev, sizeof(cmdlist_t), c, c->busaddr); } else { i = c - h->cmd_pool; clear_bit(i%32, h->cmd_pool_bits+(i/32)); h->nr_frees++; } } /*********************************************************************** name: sendcmd Send a command to an IDA using the memory mapped FIFO interface and wait for it to complete. This routine should only be called at init time. ***********************************************************************/ static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size, unsigned int blk, unsigned int blkcnt, unsigned int log_unit ) { cmdlist_t *c; int complete; unsigned long temp; unsigned long i; ctlr_info_t *info_p = hba[ctlr]; c = cmd_alloc(info_p, 1); if(!c) return IO_ERROR; c->ctlr = ctlr; c->hdr.unit = log_unit; c->hdr.prio = 0; c->hdr.size = sizeof(rblk_t) >> 2; c->size += sizeof(rblk_t); /* The request information. */ c->req.hdr.next = 0; c->req.hdr.rcode = 0; c->req.bp = 0; c->req.hdr.sg_cnt = 1; c->req.hdr.reserved = 0; if (size == 0) c->req.sg[0].size = 512; else c->req.sg[0].size = size; c->req.hdr.blk = blk; c->req.hdr.blk_cnt = blkcnt; c->req.hdr.cmd = (unsigned char) cmd; c->req.sg[0].addr = (__u32) pci_map_single(info_p->pci_dev, buff, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); /* * Disable interrupt */ info_p->access.set_intr_mask(info_p, 0); /* Make sure there is room in the command FIFO */ /* Actually it should be completely empty at this time. */ for (i = 200000; i > 0; i--) { temp = info_p->access.fifo_full(info_p); if (temp != 0) { break; } udelay(10); DBG( printk(KERN_WARNING "cpqarray ida%d: idaSendPciCmd FIFO full," " waiting!\n", ctlr); ); } /* * Send the cmd */ info_p->access.submit_command(info_p, c); complete = pollcomplete(ctlr); pci_unmap_single(info_p->pci_dev, (dma_addr_t) c->req.sg[0].addr, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); if (complete != 1) { if (complete != c->busaddr) { printk( KERN_WARNING "cpqarray ida%d: idaSendPciCmd " "Invalid command list address returned! (%08lx)\n", ctlr, (unsigned long)complete); cmd_free(info_p, c, 1); return (IO_ERROR); } } else { printk( KERN_WARNING "cpqarray ida%d: idaSendPciCmd Timeout out, " "No command list address returned!\n", ctlr); cmd_free(info_p, c, 1); return (IO_ERROR); } if (c->req.hdr.rcode & 0x00FE) { if (!(c->req.hdr.rcode & BIG_PROBLEM)) { printk( KERN_WARNING "cpqarray ida%d: idaSendPciCmd, error: " "Controller failed at init time " "cmd: 0x%x, return code = 0x%x\n", ctlr, c->req.hdr.cmd, c->req.hdr.rcode); cmd_free(info_p, c, 1); return (IO_ERROR); } } cmd_free(info_p, c, 1); return (IO_OK); } static int frevalidate_logvol(kdev_t dev) { return revalidate_logvol(dev, 0); } /* * revalidate_allvol is for online array config utilities. After a * utility reconfigures the drives in the array, it can use this function * (through an ioctl) to make the driver zap any previous disk structs for * that controller and get new ones. * * Right now I'm using the getgeometry() function to do this, but this * function should probably be finer grained and allow you to revalidate one * particualar logical volume (instead of all of them on a particular * controller). */ static int revalidate_allvol(kdev_t dev) { int ctlr, i; unsigned long flags; ctlr = MAJOR(dev) - MAJOR_NR; if (MINOR(dev) != 0) return -ENXIO; spin_lock_irqsave(&io_request_lock, flags); if (hba[ctlr]->usage_count > 1) { spin_unlock_irqrestore(&io_request_lock, flags); printk(KERN_WARNING "cpqarray: Device busy for volume" " revalidation (usage=%d)\n", hba[ctlr]->usage_count); return -EBUSY; } spin_unlock_irqrestore(&io_request_lock, flags); hba[ctlr]->usage_count++; /* * Set the partition and block size structures for all volumes * on this controller to zero. And set the hardsizes to non zero to * avoid a possible divide by zero error. * We will reread all of this data */ memset(hba[ctlr]->hd, 0, sizeof(struct hd_struct)*NWD*16); memset(hba[ctlr]->sizes, 0, sizeof(int)*NWD*16); memset(hba[ctlr]->blocksizes, 0, sizeof(int)*NWD*16); memset(hba[ctlr]->drv, 0, sizeof(drv_info_t)*NWD); hba[ctlr]->gendisk.nr_real = 0; for(i=0;i<256;i++) hba[ctlr]->hardsizes[i] = 0; /* * Tell the array controller not to give us any interrupts while * we check the new geometry. Then turn interrupts back on when * we're done. */ hba[ctlr]->access.set_intr_mask(hba[ctlr], 0); getgeometry(ctlr); hba[ctlr]->access.set_intr_mask(hba[ctlr], FIFO_NOT_EMPTY); ida_geninit(ctlr); for(i=0; isizes[i<usage_count--; return 0; } static int deregister_disk(int ctlr, int logvol) { unsigned long flags; struct gendisk *gdev = &(hba[ctlr]->gendisk); ctlr_info_t *h = hba[ctlr]; int start, max_p, i; if (!capable(CAP_SYS_RAWIO)) return -EPERM; spin_lock_irqsave(&io_request_lock, flags); /* make sure logical volume is NOT is use */ if( h->drv[logvol].usage_count > 1) { spin_unlock_irqrestore(&io_request_lock, flags); return -EBUSY; } h->drv[logvol].usage_count++; spin_unlock_irqrestore(&io_request_lock, flags); /* invalidate the devices and deregister the disk */ max_p = gdev->max_p; start = logvol << gdev->minor_shift; for (i=max_p-1; i>=0; i--) { int minor = start+i; // printk("invalidating( %d %d)\n", ctlr, minor); invalidate_device(MKDEV(MAJOR_NR+ctlr, minor), 1); /* so open will now fail */ hba[ctlr]->sizes[minor] = 0; /* so it will no longer appear in /proc/partitions */ gdev->part[minor].start_sect = 0; gdev->part[minor].nr_sects = 0; } /* check to see if it was the last disk */ if (logvol == h->highest_lun) { /* if so, find the new hightest lun */ int i, newhighest =-1; for(i=0; ihighest_lun; i++) { /* if the disk has size > 0, it is available */ if (hba[ctlr]->sizes[i << gdev->minor_shift] != 0) newhighest = i; } h->highest_lun = newhighest; } --h->log_drives; gdev->nr_real = h->highest_lun+1; /* zero out the disk size info */ h->drv[logvol].nr_blks = 0; h->drv[logvol].cylinders = 0; h->drv[logvol].blk_size = 0; return(0); } static int sendcmd_withirq( __u8 cmd, int ctlr, void *buff, size_t size, unsigned int blk, unsigned int blkcnt, unsigned int log_unit ) { cmdlist_t *c; unsigned long flags; ctlr_info_t *info_p = hba[ctlr]; DECLARE_COMPLETION(wait); c = cmd_alloc(info_p, 0); if(!c) return IO_ERROR; c->type = CMD_IOCTL_PEND; c->ctlr = ctlr; c->hdr.unit = log_unit; c->hdr.prio = 0; c->hdr.size = sizeof(rblk_t) >> 2; c->size += sizeof(rblk_t); /* The request information. */ c->req.hdr.next = 0; c->req.hdr.rcode = 0; c->req.bp = 0; c->req.hdr.sg_cnt = 1; c->req.hdr.reserved = 0; if (size == 0) c->req.sg[0].size = 512; else c->req.sg[0].size = size; c->req.hdr.blk = blk; c->req.hdr.blk_cnt = blkcnt; c->req.hdr.cmd = (unsigned char) cmd; c->req.sg[0].addr = (__u32) pci_map_single(info_p->pci_dev, buff, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); c->waiting = &wait; /* Put the request on the tail of the request queue */ spin_lock_irqsave(&io_request_lock, flags); addQ(&info_p->reqQ, c); info_p->Qdepth++; start_io(info_p); spin_unlock_irqrestore(&io_request_lock, flags); /* Wait for completion */ wait_for_completion(&wait); if (c->req.hdr.rcode & RCODE_FATAL) { printk(KERN_WARNING "Fatal error on ida/c%dd%d\n", c->ctlr, c->hdr.unit); cmd_free(info_p, c, 0); return(IO_ERROR); } if (c->req.hdr.rcode & RCODE_INVREQ) { printk(KERN_WARNING "Invalid request on ida/c%dd%d = (cmd=%x sect=%d cnt=%d sg=%d ret=%x)\n", c->ctlr, c->hdr.unit, c->req.hdr.cmd, c->req.hdr.blk, c->req.hdr.blk_cnt, c->req.hdr.sg_cnt, c->req.hdr.rcode); cmd_free(info_p, c, 0); return(IO_ERROR); } cmd_free(info_p, c, 0); return(IO_OK); } static int register_new_disk(int ctlr, int logvol) { struct gendisk *gdev = &(hba[ctlr]->gendisk); ctlr_info_t *info_p = hba[ctlr]; int ret_code, size; sense_log_drv_stat_t *id_lstatus_buf; id_log_drv_t *id_ldrive; drv_info_t *drv; int max_p; int start; int i; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if( (logvol < 0) || (logvol >= IDA_MAX_PART)) return -EINVAL; /* disk is already registered */ if(hba[ctlr]->sizes[logvol << gdev->minor_shift] != 0 ) return -EINVAL; id_ldrive = (id_log_drv_t *)kmalloc(sizeof(id_log_drv_t), GFP_KERNEL); if(id_ldrive == NULL) { printk( KERN_ERR "cpqarray: out of memory.\n"); return -1; } id_lstatus_buf = (sense_log_drv_stat_t *)kmalloc(sizeof(sense_log_drv_stat_t), GFP_KERNEL); if(id_lstatus_buf == NULL) { kfree(id_ldrive); printk( KERN_ERR "cpqarray: out of memory.\n"); return -1; } size = sizeof(sense_log_drv_stat_t); /* Send "Identify logical drive status" cmd */ ret_code = sendcmd_withirq(SENSE_LOG_DRV_STAT, ctlr, id_lstatus_buf, size, 0, 0, logvol); if (ret_code == IO_ERROR) { /* If can't get logical drive status, set the logical drive map to 0, so the idastubopen will fail for all logical drives on the controller. */ /* Free all the buffers and return */ kfree(id_lstatus_buf); kfree(id_ldrive); return -1; } /* Make sure the logical drive is configured */ if (id_lstatus_buf->status == LOG_NOT_CONF) { printk(KERN_WARNING "cpqarray: c%dd%d array not configured\n", ctlr, logvol); kfree(id_lstatus_buf); kfree(id_ldrive); return -1; } ret_code = sendcmd_withirq(ID_LOG_DRV, ctlr, id_ldrive, sizeof(id_log_drv_t), 0, 0, logvol); /* If error, the bit for this logical drive won't be set and idastubopen will return error. */ if (ret_code == IO_ERROR) { printk(KERN_WARNING "cpqarray: c%dd%d unable to ID logical volume\n", ctlr,logvol); kfree(id_lstatus_buf); kfree(id_ldrive); return -1; } drv = &info_p->drv[logvol]; drv->blk_size = id_ldrive->blk_size; drv->nr_blks = id_ldrive->nr_blks; drv->cylinders = id_ldrive->drv.cyl; drv->heads = id_ldrive->drv.heads; drv->sectors = id_ldrive->drv.sect_per_track; info_p->log_drv_map |= (1 << logvol); if (info_p->highest_lun < logvol) info_p->highest_lun = logvol; printk(KERN_INFO "cpqarray ida/c%dd%d: blksz=%d nr_blks=%d\n", ctlr, logvol, drv->blk_size, drv->nr_blks); hba[ctlr]->drv[logvol].usage_count = 0; max_p = gdev->max_p; start = logvol<< gdev->minor_shift; for(i=max_p-1; i>=0; i--) { int minor = start+i; invalidate_device(MKDEV(MAJOR_NR + ctlr, minor), 1); gdev->part[minor].start_sect = 0; gdev->part[minor].nr_sects = 0; /* reset the blocksize so we can read the partition table */ blksize_size[MAJOR_NR+ctlr][minor] = 1024; hba[ctlr]->hardsizes[minor] = drv->blk_size; } ++hba[ctlr]->log_drives; gdev->nr_real = info_p->highest_lun + 1; /* setup partitions per disk */ grok_partitions(gdev, logvol, IDA_MAX_PART, drv->nr_blks); kfree(id_lstatus_buf); kfree(id_ldrive); return (0); } /* Borrowed and adapted from sd.c */ static int revalidate_logvol(kdev_t dev, int maxusage) { int ctlr, target; struct gendisk *gdev; unsigned long flags; int max_p; int start; int i; target = DEVICE_NR(dev); ctlr = MAJOR(dev) - MAJOR_NR; gdev = &(hba[ctlr]->gendisk); spin_lock_irqsave(&io_request_lock, flags); if (hba[ctlr]->drv[target].usage_count > maxusage) { spin_unlock_irqrestore(&io_request_lock, flags); printk(KERN_WARNING "cpqarray: Device busy for " "revalidation (usage=%d)\n", hba[ctlr]->drv[target].usage_count); return -EBUSY; } hba[ctlr]->drv[target].usage_count++; spin_unlock_irqrestore(&io_request_lock, flags); max_p = gdev->max_p; start = target << gdev->minor_shift; for(i=max_p-1; i>=0; i--) { int minor = start+i; invalidate_device(MKDEV(MAJOR_NR + ctlr, minor), 1); gdev->part[minor].start_sect = 0; gdev->part[minor].nr_sects = 0; /* reset the blocksize so we can read the partition table */ blksize_size[MAJOR_NR+ctlr][minor] = 1024; } /* 16 minors per disk... */ grok_partitions(gdev, target, IDA_MAX_PART, hba[ctlr]->drv[target].nr_blks); hba[ctlr]->drv[target].usage_count--; return 0; } /******************************************************************** name: pollcomplete Wait polling for a command to complete. The memory mapped FIFO is polled for the completion. Used only at init time, interrupts disabled. ********************************************************************/ static int pollcomplete(int ctlr) { int done; int i; /* Wait (up to 2 seconds) for a command to complete */ for (i = 200000; i > 0; i--) { done = hba[ctlr]->access.command_completed(hba[ctlr]); if (done == 0) { udelay(10); /* a short fixed delay */ } else return (done); } /* Invalid address to tell caller we ran out of time */ return 1; } /***************************************************************** start_fwbk Starts controller firmwares background processing. Currently only the Integrated Raid controller needs this done. If the PCI mem address registers are written to after this, data corruption may occur *****************************************************************/ static void start_fwbk(int ctlr) { id_ctlr_t *id_ctlr_buf; int ret_code; if( (hba[ctlr]->board_id != 0x40400E11) && (hba[ctlr]->board_id != 0x40480E11) ) /* Not a Integrated Raid, so there is nothing for us to do */ return; printk(KERN_DEBUG "cpqarray: Starting firmware's background" " processing\n"); /* Command does not return anything, but idasend command needs a buffer */ id_ctlr_buf = (id_ctlr_t *)kmalloc(sizeof(id_ctlr_t), GFP_KERNEL); if(id_ctlr_buf==NULL) { printk(KERN_WARNING "cpqarray: Out of memory. " "Unable to start background processing.\n"); return; } ret_code = sendcmd(RESUME_BACKGROUND_ACTIVITY, ctlr, id_ctlr_buf, 0, 0, 0, 0); if(ret_code != IO_OK) printk(KERN_WARNING "cpqarray: Unable to start" " background processing\n"); kfree(id_ctlr_buf); } /***************************************************************** getgeometry Get ida logical volume geometry from the controller This is a large bit of code which once existed in two flavors, It is used only at init time. *****************************************************************/ static void getgeometry(int ctlr) { id_log_drv_t *id_ldrive; id_ctlr_t *id_ctlr_buf; sense_log_drv_stat_t *id_lstatus_buf; config_t *sense_config_buf; unsigned int log_unit, log_index; int ret_code, size; drv_info_t *drv; ctlr_info_t *info_p = hba[ctlr]; int i; info_p->log_drv_map = 0; id_ldrive = (id_log_drv_t *)kmalloc(sizeof(id_log_drv_t), GFP_KERNEL); if(id_ldrive == NULL) { printk( KERN_ERR "cpqarray: out of memory.\n"); return; } id_ctlr_buf = (id_ctlr_t *)kmalloc(sizeof(id_ctlr_t), GFP_KERNEL); if(id_ctlr_buf == NULL) { kfree(id_ldrive); printk( KERN_ERR "cpqarray: out of memory.\n"); return; } id_lstatus_buf = (sense_log_drv_stat_t *)kmalloc(sizeof(sense_log_drv_stat_t), GFP_KERNEL); if(id_lstatus_buf == NULL) { kfree(id_ctlr_buf); kfree(id_ldrive); printk( KERN_ERR "cpqarray: out of memory.\n"); return; } sense_config_buf = (config_t *)kmalloc(sizeof(config_t), GFP_KERNEL); if(sense_config_buf == NULL) { kfree(id_lstatus_buf); kfree(id_ctlr_buf); kfree(id_ldrive); printk( KERN_ERR "cpqarray: out of memory.\n"); return; } memset(id_ldrive, 0, sizeof(id_log_drv_t)); memset(id_ctlr_buf, 0, sizeof(id_ctlr_t)); memset(id_lstatus_buf, 0, sizeof(sense_log_drv_stat_t)); memset(sense_config_buf, 0, sizeof(config_t)); info_p->phys_drives = 0; info_p->log_drv_map = 0; info_p->drv_assign_map = 0; info_p->drv_spare_map = 0; info_p->mp_failed_drv_map = 0; /* only initialized here */ /* Get controllers info for this logical drive */ ret_code = sendcmd(ID_CTLR, ctlr, id_ctlr_buf, 0, 0, 0, 0); if (ret_code == IO_ERROR) { /* * If can't get controller info, set the logical drive map to 0, * so the idastubopen will fail on all logical drives * on the controller. */ /* Free all the buffers and return */ printk(KERN_ERR "cpqarray: error sending ID controller\n"); kfree(sense_config_buf); kfree(id_lstatus_buf); kfree(id_ctlr_buf); kfree(id_ldrive); return; } info_p->log_drives = id_ctlr_buf->nr_drvs;; for(i=0;i<4;i++) info_p->firm_rev[i] = id_ctlr_buf->firm_rev[i]; info_p->ctlr_sig = id_ctlr_buf->cfg_sig; printk(" (%s)\n", info_p->product_name); /* * Initialize logical drive map to zero */ log_index = 0; /* * Get drive geometry for all logical drives */ if (id_ctlr_buf->nr_drvs > IDA_MAX_PART) printk(KERN_WARNING "cpqarray ida%d: This driver supports " "16 logical drives per controller.\n. " " Additional drives will not be " "detected\n", ctlr); for (log_unit = 0; (log_index < id_ctlr_buf->nr_drvs) && (log_unit < NWD); log_unit++) { size = sizeof(sense_log_drv_stat_t); /* Send "Identify logical drive status" cmd */ ret_code = sendcmd(SENSE_LOG_DRV_STAT, ctlr, id_lstatus_buf, size, 0, 0, log_unit); if (ret_code == IO_ERROR) { /* If can't get logical drive status, set the logical drive map to 0, so the idastubopen will fail for all logical drives on the controller. */ info_p->log_drv_map = 0; printk( KERN_WARNING "cpqarray ida%d: idaGetGeometry - Controller" " failed to report status of logical drive %d\n" "Access to this controller has been disabled\n", ctlr, log_unit); /* Free all the buffers and return */ kfree(sense_config_buf); kfree(id_lstatus_buf); kfree(id_ctlr_buf); kfree(id_ldrive); return; } /* Make sure the logical drive is configured */ if (id_lstatus_buf->status != LOG_NOT_CONF) { ret_code = sendcmd(ID_LOG_DRV, ctlr, id_ldrive, sizeof(id_log_drv_t), 0, 0, log_unit); /* If error, the bit for this logical drive won't be set and idastubopen will return error. */ if (ret_code != IO_ERROR) { drv = &info_p->drv[log_unit]; drv->blk_size = id_ldrive->blk_size; drv->nr_blks = id_ldrive->nr_blks; drv->cylinders = id_ldrive->drv.cyl; drv->heads = id_ldrive->drv.heads; drv->sectors = id_ldrive->drv.sect_per_track; info_p->log_drv_map |= (1 << log_unit); printk(KERN_INFO "cpqarray ida/c%dd%d: blksz=%d nr_blks=%d\n", ctlr, log_unit, drv->blk_size, drv->nr_blks); ret_code = sendcmd(SENSE_CONFIG, ctlr, sense_config_buf, sizeof(config_t), 0, 0, log_unit); if (ret_code == IO_ERROR) { info_p->log_drv_map = 0; /* Free all the buffers and return */ printk(KERN_ERR "cpqarray: error sending sense config\n"); kfree(sense_config_buf); kfree(id_lstatus_buf); kfree(id_ctlr_buf); kfree(id_ldrive); return; } if(log_unit > info_p->highest_lun) info_p->highest_lun = log_unit; info_p->phys_drives = sense_config_buf->ctlr_phys_drv; info_p->drv_assign_map |= sense_config_buf->drv_asgn_map; info_p->drv_assign_map |= sense_config_buf->spare_asgn_map; info_p->drv_spare_map |= sense_config_buf->spare_asgn_map; } /* end of if no error on id_ldrive */ log_index = log_index + 1; } /* end of if logical drive configured */ } /* end of for log_unit */ kfree(sense_config_buf); kfree(id_ldrive); kfree(id_lstatus_buf); kfree(id_ctlr_buf); return; } static void __exit cleanup_cpqarray_module(void) { int i; pci_unregister_driver(&cpqarray_pci_driver); /* double check that all controller entrys have been removed */ for (i=0; i< MAX_CTLR; i++) { if (hba[i] != NULL) { printk(KERN_WARNING "cpqarray: had to remove" " controller %d\n", i); cpqarray_remove_one_eisa(i); } } remove_proc_entry("cpqarray", proc_root_driver); } module_init(init_cpqarray_module); module_exit(cleanup_cpqarray_module);