/* * Disk Array driver for HP SA 5xxx and 6xxx Controllers * Copyright 2000, 2005 Hewlett-Packard Development Company, L.P. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Questions/Comments/Bugfixes to Cciss-discuss@lists.sourceforge.net * */ #include /* CONFIG_PROC_FS */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin)) #define DRIVER_NAME "HP CISS Driver (v 2.4.60)" #define DRIVER_VERSION CCISS_DRIVER_VERSION(2,4,60) /* Embedded module documentation macros - see modules.h */ MODULE_AUTHOR("Hewlett-Packard Company"); MODULE_DESCRIPTION("Driver for HP SA5xxx SA6xxx Controllers version 2.4.52"); MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400 6i SA6422 P600 P400 P400i E200i E200"); MODULE_LICENSE("GPL"); #include "cciss_cmd.h" #include "cciss.h" #include /* define the PCI info for the cards we can control */ const struct pci_device_id cciss_pci_device_id[] = { { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091, 0, 0, 0}, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409E, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215, 0, 0, 0}, { PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, cciss_pci_device_id); #define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type)) /* board_id = Subsystem Device ID & Vendor ID * product = Marketing Name for the board * access = Address of the struct of function pointers */ static struct board_type products[] = { { 0x40700E11, "Smart Array 5300", &SA5_access}, { 0x40800E11, "Smart Array 5i", &SA5B_access}, { 0x40820E11, "Smart Array 532", &SA5B_access}, { 0x40830E11, "Smart Array 5312", &SA5B_access}, { 0x409A0E11, "Smart Array 641", &SA5_access}, { 0x409B0E11, "Smart Array 642", &SA5_access}, { 0x409C0E11, "Smart Array 6400", &SA5_access}, { 0x409D0E11, "Smart Array 6400 EM", &SA5_access}, { 0x40910E11, "Smart Array 6i", &SA5_access}, { 0x409E0E11, "Smart Array 6422", &SA5_access}, { 0x3234103c, "Smart Array P400", &SA5_access}, { 0x3235103c, "Smart Array P400i", &SA5_access}, { 0x3211103c, "Smart Array E200i", &SA5_access}, { 0x3212103c, "Smart Array E200", &SA5_access}, { 0x3213103c, "Smart Array E200i", &SA5_access}, { 0x3214103c, "Smart Array E200i", &SA5_access}, { 0x3215103c, "Smart Array E200i", &SA5_access}, { 0xFFFF103C, "Unknown Smart Array", &SA5_access}, }; /* How long to wait (in millesconds) for board to go into simple mode */ #define MAX_CONFIG_WAIT 30000 #define MAX_IOCTL_CONFIG_WAIT 1000 /*define how many times we will try a command because of bus resets */ #define MAX_CMD_RETRIES 3 #define READ_AHEAD 128 #define NR_CMDS 128 /* #commands that can be outstanding */ #define MAX_CTLR 32 /* No sense in giving up our preallocated major numbers */ #if MAX_CTLR < 8 #error"cciss.c: MAX_CTLR must be 8 or greater" #endif /* Originally cciss driver only supports 8 major number */ #define MAX_CTLR_ORIG COMPAQ_CISS_MAJOR7 - COMPAQ_CISS_MAJOR + 1 #define CCISS_DMA_MASK 0xFFFFFFFFFFFFFFFFULL /* 64 bit DMA */ #ifdef CONFIG_CISS_MONITOR_THREAD static int cciss_monitor(void *ctlr); static int start_monitor_thread(ctlr_info_t *h, unsigned char *cmd, unsigned long count, int (*cciss_monitor)(void *), int *rc); static u32 heartbeat_timer = 0; #else #define cciss_monitor(x) #define kill_monitor_thead(x) #endif static ctlr_info_t *hba[MAX_CTLR]; static int map_major_to_ctlr[MAX_BLKDEV] = {0}; /* gets ctlr num from maj num */ static struct proc_dir_entry *proc_cciss; static void do_cciss_request(request_queue_t *q); static int cciss_open(struct inode *inode, struct file *filep); static int cciss_release(struct inode *inode, struct file *filep); static int cciss_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, unsigned long arg); static int revalidate_logvol(kdev_t dev, int maxusage); static int frevalidate_logvol(kdev_t dev); static int deregister_disk(int ctlr, int logvol); static int register_new_disk(int cltr, int opened_vol, __u64 requested_lun); static int cciss_rescan_disk(int cltr, int logvol); static void cciss_getgeometry(int cntl_num); static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c); static void start_io( ctlr_info_t *h); #ifdef CONFIG_PROC_FS static int cciss_proc_get_info(char *buffer, char **start, off_t offset, int length, int *eof, void *data); static void cciss_procinit(int i); #else static int cciss_proc_get_info(char *buffer, char **start, off_t offset, int length, int *eof, void *data) { return 0;} static void cciss_procinit(int i) {} #endif /* CONFIG_PROC_FS */ /* * Enqueuing and dequeuing functions for cmdlists. */ static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c) { if (*Qptr == NULL) { *Qptr = c; c->next = c->prev = c; } else { c->prev = (*Qptr)->prev; c->next = (*Qptr); (*Qptr)->prev->next = c; (*Qptr)->prev = c; } } static inline CommandList_struct *removeQ(CommandList_struct **Qptr, CommandList_struct *c) { if (c && c->next != c) { if (*Qptr == c) *Qptr = c->next; c->prev->next = c->next; c->next->prev = c->prev; } else { *Qptr = NULL; } return c; } static struct block_device_operations cciss_fops = { owner: THIS_MODULE, open: cciss_open, release: cciss_release, ioctl: cciss_ioctl, revalidate: frevalidate_logvol, }; #include "cciss_scsi.c" /* For SCSI tape support */ #define ENG_GIG 1048576000 #define ENG_GIG_FACTOR (ENG_GIG/512) #define RAID_UNKNOWN 6 static const char *raid_label[] = {"0","4","1(0+1)","5","5+1","ADG", "UNKNOWN"}; /* * Report information about this controller. */ #ifdef CONFIG_PROC_FS static int cciss_proc_get_info(char *buffer, char **start, off_t offset, int length, int *eof, void *data) { off_t pos = 0; off_t len = 0; int size, i, ctlr; ctlr_info_t *h = (ctlr_info_t*)data; drive_info_struct *drv; unsigned long flags; unsigned int vol_sz, vol_sz_frac; spin_lock_irqsave(&io_request_lock, flags); if (h->busy_configuring) { spin_unlock_irqrestore(&io_request_lock, flags); return -EBUSY; } h->busy_configuring = 1; spin_unlock_irqrestore(&io_request_lock, flags); ctlr = h->ctlr; size = sprintf(buffer, "%s: HP %s Controller\n" "Board ID: 0x%08lx\n" "Firmware Version: %c%c%c%c\n" "IRQ: %d\n" "Logical drives: %d\n" "Current Q depth: %d\n" "Current # commands on controller: %d\n" "Max Q depth since init: %d\n" "Max # commands on controller since init: %d\n" "Max SG entries since init: %d\n" MONITOR_PERIOD_PATTERN MONITOR_DEADLINE_PATTERN MONITOR_STATUS_PATTERN "\n", h->devname, h->product_name, (unsigned long)h->board_id, h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3], (unsigned int)h->intr, h->num_luns, h->Qdepth, h->commands_outstanding, h->maxQsinceinit, h->max_outstanding, h->maxSG, MONITOR_PERIOD_VALUE(h), MONITOR_DEADLINE_VALUE(h), CTLR_STATUS(h)); pos += size; len += size; cciss_proc_tape_report(ctlr, buffer, &pos, &len); for(i=0; i<=h->highest_lun; i++) { drv = &h->drv[i]; if (drv->nr_blocks == 0) continue; vol_sz = drv->nr_blocks/ENG_GIG_FACTOR; vol_sz_frac = (drv->nr_blocks%ENG_GIG_FACTOR)*100/ENG_GIG_FACTOR; if (drv->raid_level > 5) drv->raid_level = RAID_UNKNOWN; size = sprintf(buffer+len, "cciss/c%dd%d:" "\t%4d.%02dGB\tRAID %s\n", ctlr, i, vol_sz,vol_sz_frac, raid_label[drv->raid_level]); pos += size, len += size; } *eof = 1; *start = buffer+offset; len -= offset; if (len>length) len = length; h->busy_configuring = 0; return len; } static int cciss_proc_write(struct file *file, const char *buffer, unsigned long count, void *data) { unsigned char cmd[80]; int len; ctlr_info_t *h = (ctlr_info_t *) data; int rc; if (count > sizeof(cmd)-1) return -EINVAL; if (copy_from_user(cmd, buffer, count)) return -EFAULT; cmd[count] = '\0'; len = strlen(cmd); if (cmd[len-1] == '\n') cmd[--len] = '\0'; # ifdef CONFIG_CISS_SCSI_TAPE if (strcmp("engage scsi", cmd)==0) { rc = cciss_engage_scsi(h->ctlr); if (rc != 0) return -rc; return count; } /* might be nice to have "disengage" too, but it's not safely possible. (only 1 module use count, lock issues.) */ # endif if (START_MONITOR_THREAD(h, cmd, count, cciss_monitor, &rc) == 0) return rc; return -EINVAL; } /* * Get us a file in /proc/cciss that says something about each controller. * Create /proc/cciss if it doesn't exist yet. */ static void __init cciss_procinit(int i) { struct proc_dir_entry *pde; if (proc_cciss == NULL) { proc_cciss = proc_mkdir("cciss", proc_root_driver); if (!proc_cciss) { printk("cciss: proc_mkdir failed\n"); return; } } pde = create_proc_read_entry(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH, proc_cciss, cciss_proc_get_info, hba[i]); pde->write_proc = cciss_proc_write; } #endif /* CONFIG_PROC_FS */ /* * For operations that cannot sleep, a command block is allocated at init, * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track * which ones are free or in use. For operations that can wait for kmalloc * to possible sleep, this routine can be called with get_from_pool set to 0. * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was. */ static CommandList_struct * cmd_alloc(ctlr_info_t *h, int get_from_pool) { CommandList_struct *c; int i; u64bit temp64; dma_addr_t cmd_dma_handle, err_dma_handle; if (!get_from_pool) { c = (CommandList_struct *) pci_alloc_consistent( h->pdev, sizeof(CommandList_struct), &cmd_dma_handle); if (c==NULL) return NULL; memset(c, 0, sizeof(CommandList_struct)); c->err_info = (ErrorInfo_struct *)pci_alloc_consistent( h->pdev, sizeof(ErrorInfo_struct), &err_dma_handle); if (c->err_info == NULL) { pci_free_consistent(h->pdev, sizeof(CommandList_struct), c, cmd_dma_handle); return NULL; } memset(c->err_info, 0, sizeof(ErrorInfo_struct)); } else /* get it out of the controllers pool */ { do { i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS); if (i == NR_CMDS) return NULL; } while(test_and_set_bit(i%32, h->cmd_pool_bits+(i/32)) != 0); #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: using command buffer %d\n", i); #endif c = h->cmd_pool + i; memset(c, 0, sizeof(CommandList_struct)); cmd_dma_handle = h->cmd_pool_dhandle + i*sizeof(CommandList_struct); c->err_info = h->errinfo_pool + i; memset(c->err_info, 0, sizeof(ErrorInfo_struct)); err_dma_handle = h->errinfo_pool_dhandle + i*sizeof(ErrorInfo_struct); h->nr_allocs++; } c->busaddr = (__u32) cmd_dma_handle; temp64.val = (__u64) err_dma_handle; c->ErrDesc.Addr.lower = temp64.val32.lower; c->ErrDesc.Addr.upper = temp64.val32.upper; c->ErrDesc.Len = sizeof(ErrorInfo_struct); c->ctlr = h->ctlr; return c; } /* * Frees a command block that was previously allocated with cmd_alloc(). */ static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool) { int i; u64bit temp64; if (!got_from_pool) { temp64.val32.lower = c->ErrDesc.Addr.lower; temp64.val32.upper = c->ErrDesc.Addr.upper; pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct), c->err_info, (dma_addr_t) temp64.val); pci_free_consistent(h->pdev, sizeof(CommandList_struct), c, (dma_addr_t) c->busaddr); } else { i = c - h->cmd_pool; clear_bit(i%32, h->cmd_pool_bits+(i/32)); h->nr_frees++; } } /* * fills in the disk information. */ static void cciss_geninit( int ctlr) { drive_info_struct *drv; int i,j; /* Loop through each real device */ hba[ctlr]->gendisk.nr_real = 0; for(i=0; i< NWD; i++) { drv = &(hba[ctlr]->drv[i]); if (!(drv->nr_blocks)) continue; hba[ctlr]->hd[i << NWD_SHIFT].nr_sects = hba[ctlr]->sizes[i << NWD_SHIFT] = drv->nr_blocks; /* for each partition */ for(j=0; jblocksizes[(i<hardsizes[ (i<block_size; } } hba[ctlr]->gendisk.nr_real = hba[ctlr]->highest_lun+1; } /* * Open. Make sure the device is really there. */ static int cciss_open(struct inode *inode, struct file *filep) { int ctlr = map_major_to_ctlr[MAJOR(inode->i_rdev)]; int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT; #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss_open %x (%x:%x)\n", inode->i_rdev, ctlr, dsk); #endif /* CCISS_DEBUG */ if (ctlr > MAX_CTLR || hba[ctlr] == NULL || !CTLR_IS_ALIVE(hba[ctlr])) return -ENXIO; /* * Root is allowed to open raw volume zero even if its not configured * so array config can still work. Root is also allowed to open any * volume that has a LUN ID, so it can issue IOCTL to reread the * disk information. I don't think I really like this. * but I'm already using way to many device nodes to claim another one * for "raw controller". */ if (hba[ctlr]->sizes[MINOR(inode->i_rdev)] == 0) { /* not online? */ if (MINOR(inode->i_rdev) != 0) { /* not node 0? */ /* if not node 0 make sure it is a partition = 0 */ if (MINOR(inode->i_rdev) & 0x0f) { return -ENXIO; /* if it is, make sure we have a LUN ID */ } else if (hba[ctlr]->drv[MINOR(inode->i_rdev) >> NWD_SHIFT].LunID == 0) { return -ENXIO; } } if (!capable(CAP_SYS_ADMIN)) return -EPERM; } hba[ctlr]->drv[dsk].usage_count++; hba[ctlr]->usage_count++; return 0; } /* * Close. Sync first. */ static int cciss_release(struct inode *inode, struct file *filep) { int ctlr = map_major_to_ctlr[MAJOR(inode->i_rdev)]; int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT; #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss_release %x (%x:%x)\n", inode->i_rdev, ctlr, dsk); #endif /* CCISS_DEBUG */ /* fsync_dev(inode->i_rdev); */ hba[ctlr]->drv[dsk].usage_count--; hba[ctlr]->usage_count--; return 0; } #ifdef __x86_64__ /* for AMD 64 bit kernel compatibility with 32-bit userland ioctls */ extern int sys_ioctl(unsigned int fd, unsigned cmd, unsigned long arg); extern int register_ioctl32_conversion(unsigned int cmd, int (*handler)(unsigned int, unsigned int, unsigned long, struct file *)); extern int unregister_ioctl32_conversion(unsigned int cmd); static int cciss_ioctl32_passthru(unsigned int fd, unsigned cmd, unsigned long arg, struct file *file); static int cciss_ioctl32_big_passthru(unsigned int fd, unsigned cmd, unsigned long arg, struct file *file); typedef int (*handler_type) (unsigned int, unsigned int, unsigned long, struct file *); static struct ioctl32_map { unsigned int cmd; handler_type handler; int registered; } cciss_ioctl32_map[] = { { CCISS_GETPCIINFO, (handler_type) sys_ioctl, 0 }, { CCISS_GETINTINFO, (handler_type) sys_ioctl, 0 }, { CCISS_SETINTINFO, (handler_type) sys_ioctl, 0 }, { CCISS_GETNODENAME, (handler_type) sys_ioctl, 0 }, { CCISS_SETNODENAME, (handler_type) sys_ioctl, 0 }, { CCISS_GETHEARTBEAT, (handler_type) sys_ioctl, 0 }, { CCISS_GETBUSTYPES, (handler_type) sys_ioctl, 0 }, { CCISS_GETFIRMVER, (handler_type) sys_ioctl, 0 }, { CCISS_GETDRIVVER, (handler_type) sys_ioctl, 0 }, { CCISS_REVALIDVOLS, (handler_type) sys_ioctl, 0 }, { CCISS_PASSTHRU32, cciss_ioctl32_passthru, 0 }, { CCISS_DEREGDISK, (handler_type) sys_ioctl, 0 }, { CCISS_REGNEWDISK, (handler_type) sys_ioctl, 0 }, { CCISS_REGNEWD, (handler_type) sys_ioctl, 0 }, { CCISS_RESCANDISK, (handler_type) sys_ioctl, 0 }, { CCISS_GETLUNINFO, (handler_type) sys_ioctl, 0 }, { CCISS_BIG_PASSTHRU32, cciss_ioctl32_big_passthru, 0 }, }; #define NCCISS_IOCTL32_ENTRIES (sizeof(cciss_ioctl32_map) / sizeof(cciss_ioctl32_map[0])) static void register_cciss_ioctl32(void) { int i, rc; for (i=0; i < NCCISS_IOCTL32_ENTRIES; i++) { rc = register_ioctl32_conversion( cciss_ioctl32_map[i].cmd, cciss_ioctl32_map[i].handler); if (rc != 0) { printk(KERN_WARNING "cciss: failed to register " "32 bit compatible ioctl 0x%08x\n", cciss_ioctl32_map[i].cmd); cciss_ioctl32_map[i].registered = 0; } else cciss_ioctl32_map[i].registered = 1; } } static void unregister_cciss_ioctl32(void) { int i, rc; for (i=0; i < NCCISS_IOCTL32_ENTRIES; i++) { if (!cciss_ioctl32_map[i].registered) continue; rc = unregister_ioctl32_conversion( cciss_ioctl32_map[i].cmd); if (rc == 0) { cciss_ioctl32_map[i].registered = 0; continue; } printk(KERN_WARNING "cciss: failed to unregister " "32 bit compatible ioctl 0x%08x\n", cciss_ioctl32_map[i].cmd); } } int cciss_ioctl32_passthru(unsigned int fd, unsigned cmd, unsigned long arg, struct file *file) { IOCTL32_Command_struct *arg32 = (IOCTL32_Command_struct *) arg; IOCTL_Command_struct arg64; mm_segment_t old_fs; int err; __u64 tmp_ptr; err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(tmp_ptr, &arg32->buf); arg64.buf = (BYTE *) tmp_ptr; if (err) return -EFAULT; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_ioctl(fd, CCISS_PASSTHRU, (unsigned long) &arg64); set_fs(old_fs); if (err) return err; err |= copy_to_user(&arg32->error_info, &arg64.error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } int cciss_ioctl32_big_passthru(unsigned int fd, unsigned cmd, unsigned long arg, struct file *file) { BIG_IOCTL32_Command_struct *arg32 = (BIG_IOCTL32_Command_struct *) arg; BIG_IOCTL_Command_struct arg64; mm_segment_t old_fs; int err; __u64 tmp_ptr; err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(arg64.malloc_size, &arg32->malloc_size); err |= get_user(tmp_ptr, &arg32->buf); arg64.buf = (BYTE *) tmp_ptr; if (err) return -EFAULT; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_ioctl(fd, CCISS_BIG_PASSTHRU, (unsigned long) &arg64); set_fs(old_fs); if (err) return err; err |= copy_to_user(&arg32->error_info, &arg64.error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } #else static inline void register_cciss_ioctl32(void) {} static inline void unregister_cciss_ioctl32(void) {} #endif /* * ioctl */ static int cciss_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, unsigned long arg) { int ctlr = map_major_to_ctlr[MAJOR(inode->i_rdev)]; int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT; #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg); #endif /* CCISS_DEBUG */ switch(cmd) { case HDIO_GETGEO: { struct hd_geometry driver_geo; if (hba[ctlr]->drv[dsk].cylinders) { driver_geo.heads = hba[ctlr]->drv[dsk].heads; driver_geo.sectors = hba[ctlr]->drv[dsk].sectors; driver_geo.cylinders = hba[ctlr]->drv[dsk].cylinders; } else return -ENXIO; driver_geo.start= hba[ctlr]->hd[MINOR(inode->i_rdev)].start_sect; if (copy_to_user((void *) arg, &driver_geo, sizeof( struct hd_geometry))) return -EFAULT; return 0; } case HDIO_GETGEO_BIG: { struct hd_big_geometry driver_geo; if (hba[ctlr]->drv[dsk].cylinders) { driver_geo.heads = hba[ctlr]->drv[dsk].heads; driver_geo.sectors = hba[ctlr]->drv[dsk].sectors; driver_geo.cylinders = hba[ctlr]->drv[dsk].cylinders; } else return -ENXIO; driver_geo.start= hba[ctlr]->hd[MINOR(inode->i_rdev)].start_sect; if (copy_to_user((void *) arg, &driver_geo, sizeof( struct hd_big_geometry))) return -EFAULT; return 0; } case BLKRRPART: if (!capable(CAP_SYS_ADMIN)) return -EPERM; return revalidate_logvol(inode->i_rdev, 1); case BLKGETSIZE: case BLKGETSIZE64: case BLKFLSBUF: case BLKBSZSET: case BLKBSZGET: case BLKROSET: case BLKROGET: case BLKRASET: case BLKRAGET: case BLKPG: case BLKELVGET: case BLKELVSET: return blk_ioctl(inode->i_rdev, cmd, arg); case CCISS_GETPCIINFO: { cciss_pci_info_struct pciinfo; if (!arg) return -EINVAL; pciinfo.bus = hba[ctlr]->pdev->bus->number; pciinfo.dev_fn = hba[ctlr]->pdev->devfn; pciinfo.board_id = hba[ctlr]->board_id; if (copy_to_user((void *) arg, &pciinfo, sizeof( cciss_pci_info_struct ))) return -EFAULT; return 0; } case CCISS_GETINTINFO: { cciss_coalint_struct intinfo; ctlr_info_t *c = hba[ctlr]; if (!arg) return -EINVAL; intinfo.delay = readl(&c->cfgtable->HostWrite.CoalIntDelay); intinfo.count = readl(&c->cfgtable->HostWrite.CoalIntCount); if (copy_to_user((void *) arg, &intinfo, sizeof( cciss_coalint_struct ))) return -EFAULT; return 0; } case CCISS_SETINTINFO: { cciss_coalint_struct intinfo; ctlr_info_t *c = hba[ctlr]; unsigned long flags; int i; if (!arg) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&intinfo, (void *) arg, sizeof( cciss_coalint_struct))) return -EFAULT; if ( (intinfo.delay == 0 ) && (intinfo.count == 0)) { return -EINVAL; } spin_lock_irqsave(&io_request_lock, flags); /* Can only safely update if no commands outstanding */ if (c->commands_outstanding > 0 ) { spin_unlock_irqrestore(&io_request_lock, flags); return -EINVAL; } /* Update the field, and then ring the doorbell */ writel( intinfo.delay, &(c->cfgtable->HostWrite.CoalIntDelay)); writel( intinfo.count, &(c->cfgtable->HostWrite.CoalIntCount)); writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL); for(i=0;ivaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; /* delay and try again */ udelay(1000); } spin_unlock_irqrestore(&io_request_lock, flags); if (i >= MAX_IOCTL_CONFIG_WAIT) /* there is an unlikely case where this can happen, * involving hot replacing a failed 144 GB drive in a * RAID 5 set just as we attempt this ioctl. */ return -EAGAIN; return 0; } case CCISS_GETNODENAME: { NodeName_type NodeName; ctlr_info_t *c = hba[ctlr]; int i; if (!arg) return -EINVAL; for(i=0;i<16;i++) NodeName[i] = readb(&c->cfgtable->ServerName[i]); if (copy_to_user((void *) arg, NodeName, sizeof( NodeName_type))) return -EFAULT; return 0; } case CCISS_SETNODENAME: { NodeName_type NodeName; ctlr_info_t *c = hba[ctlr]; unsigned long flags; int i; if (!arg) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(NodeName, (void *) arg, sizeof( NodeName_type))) return -EFAULT; spin_lock_irqsave(&io_request_lock, flags); /* Update the field, and then ring the doorbell */ for(i=0;i<16;i++) writeb( NodeName[i], &c->cfgtable->ServerName[i]); writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL); for(i=0;ivaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; /* delay and try again */ udelay(1000); } spin_unlock_irqrestore(&io_request_lock, flags); if (i >= MAX_IOCTL_CONFIG_WAIT) /* there is an unlikely case where this can happen, * involving hot replacing a failed 144 GB drive in a * RAID 5 set just as we attempt this ioctl. */ return -EAGAIN; return 0; } case CCISS_GETHEARTBEAT: { Heartbeat_type heartbeat; ctlr_info_t *c = hba[ctlr]; if (!arg) return -EINVAL; heartbeat = readl(&c->cfgtable->HeartBeat); if (copy_to_user((void *) arg, &heartbeat, sizeof( Heartbeat_type))) return -EFAULT; return 0; } case CCISS_GETBUSTYPES: { BusTypes_type BusTypes; ctlr_info_t *c = hba[ctlr]; if (!arg) return -EINVAL; BusTypes = readl(&c->cfgtable->BusTypes); if (copy_to_user((void *) arg, &BusTypes, sizeof( BusTypes_type) )) return -EFAULT; return 0; } case CCISS_GETFIRMVER: { FirmwareVer_type firmware; if (!arg) return -EINVAL; memcpy(firmware, hba[ctlr]->firm_ver, 4); if (copy_to_user((void *) arg, firmware, sizeof( FirmwareVer_type))) return -EFAULT; return 0; } case CCISS_GETDRIVVER: { DriverVer_type DriverVer = DRIVER_VERSION; if (!arg) return -EINVAL; if (copy_to_user((void *) arg, &DriverVer, sizeof( DriverVer_type) )) return -EFAULT; return 0; } case CCISS_RESCANDISK: { return cciss_rescan_disk(ctlr, dsk); } case CCISS_DEREGDISK: return deregister_disk(ctlr,dsk); case CCISS_REGNEWD: return register_new_disk(ctlr, dsk, 0); case CCISS_REGNEWDISK: { __u64 new_logvol; if (!arg) return -EINVAL; if (copy_from_user(&new_logvol, (void *) arg, sizeof( __u64))) return -EFAULT; return register_new_disk(ctlr, dsk, new_logvol); } case CCISS_GETLUNINFO: { LogvolInfo_struct luninfo; int num_parts = 0; int i, start; luninfo.LunID = hba[ctlr]->drv[dsk].LunID; luninfo.num_opens = hba[ctlr]->drv[dsk].usage_count; /* count partitions 1 to 15 with sizes > 0 */ start = (dsk << NWD_SHIFT); for(i=1; i sizes[minor] != 0) num_parts++; } luninfo.num_parts = num_parts; if (copy_to_user((void *) arg, &luninfo, sizeof( LogvolInfo_struct) )) return -EFAULT; return 0; } case CCISS_PASSTHRU: { IOCTL_Command_struct iocommand; ctlr_info_t *h = hba[ctlr]; CommandList_struct *c; char *buff = NULL; u64bit temp64; unsigned long flags; DECLARE_COMPLETION(wait); if (!arg) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user(&iocommand, (void *) arg, sizeof( IOCTL_Command_struct) )) return -EFAULT; if ((iocommand.buf_size < 1) && (iocommand.Request.Type.Direction != XFER_NONE)) { return -EINVAL; } /* Check kmalloc limits */ if (iocommand.buf_size > 128000) return -EINVAL; if (iocommand.buf_size > 0) { buff = kmalloc(iocommand.buf_size, GFP_KERNEL); if (buff == NULL) return -ENOMEM; } if (iocommand.Request.Type.Direction == XFER_WRITE) { /* Copy the data into the buffer we created */ if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { kfree(buff); return -EFAULT; } } else memset(buff, 0, iocommand.buf_size); if ((c = cmd_alloc(h , 0)) == NULL) { kfree(buff); return -ENOMEM; } /* Fill in the command type */ c->cmd_type = CMD_IOCTL_PEND; /* Fill in Command Header */ c->Header.ReplyQueue = 0; /* unused in simple mode */ if (iocommand.buf_size > 0) { /* buffer to fill */ c->Header.SGList = 1; c->Header.SGTotal= 1; } else { /* no buffers to fill */ c->Header.SGList = 0; c->Header.SGTotal= 0; } c->Header.LUN = iocommand.LUN_info; c->Header.Tag.lower = c->busaddr; /* use the kernel address */ /* the cmd block for tag */ /* Fill in Request block */ c->Request = iocommand.Request; /* Fill in the scatter gather information */ if (iocommand.buf_size > 0 ) { temp64.val = pci_map_single( h->pdev, buff, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); c->SG[0].Addr.lower = temp64.val32.lower; c->SG[0].Addr.upper = temp64.val32.upper; c->SG[0].Len = iocommand.buf_size; c->SG[0].Ext = 0; /* we are not chaining */ } c->waiting = &wait; /* Put the request on the tail of the request queue */ spin_lock_irqsave(&io_request_lock, flags); addQ(&h->reqQ, c); h->Qdepth++; start_io(h); spin_unlock_irqrestore(&io_request_lock, flags); wait_for_completion(&wait); /* unlock the buffers from DMA */ temp64.val32.lower = c->SG[0].Addr.lower; temp64.val32.upper = c->SG[0].Addr.upper; pci_unmap_single( h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); /* Copy the error information out */ iocommand.error_info = *(c->err_info); if (copy_to_user((void *) arg, &iocommand, sizeof( IOCTL_Command_struct) ) ) { kfree(buff); cmd_free(h, c, 0); return( -EFAULT); } if (iocommand.Request.Type.Direction == XFER_READ) { /* Copy the data out of the buffer we created */ if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { kfree(buff); cmd_free(h, c, 0); return -EFAULT; } } kfree(buff); cmd_free(h, c, 0); return 0; } case CCISS_BIG_PASSTHRU: { BIG_IOCTL_Command_struct iocommand; ctlr_info_t *h = hba[ctlr]; CommandList_struct *c; char *buff[MAXSGENTRIES] = {NULL,}; int buff_size[MAXSGENTRIES] = {0,}; u64bit temp64; unsigned long flags; BYTE sg_used = 0; int status = 0; int i; DECLARE_COMPLETION(wait); if (!arg) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user(&iocommand, (void *) arg, sizeof( BIG_IOCTL_Command_struct) )) return -EFAULT; if ((iocommand.buf_size < 1) && (iocommand.Request.Type.Direction != XFER_NONE)) { return -EINVAL; } /* Check kmalloc limits using all SGs */ if (iocommand.malloc_size > MAX_KMALLOC_SIZE) return -EINVAL; if (iocommand.buf_size > iocommand.malloc_size * MAXSGENTRIES) return -EINVAL; if (iocommand.buf_size > 0) { __u32 size_left_alloc = iocommand.buf_size; BYTE *data_ptr = (BYTE *) iocommand.buf; while (size_left_alloc > 0) { buff_size[sg_used] = (size_left_alloc > iocommand.malloc_size) ? iocommand.malloc_size : size_left_alloc; buff[sg_used] = kmalloc( buff_size[sg_used], GFP_KERNEL); if (buff[sg_used] == NULL) { status = -ENOMEM; goto cleanup1; } if (iocommand.Request.Type.Direction == XFER_WRITE) { /* Copy the data into the buffer created */ if (copy_from_user(buff[sg_used], data_ptr, buff_size[sg_used])) { status = -EFAULT; goto cleanup1; } } else memset(buff[sg_used], 0, buff_size[sg_used]); size_left_alloc -= buff_size[sg_used]; data_ptr += buff_size[sg_used]; sg_used++; } } if ((c = cmd_alloc(h , 0)) == NULL) { status = -ENOMEM; goto cleanup1; } /* Fill in the command type */ c->cmd_type = CMD_IOCTL_PEND; /* Fill in Command Header */ c->Header.ReplyQueue = 0; /* unused in simple mode */ if (iocommand.buf_size > 0) { /* buffer to fill */ c->Header.SGList = sg_used; c->Header.SGTotal= sg_used; } else { /* no buffers to fill */ c->Header.SGList = 0; c->Header.SGTotal= 0; } c->Header.LUN = iocommand.LUN_info; c->Header.Tag.lower = c->busaddr; /* use the kernel address */ /* the cmd block for tag */ /* Fill in Request block */ c->Request = iocommand.Request; /* Fill in the scatter gather information */ if (iocommand.buf_size > 0 ) { int i; for(i=0; i< sg_used; i++) { temp64.val = pci_map_single( h->pdev, buff[i], buff_size[i], PCI_DMA_BIDIRECTIONAL); c->SG[i].Addr.lower = temp64.val32.lower; c->SG[i].Addr.upper = temp64.val32.upper; c->SG[i].Len = buff_size[i]; c->SG[i].Ext = 0; /* we are not chaining */ } } c->waiting = &wait; /* Put the request on the tail of the request queue */ spin_lock_irqsave(&io_request_lock, flags); addQ(&h->reqQ, c); h->Qdepth++; start_io(h); spin_unlock_irqrestore(&io_request_lock, flags); wait_for_completion(&wait); /* unlock the buffers from DMA */ for(i=0; i< sg_used; i++) { temp64.val32.lower = c->SG[i].Addr.lower; temp64.val32.upper = c->SG[i].Addr.upper; pci_unmap_single( h->pdev, (dma_addr_t) temp64.val, buff_size[i], PCI_DMA_BIDIRECTIONAL); } /* Copy the error information out */ iocommand.error_info = *(c->err_info); if (copy_to_user((void *) arg, &iocommand, sizeof( IOCTL_Command_struct) ) ) { cmd_free(h, c, 0); status = -EFAULT; goto cleanup1; } if (iocommand.Request.Type.Direction == XFER_READ) { /* Copy the data out of the buffer we created */ BYTE *ptr = (BYTE *) iocommand.buf; for(i=0; i< sg_used; i++) { if (copy_to_user(ptr, buff[i], buff_size[i])) { cmd_free(h, c, 0); status = -EFAULT; goto cleanup1; } ptr += buff_size[i]; } } cmd_free(h, c, 0); status = 0; cleanup1: for(i=0; i< sg_used; i++) { if (buff[i] != NULL) kfree(buff[i]); } return status; } default: return -EBADRQC; } } /* Borrowed and adapted from sd.c */ static int revalidate_logvol(kdev_t dev, int maxusage) { int ctlr, target; struct gendisk *gdev; unsigned long flags; int max_p; int start; int i; target = MINOR(dev) >> NWD_SHIFT; ctlr = map_major_to_ctlr[MAJOR(dev)]; gdev = &(hba[ctlr]->gendisk); spin_lock_irqsave(&io_request_lock, flags); if (hba[ctlr]->drv[target].usage_count > maxusage) { spin_unlock_irqrestore(&io_request_lock, flags); printk(KERN_WARNING "cciss: Device busy for " "revalidation (usage=%d)\n", hba[ctlr]->drv[target].usage_count); return -EBUSY; } hba[ctlr]->drv[target].usage_count++; spin_unlock_irqrestore(&io_request_lock, flags); max_p = gdev->max_p; start = target << gdev->minor_shift; for(i=max_p-1; i>=0; i--) { int minor = start+i; invalidate_device(MKDEV(hba[ctlr]->major, minor), 1); gdev->part[minor].start_sect = 0; gdev->part[minor].nr_sects = 0; /* reset the blocksize so we can read the partition table */ blksize_size[hba[ctlr]->major][minor] = 1024; } /* setup partitions per disk */ grok_partitions(gdev, target, MAX_PART, hba[ctlr]->drv[target].nr_blocks); hba[ctlr]->drv[target].usage_count--; return 0; } static int frevalidate_logvol(kdev_t dev) { #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: frevalidate has been called\n"); #endif /* CCISS_DEBUG */ return revalidate_logvol(dev, 0); } static int deregister_disk(int ctlr, int logvol) { unsigned long flags; struct gendisk *gdev = &(hba[ctlr]->gendisk); ctlr_info_t *h = hba[ctlr]; int start, max_p, i; if (!capable(CAP_SYS_RAWIO)) return -EPERM; spin_lock_irqsave(&io_request_lock, flags); /* make sure logical volume is NOT is use */ if (h->drv[logvol].usage_count > 1 || h->busy_configuring) { spin_unlock_irqrestore(&io_request_lock, flags); return -EBUSY; } h->busy_configuring = 1; spin_unlock_irqrestore(&io_request_lock, flags); /* invalidate the devices and deregister the disk */ max_p = gdev->max_p; start = logvol << gdev->minor_shift; for (i=max_p-1; i>=0; i--) { int minor = start+i; /* printk("invalidating( %d %d)\n", ctlr, minor); */ invalidate_device(MKDEV(hba[ctlr]->major, minor), 1); /* so open will now fail */ h->sizes[minor] = 0; /* so it will no longer appear in /proc/partitions */ gdev->part[minor].start_sect = 0; gdev->part[minor].nr_sects = 0; } /* check to see if it was the last disk */ if (logvol == h->highest_lun) { /* if so, find the new hightest lun */ int i, newhighest =-1; for(i=0; ihighest_lun; i++) { /* if the disk has size > 0, it is available */ if (h->sizes[i << gdev->minor_shift] != 0) newhighest = i; } h->highest_lun = newhighest; } --h->num_luns; gdev->nr_real = h->highest_lun+1; /* zero out the disk size info */ h->drv[logvol].nr_blocks = 0; h->drv[logvol].block_size = 0; h->drv[logvol].cylinders = 0; h->drv[logvol].LunID = 0; h->busy_configuring = 0; return 0; } static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, unsigned int log_unit, __u8 page_code, __u8 cmdtype) { ctlr_info_t *h = hba[ctlr]; CommandList_struct *c; u64bit buff_dma_handle; unsigned long flags; int return_status = IO_OK; DECLARE_COMPLETION(wait); if ((c = cmd_alloc(h , 0)) == NULL) return -ENOMEM; c->cmd_type = CMD_IOCTL_PEND; /* Fill in Command Header */ c->Header.ReplyQueue = 0; /* unused in simple mode */ if (buff != NULL) { /* buffer to fill */ c->Header.SGList = 1; c->Header.SGTotal= 1; } else { /* no buffers to fill */ c->Header.SGList = 0; c->Header.SGTotal= 0; } c->Header.Tag.lower = c->busaddr; /* tag is phys addr of cmd */ /* Fill in Request block */ c->Request.CDB[0] = cmd; c->Request.Type.Type = cmdtype; if (cmdtype == TYPE_CMD) { switch (cmd) { case CISS_INQUIRY: /* If the logical unit number is 0 then, this is going to controller so It's a physical command mode = 0 target = 0. So we have nothing to write. Otherwise mode = 1 target = LUNID */ if (use_unit_num != 0) { c->Header.LUN.LogDev.VolId = hba[ctlr]->drv[log_unit].LunID; c->Header.LUN.LogDev.Mode = 1; } if (page_code != 0) { c->Request.CDB[1] = 0x01; c->Request.CDB[2] = page_code; } c->Request.CDBLen = 6; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; /* Read */ c->Request.Timeout = 0; /* Don't time out */ c->Request.CDB[4] = size & 0xFF; break; case CISS_REPORT_LOG: /* Talking to controller so It's a physical command mode = 00 target = 0. So we have nothing to write. */ c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; /* Read */ c->Request.Timeout = 0; /* Don't time out */ c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0xFF; c->Request.CDB[9] = size & 0xFF; break; case CCISS_READ_CAPACITY: c->Header.LUN.LogDev.VolId= hba[ctlr]->drv[log_unit].LunID; c->Header.LUN.LogDev.Mode = 1; c->Request.CDBLen = 10; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; /* Read */ c->Request.Timeout = 0; /* Don't time out */ break; default: printk(KERN_WARNING "cciss: Unknown Command 0x%x sent attempted\n", cmd); cmd_free(h, c, 1); return IO_ERROR; } } else if (cmdtype == TYPE_MSG) { switch (cmd) { case 3: /* No-Op message */ c->Request.CDBLen = 1; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; break; default: printk(KERN_WARNING "cciss%d: unknown message type %d\n", ctlr, cmd); cmd_free(h, c, 1); return IO_ERROR; } } else { printk(KERN_WARNING "cciss%d: unknown command type %d\n", ctlr, cmdtype); cmd_free(h, c, 1); return IO_ERROR; } /* Fill in the scatter gather information */ if (size > 0) { buff_dma_handle.val = (__u64) pci_map_single( h->pdev, buff, size, PCI_DMA_BIDIRECTIONAL); c->SG[0].Addr.lower = buff_dma_handle.val32.lower; c->SG[0].Addr.upper = buff_dma_handle.val32.upper; c->SG[0].Len = size; c->SG[0].Ext = 0; /* we are not chaining */ } resend_cmd2: c->waiting = &wait; /* Put the request on the tail of the queue and send it */ spin_lock_irqsave(&io_request_lock, flags); addQ(&h->reqQ, c); h->Qdepth++; start_io(h); spin_unlock_irqrestore(&io_request_lock, flags); wait_for_completion(&wait); if (c->err_info->CommandStatus != 0) { /* an error has occurred */ switch (c->err_info->CommandStatus) { case CMD_TARGET_STATUS: printk(KERN_WARNING "cciss: cmd %p has " " completed with errors\n", c); if (c->err_info->ScsiStatus) { printk(KERN_WARNING "cciss: cmd %p " "has SCSI Status = %x\n", c, c->err_info->ScsiStatus); } break; case CMD_DATA_UNDERRUN: case CMD_DATA_OVERRUN: /* expected for inquire and report lun commands */ break; case CMD_INVALID: printk(KERN_WARNING "cciss: cmd %p is " "reported invalid\n", c); return_status = IO_ERROR; break; case CMD_PROTOCOL_ERR: printk(KERN_WARNING "cciss: cmd %p has " "protocol error \n", c); return_status = IO_ERROR; break; case CMD_HARDWARE_ERR: printk(KERN_WARNING "cciss: cmd %p had " " hardware error\n", c); return_status = IO_ERROR; break; case CMD_CONNECTION_LOST: printk(KERN_WARNING "cciss: cmd %p had " "connection lost\n", c); return_status = IO_ERROR; break; case CMD_ABORTED: printk(KERN_WARNING "cciss: cmd %p was " "aborted\n", c); return_status = IO_ERROR; break; case CMD_ABORT_FAILED: printk(KERN_WARNING "cciss: cmd %p reports " "abort failed\n", c); return_status = IO_ERROR; break; case CMD_UNSOLICITED_ABORT: printk(KERN_WARNING "cciss: cmd %p aborted " "do to an unsolicited abort\n", c); if (c->retry_count < MAX_CMD_RETRIES) { printk(KERN_WARNING "retrying cmd\n"); c->retry_count++; /* erase the old error */ /* information */ memset(c->err_info, 0, sizeof(ErrorInfo_struct)); return_status = IO_OK; INIT_COMPLETION(wait); goto resend_cmd2; } return_status = IO_ERROR; break; default: printk(KERN_WARNING "cciss: cmd %p returned " "unknown status %x\n", c, c->err_info->CommandStatus); return_status = IO_ERROR; } } /* unlock the buffers from DMA */ pci_unmap_single( h->pdev, (dma_addr_t) buff_dma_handle.val, size, PCI_DMA_BIDIRECTIONAL); cmd_free(h, c, 0); return return_status; } static int register_new_disk(int ctlr, int opened_vol, __u64 requested_lun) { struct gendisk *gdev = &(hba[ctlr]->gendisk); ctlr_info_t *h = hba[ctlr]; int start, max_p, i; int num_luns; int logvol; int new_lun_found = 0; int new_lun_index = 0; int free_index_found = 0; int free_index = 0; ReportLunData_struct *ld_buff; ReadCapdata_struct *size_buff; InquiryData_struct *inq_buff; int return_code; int listlength = 0; __u32 lunid = 0; unsigned int block_size; unsigned int total_size; unsigned long flags; int req_lunid = (int) (requested_lun & (__u64) 0xffffffff); if (!capable(CAP_SYS_RAWIO)) return -EPERM; /* if we have no space in our disk array left to add anything */ spin_lock_irqsave(&io_request_lock, flags); if (h->num_luns >= CISS_MAX_LUN) { spin_unlock_irqrestore(&io_request_lock, flags); return -EINVAL; } if (h->busy_configuring) { spin_unlock_irqrestore(&io_request_lock, flags); return -EBUSY; } h->busy_configuring = 1; spin_unlock_irqrestore(&io_request_lock, flags); ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL); if (ld_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); h->busy_configuring = 0; return -ENOMEM; } memset(ld_buff, 0, sizeof(ReportLunData_struct)); size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL); if (size_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); kfree(ld_buff); h->busy_configuring = 0; return -ENOMEM; } inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL); if (inq_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); kfree(ld_buff); kfree(size_buff); h->busy_configuring = 0; return -ENOMEM; } return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff, sizeof(ReportLunData_struct), 0, 0, 0, TYPE_CMD); if (return_code == IO_OK) { listlength = be32_to_cpu(*((__u32 *) &ld_buff->LUNListLength[0])); } else { /* reading number of logical volumes failed */ printk(KERN_WARNING "cciss: report logical volume" " command failed\n"); listlength = 0; h->busy_configuring = 0; return -1; } num_luns = listlength / 8; /* 8 bytes pre entry */ if (num_luns > CISS_MAX_LUN) num_luns = CISS_MAX_LUN; #ifdef CCISS_DEBUG printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0], ld_buff->LUNListLength[1], ld_buff->LUNListLength[2], ld_buff->LUNListLength[3], num_luns); #endif for(i=0; i< num_luns; i++) { int j; int lunID_found = 0; lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24; lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16; lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8; lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]); /* check to see if this is a new lun */ for(j=0; j <= h->highest_lun; j++) { #ifdef CCISS_DEBUG printk("Checking %d %x against %x\n", j,h->drv[j].LunID, lunid); #endif /* CCISS_DEBUG */ if (h->drv[j].LunID == lunid) { lunID_found = 1; break; } } if (lunID_found == 1) continue; else { /* new lun found */ #ifdef CCISS_DEBUG printk("new lun found at %d\n", i); #endif /* CCISS_DEBUG */ if (req_lunid) /* we are looking for a specific lun */ { if (lunid != req_lunid) { #ifdef CCISS_DEBUG printk("new lun %x is not %x\n", lunid, req_lunid); #endif /* CCISS_DEBUG */ continue; } } new_lun_index = i; new_lun_found = 1; break; } } if (!new_lun_found) { printk(KERN_DEBUG "cciss: New Logical Volume not found\n"); h->busy_configuring = 0; return -1; } /* Now find the free index */ for(i=0; i drv[i].LunID == 0) { #ifdef CCISS_DEBUG printk("free index found at %d\n", i); #endif /* CCISS_DEBUG */ free_index_found = 1; free_index = i; break; } } if (!free_index_found) { printk(KERN_WARNING "cciss: unable to find free slot for disk\n"); h->busy_configuring = 0; return -1; } logvol = free_index; hba[ctlr]->drv[logvol].LunID = lunid; /* there could be gaps in lun numbers, track hightest */ if (hba[ctlr]->highest_lun < logvol) hba[ctlr]->highest_lun = logvol; memset(size_buff, 0, sizeof(ReadCapdata_struct)); return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, size_buff, sizeof(ReadCapdata_struct), 1, logvol, 0, TYPE_CMD); if (return_code == IO_OK) { total_size = (0xff & (unsigned int) size_buff->total_size[0]) << 24; total_size |= (0xff & (unsigned int) size_buff->total_size[1]) << 16; total_size |= (0xff & (unsigned int) size_buff->total_size[2]) << 8; total_size |= (0xff & (unsigned int) size_buff->total_size[3]); total_size++; /* command returns highest block address */ block_size = (0xff & (unsigned int) size_buff->block_size[0]) << 24; block_size |= (0xff & (unsigned int) size_buff->block_size[1]) << 16; block_size |= (0xff & (unsigned int) size_buff->block_size[2]) << 8; block_size |= (0xff & (unsigned int) size_buff->block_size[3]); } else { /* read capacity command failed */ printk(KERN_WARNING "cciss: read capacity failed\n"); total_size = 0; block_size = BLOCK_SIZE; } printk(KERN_INFO " blocks= %d block_size= %d\n", total_size, block_size); /* Execute the command to read the disk geometry */ memset(inq_buff, 0, sizeof(InquiryData_struct)); return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff, sizeof(InquiryData_struct), 1, logvol ,0xC1, TYPE_CMD); if (return_code == IO_OK) { if (inq_buff->data_byte[8] == 0xFF) { printk(KERN_WARNING "cciss: reading geometry failed, " "volume does not support reading geometry\n"); hba[ctlr]->drv[logvol].block_size = block_size; hba[ctlr]->drv[logvol].nr_blocks = total_size; hba[ctlr]->drv[logvol].heads = 255; hba[ctlr]->drv[logvol].sectors = 32; /* secs/trk */ hba[ctlr]->drv[logvol].cylinders = total_size / 255 /32; hba[ctlr]->drv[logvol].raid_level = RAID_UNKNOWN; } else { hba[ctlr]->drv[logvol].block_size = block_size; hba[ctlr]->drv[logvol].nr_blocks = total_size; hba[ctlr]->drv[logvol].heads = inq_buff->data_byte[6]; hba[ctlr]->drv[logvol].sectors = inq_buff->data_byte[7]; hba[ctlr]->drv[logvol].cylinders = (inq_buff->data_byte[4] & 0xff) << 8; hba[ctlr]->drv[logvol].cylinders += inq_buff->data_byte[5]; hba[ctlr]->drv[logvol].raid_level = inq_buff->data_byte[8]; } } else { /* Get geometry failed */ printk(KERN_WARNING "cciss: reading geometry failed, " "continuing with default geometry\n"); hba[ctlr]->drv[logvol].block_size = block_size; hba[ctlr]->drv[logvol].nr_blocks = total_size; hba[ctlr]->drv[logvol].heads = 255; hba[ctlr]->drv[logvol].sectors = 32; /* Sectors per track */ hba[ctlr]->drv[logvol].cylinders = total_size / 255 / 32; } if (hba[ctlr]->drv[logvol].raid_level > 5) hba[ctlr]->drv[logvol].raid_level = RAID_UNKNOWN; printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d RAID %s\n\n", hba[ctlr]->drv[logvol].heads, hba[ctlr]->drv[logvol].sectors, hba[ctlr]->drv[logvol].cylinders, raid_label[hba[ctlr]->drv[logvol].raid_level]); /* special case for c?d0, which may be opened even when it does not "exist". In that case, don't mess with usage count. Also, /dev/c1d1 could be used to re-add c0d0 so we can't just check whether logvol == 0, must check logvol != opened_vol */ if (logvol != opened_vol) hba[ctlr]->drv[logvol].usage_count = 0; max_p = gdev->max_p; start = logvol<< gdev->minor_shift; hba[ctlr]->hd[start].nr_sects = total_size; hba[ctlr]->sizes[start] = total_size; for(i=max_p-1; i>=0; i--) { int minor = start+i; invalidate_device(MKDEV(hba[ctlr]->major, minor), 1); gdev->part[minor].start_sect = 0; gdev->part[minor].nr_sects = 0; /* reset the blocksize so we can read the partition table */ blksize_size[hba[ctlr]->major][minor] = block_size; hba[ctlr]->hardsizes[minor] = block_size; } ++hba[ctlr]->num_luns; gdev->nr_real = hba[ctlr]->highest_lun + 1; /* setup partitions per disk */ grok_partitions(gdev, logvol, MAX_PART, hba[ctlr]->drv[logvol].nr_blocks); kfree(ld_buff); kfree(size_buff); kfree(inq_buff); h->busy_configuring = 0; return logvol; } static int cciss_rescan_disk(int ctlr, int logvol) { struct gendisk *gdev = &(hba[ctlr]->gendisk); int start, max_p, i; ReadCapdata_struct *size_buff; InquiryData_struct *inq_buff; int return_code; unsigned int block_size; unsigned int total_size; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (hba[ctlr]->sizes[logvol << NWD_SHIFT] != 0) { /* disk is possible on line, return just a warning */ return 1; } size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL); if (size_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); return -1; } inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL); if (inq_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); kfree(size_buff); return -1; } memset(size_buff, 0, sizeof(ReadCapdata_struct)); return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, size_buff, sizeof( ReadCapdata_struct), 1, logvol, 0, TYPE_CMD); if (return_code == IO_OK) { total_size = (0xff & (unsigned int)(size_buff->total_size[0])) << 24; total_size |= (0xff & (unsigned int)(size_buff->total_size[1])) << 16; total_size |= (0xff & (unsigned int)(size_buff->total_size[2])) << 8; total_size |= (0xff & (unsigned int) (size_buff->total_size[3])); total_size++; /* command returns highest block address */ block_size = (0xff & (unsigned int)(size_buff->block_size[0])) << 24; block_size |= (0xff & (unsigned int)(size_buff->block_size[1])) << 16; block_size |= (0xff & (unsigned int)(size_buff->block_size[2])) << 8; block_size |= (0xff & (unsigned int)(size_buff->block_size[3])); } else { /* read capacity command failed */ printk(KERN_WARNING "cciss: read capacity failed\n"); total_size = block_size = 0; } printk(KERN_INFO " blocks= %d block_size= %d\n", total_size, block_size); /* Execute the command to read the disk geometry */ memset(inq_buff, 0, sizeof(InquiryData_struct)); return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff, sizeof(InquiryData_struct), 1, logvol ,0xC1, TYPE_CMD); if (return_code == IO_OK) { if (inq_buff->data_byte[8] == 0xFF) { printk(KERN_WARNING "cciss: reading geometry failed, " "volume does not support reading geometry\n"); hba[ctlr]->drv[logvol].nr_blocks = total_size; hba[ctlr]->drv[logvol].heads = 255; hba[ctlr]->drv[logvol].sectors = 32; /* Sectors/track */ hba[ctlr]->drv[logvol].cylinders = total_size / 255 /32; } else { hba[ctlr]->drv[logvol].nr_blocks = total_size; hba[ctlr]->drv[logvol].heads = inq_buff->data_byte[6]; hba[ctlr]->drv[logvol].sectors = inq_buff->data_byte[7]; hba[ctlr]->drv[logvol].cylinders = (inq_buff->data_byte[4] & 0xff) << 8; hba[ctlr]->drv[logvol].cylinders += inq_buff->data_byte[5]; } } else { /* Get geometry failed */ printk(KERN_WARNING "cciss: reading geometry failed, " "continuing with default geometry\n"); hba[ctlr]->drv[logvol].nr_blocks = total_size; hba[ctlr]->drv[logvol].heads = 255; hba[ctlr]->drv[logvol].sectors = 32; /* Sectors / track */ hba[ctlr]->drv[logvol].cylinders = total_size / 255 /32; } printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d \n\n", hba[ctlr]->drv[logvol].heads, hba[ctlr]->drv[logvol].sectors, hba[ctlr]->drv[logvol].cylinders); max_p = gdev->max_p; start = logvol<< gdev->minor_shift; hba[ctlr]->hd[start].nr_sects = hba[ctlr]->sizes[start]= total_size; for (i=max_p-1; i>=0; i--) { int minor = start+i; invalidate_device(MKDEV(hba[ctlr]->major, minor), 1); gdev->part[minor].start_sect = 0; gdev->part[minor].nr_sects = 0; /* reset the blocksize so we can read the partition table */ blksize_size[hba[ctlr]->major][minor] = block_size; hba[ctlr]->hardsizes[minor] = block_size; } /* setup partitions per disk */ grok_partitions(gdev, logvol, MAX_PART, hba[ctlr]->drv[logvol].nr_blocks ); kfree(size_buff); kfree(inq_buff); return 0; } /* * Wait polling for a command to complete. * The memory mapped FIFO is polled for the completion. * Used only at init time, interrupts disabled. */ static unsigned long pollcomplete(int ctlr) { unsigned long done; int i; /* Wait (up to 20 seconds) for a command to complete */ for (i = 20 * HZ; i > 0; i--) { done = hba[ctlr]->access.command_completed(hba[ctlr]); if (done == FIFO_EMPTY) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(1); } else return done; } /* Invalid address to tell caller we ran out of time */ return 1; } /* * Send a command to the controller, and wait for it to complete. * Only used at init time. */ static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller, 1: address logical volume log_unit, 2: periph device address is scsi3addr */ unsigned int log_unit, __u8 page_code, unsigned char *scsi3addr) { CommandList_struct *c; int i; unsigned long complete; ctlr_info_t *info_p= hba[ctlr]; u64bit buff_dma_handle; int status = IO_OK; c = cmd_alloc(info_p, 1); if (c == NULL) { printk(KERN_WARNING "cciss: unable to get memory"); return IO_ERROR; } /* Fill in Command Header */ c->Header.ReplyQueue = 0; /* unused in simple mode */ if (buff != NULL) { /* buffer to fill */ c->Header.SGList = 1; c->Header.SGTotal= 1; } else { /* no buffers to fill */ c->Header.SGList = 0; c->Header.SGTotal= 0; } c->Header.Tag.lower = c->busaddr; /* use the kernel address */ /* the cmd block for tag */ /* Fill in Request block */ switch (cmd) { case CISS_INQUIRY: /* If the logical unit number is 0 then, this is going to controller so It's a physical command mode = 0 target = 0. So we have nothing to write. otherwise, if use_unit_num == 1, mode = 1(volume set addressing) target = LUNID otherwise, if use_unit_num == 2, mode = 0(periph dev addr) target = scsi3addr */ if (use_unit_num == 1) { c->Header.LUN.LogDev.VolId= hba[ctlr]->drv[log_unit].LunID; c->Header.LUN.LogDev.Mode = 1; } else if (use_unit_num == 2) { memcpy(c->Header.LUN.LunAddrBytes,scsi3addr,8); c->Header.LUN.LogDev.Mode = 0; /* phys dev addr */ } /* are we trying to read a vital product page */ if (page_code != 0) { c->Request.CDB[1] = 0x01; c->Request.CDB[2] = page_code; } c->Request.CDBLen = 6; c->Request.Type.Type = TYPE_CMD; /* It is a command. */ c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; /* Read */ c->Request.Timeout = 0; /* Don't time out */ c->Request.CDB[0] = CISS_INQUIRY; c->Request.CDB[4] = size & 0xFF; break; case CISS_REPORT_LOG: case CISS_REPORT_PHYS: /* Talking to controller so It's a physical command mode = 00 target = 0. So we have nothing to write. */ c->Request.CDBLen = 12; c->Request.Type.Type = TYPE_CMD; /* It is a command. */ c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; /* Read */ c->Request.Timeout = 0; /* Don't time out */ c->Request.CDB[0] = cmd; c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0xFF; c->Request.CDB[9] = size & 0xFF; break; case CCISS_READ_CAPACITY: c->Header.LUN.LogDev.VolId= hba[ctlr]->drv[log_unit].LunID; c->Header.LUN.LogDev.Mode = 1; c->Request.CDBLen = 10; c->Request.Type.Type = TYPE_CMD; /* It is a command. */ c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; /* Read */ c->Request.Timeout = 0; /* Don't time out */ c->Request.CDB[0] = CCISS_READ_CAPACITY; break; case CCISS_CACHE_FLUSH: c->Request.CDBLen = 12; c->Request.Type.Type = TYPE_CMD; /* It is a command. */ c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; /* No data */ c->Request.Timeout = 0; /* Don't time out */ c->Request.CDB[0] = BMIC_WRITE; /* BMIC Passthru */ c->Request.CDB[6] = BMIC_CACHE_FLUSH; break; default: printk(KERN_WARNING "cciss: Unknown Command 0x%x sent attempted\n", cmd); cmd_free(info_p, c, 1); return IO_ERROR; }; /* Fill in the scatter gather information */ if (size > 0) { buff_dma_handle.val = (__u64) pci_map_single( info_p->pdev, buff, size, PCI_DMA_BIDIRECTIONAL); c->SG[0].Addr.lower = buff_dma_handle.val32.lower; c->SG[0].Addr.upper = buff_dma_handle.val32.upper; c->SG[0].Len = size; c->SG[0].Ext = 0; /* we are not chaining */ } resend_cmd1: /* * Disable interrupt */ #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: turning intr off\n"); #endif /* CCISS_DEBUG */ info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF); /* Make sure there is room in the command FIFO */ /* Actually it should be completely empty at this time. */ for (i = 200000; i > 0; i--) { /* if fifo isn't full go */ if (!(info_p->access.fifo_full(info_p))) { break; } udelay(10); printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full," " waiting!\n", ctlr); } /* * Send the cmd */ info_p->access.submit_command(info_p, c); complete = pollcomplete(ctlr); #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: command completed\n"); #endif /* CCISS_DEBUG */ if (complete != 1) { if ( (complete & CISS_ERROR_BIT) && (complete & ~CISS_ERROR_BIT) == c->busaddr) { /* if data overrun or underun on Report command ignore it */ if (((c->Request.CDB[0] == CISS_REPORT_LOG) || (c->Request.CDB[0] == CISS_REPORT_PHYS) || (c->Request.CDB[0] == CISS_INQUIRY)) && ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) || (c->err_info->CommandStatus == CMD_DATA_UNDERRUN) )) { complete = c->busaddr; } else { if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) { printk(KERN_WARNING "cciss: " "cmd %p aborted do " "to an unsolicited abort \n", c); if (c->retry_count < MAX_CMD_RETRIES) { printk(KERN_WARNING "retrying cmd\n"); c->retry_count++; /* erase the old error */ /* information */ memset(c->err_info, 0, sizeof(ErrorInfo_struct)); goto resend_cmd1; } else { printk(KERN_WARNING "retried to many times\n"); status = IO_ERROR; goto cleanup1; } } printk(KERN_WARNING "cciss cciss%d: sendcmd" " Error %x \n", ctlr, c->err_info->CommandStatus); printk(KERN_WARNING "cciss cciss%d: sendcmd" " offensive info\n" " size %x\n num %x value %x\n", ctlr, c->err_info->MoreErrInfo.Invalid_Cmd.offense_size, c->err_info->MoreErrInfo.Invalid_Cmd.offense_num, c->err_info->MoreErrInfo.Invalid_Cmd.offense_value); status = IO_ERROR; goto cleanup1; } } if (complete != c->busaddr) { printk( KERN_WARNING "cciss cciss%d: SendCmd " "Invalid command list address returned! (%lx)\n", ctlr, complete); status = IO_ERROR; goto cleanup1; } } else { printk( KERN_WARNING "cciss cciss%d: SendCmd Timeout out, " "No command list address returned!\n", ctlr); status = IO_ERROR; } cleanup1: /* unlock the data buffer from DMA */ pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val, size, PCI_DMA_BIDIRECTIONAL); cmd_free(info_p, c, 1); return status; } /* * Map (physical) PCI mem into (virtual) kernel space */ static ulong remap_pci_mem(ulong base, ulong size) { ulong page_base = ((ulong) base) & PAGE_MASK; ulong page_offs = ((ulong) base) - page_base; ulong page_remapped = (ulong) ioremap(page_base, page_offs+size); return (ulong) (page_remapped ? (page_remapped + page_offs) : 0UL); } /* * Takes jobs of the Q and sends them to the hardware, then puts it on * the Q to wait for completion. */ static void start_io( ctlr_info_t *h) { CommandList_struct *c; while(( c = h->reqQ) != NULL ) { /* can't do anything if fifo is full */ if ((h->access.fifo_full(h))) { printk(KERN_WARNING "cciss: fifo full \n"); return; } /* Get the frist entry from the Request Q */ removeQ(&(h->reqQ), c); h->Qdepth--; /* Tell the controller execute command */ h->access.submit_command(h, c); /* Put job onto the completed Q */ addQ (&(h->cmpQ), c); } } static inline void complete_buffers( struct buffer_head *bh, int status) { struct buffer_head *xbh; while(bh) { xbh = bh->b_reqnext; bh->b_reqnext = NULL; blk_finished_io(bh->b_size >> 9); bh->b_end_io(bh, status); bh = xbh; } } /* This code assumes io_request_lock is already held */ /* Zeros out the error record and then resends the command back */ /* to the controller */ static inline void resend_cciss_cmd( ctlr_info_t *h, CommandList_struct *c) { /* erase the old error information */ memset(c->err_info, 0, sizeof(ErrorInfo_struct)); /* add it to software queue and then send it to the controller */ addQ(&(h->reqQ),c); h->Qdepth++; if (h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; start_io(h); } /* checks the status of the job and calls complete buffers to mark all * buffers for the completed job. */ static inline void complete_command( ctlr_info_t *h, CommandList_struct *cmd, int timeout) { int status = 1; int retry_cmd = 0; int i, ddir; u64bit temp64; if (timeout) status = 0; if (cmd->err_info->CommandStatus != 0) { /* an error has occurred */ switch (cmd->err_info->CommandStatus) { unsigned char sense_key; case CMD_TARGET_STATUS: status = 0; if (cmd->err_info->ScsiStatus == 0x02) { printk(KERN_WARNING "cciss: cmd %p " "has CHECK CONDITION," " sense key = 0x%x\n", cmd, cmd->err_info->SenseInfo[2]); /* check the sense key */ sense_key = 0xf & cmd->err_info->SenseInfo[2]; /* recovered error */ if ( sense_key == 0x1) status = 1; } else { printk(KERN_WARNING "cciss: cmd %p " "has SCSI Status 0x%x\n", cmd, cmd->err_info->ScsiStatus); } break; case CMD_DATA_UNDERRUN: printk(KERN_WARNING "cciss: cmd %p has" " completed with data underrun " "reported\n", cmd); break; case CMD_DATA_OVERRUN: printk(KERN_WARNING "cciss: cmd %p has" " completed with data overrun " "reported\n", cmd); break; case CMD_INVALID: printk(KERN_WARNING "cciss: cmd %p is " "reported invalid\n", cmd); status = 0; break; case CMD_PROTOCOL_ERR: printk(KERN_WARNING "cciss: cmd %p has " "protocol error \n", cmd); status = 0; break; case CMD_HARDWARE_ERR: printk(KERN_WARNING "cciss: cmd %p had " " hardware error\n", cmd); status = 0; break; case CMD_CONNECTION_LOST: printk(KERN_WARNING "cciss: cmd %p had " "connection lost\n", cmd); status=0; break; case CMD_ABORTED: printk(KERN_WARNING "cciss: cmd %p was " "aborted\n", cmd); status=0; break; case CMD_ABORT_FAILED: printk(KERN_WARNING "cciss: cmd %p reports " "abort failed\n", cmd); status=0; break; case CMD_UNSOLICITED_ABORT: printk(KERN_WARNING "cciss: cmd %p aborted do " "to an unsolicited abort \n", cmd); if (cmd->retry_count < MAX_CMD_RETRIES) { retry_cmd=1; printk(KERN_WARNING "retrying cmd\n"); cmd->retry_count++; } else { printk(KERN_WARNING "retried to many times\n"); } status=0; break; case CMD_TIMEOUT: printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd); status=0; break; default: printk(KERN_WARNING "cciss: cmd %p returned " "unknown status %x\n", cmd, cmd->err_info->CommandStatus); status=0; } } /* We need to return this command */ if (retry_cmd) { resend_cciss_cmd(h,cmd); return; } /* command did not need to be retried */ /* unmap the DMA mapping for all the scatter gather elements */ if (cmd->Request.Type.Direction == XFER_READ) ddir = PCI_DMA_FROMDEVICE; else ddir = PCI_DMA_TODEVICE; for(i=0; iHeader.SGList; i++) { temp64.val32.lower = cmd->SG[i].Addr.lower; temp64.val32.upper = cmd->SG[i].Addr.upper; pci_unmap_page(hba[cmd->ctlr]->pdev, temp64.val, cmd->SG[i].Len, ddir); } complete_buffers(cmd->rq->bh, status); #ifdef CCISS_DEBUG printk("Done with %p\n", cmd->rq); #endif /* CCISS_DEBUG */ end_that_request_last(cmd->rq); cmd_free(h,cmd,1); } static inline int cpq_new_segment(request_queue_t *q, struct request *rq, int max_segments) { if (rq->nr_segments < MAXSGENTRIES) { rq->nr_segments++; return 1; } return 0; } static int cpq_back_merge_fn(request_queue_t *q, struct request *rq, struct buffer_head *bh, int max_segments) { if (blk_seg_merge_ok(rq->bhtail, bh)) return 1; return cpq_new_segment(q, rq, max_segments); } static int cpq_front_merge_fn(request_queue_t *q, struct request *rq, struct buffer_head *bh, int max_segments) { if (blk_seg_merge_ok(bh, rq->bh)) return 1; return cpq_new_segment(q, rq, max_segments); } static int cpq_merge_requests_fn(request_queue_t *q, struct request *rq, struct request *nxt, int max_segments) { int total_segments = rq->nr_segments + nxt->nr_segments; if (blk_seg_merge_ok(rq->bhtail, nxt->bh)) total_segments--; if (total_segments > MAXSGENTRIES) return 0; rq->nr_segments = total_segments; return 1; } /* * Get a request and submit it to the controller. * Currently we do one request at a time. Ideally we would like to send * everything to the controller on the first call, but there is a danger * of holding the io_request_lock for to long. */ static void do_cciss_request(request_queue_t *q) { ctlr_info_t *h= q->queuedata; CommandList_struct *c; int log_unit, start_blk, seg; unsigned long long lastdataend; struct buffer_head *bh; struct list_head *queue_head = &q->queue_head; struct request *creq; u64bit temp64; struct scatterlist tmp_sg[MAXSGENTRIES]; int i, ddir; if (q->plugged) goto startio; next: if (list_empty(queue_head)) goto startio; creq = blkdev_entry_next_request(queue_head); if (creq->nr_segments > MAXSGENTRIES) BUG(); if( h->ctlr != map_major_to_ctlr[MAJOR(creq->rq_dev)] ) { printk(KERN_WARNING "doreq cmd for %d, %x at %p\n", h->ctlr, creq->rq_dev, creq); blkdev_dequeue_request(creq); complete_buffers(creq->bh, 0); end_that_request_last(creq); goto startio; } /* make sure controller is alive. */ if (!CTLR_IS_ALIVE(h)) { printk(KERN_WARNING "cciss%d: I/O quit ", h->ctlr); blkdev_dequeue_request(creq); complete_buffers(creq->bh, 0); end_that_request_last(creq); return; } if (( c = cmd_alloc(h, 1)) == NULL) goto startio; blkdev_dequeue_request(creq); spin_unlock_irq(&io_request_lock); c->cmd_type = CMD_RWREQ; c->rq = creq; bh = creq->bh; /* fill in the request */ log_unit = MINOR(creq->rq_dev) >> NWD_SHIFT; c->Header.ReplyQueue = 0; /* unused in simple mode */ c->Header.Tag.lower = c->busaddr; /* use the physical address */ /* the cmd block for tag */ c->Header.LUN.LogDev.VolId= hba[h->ctlr]->drv[log_unit].LunID; c->Header.LUN.LogDev.Mode = 1; c->Request.CDBLen = 10; /* 12 byte commands not in FW yet. */ c->Request.Type.Type = TYPE_CMD; /* It is a command. */ c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = (creq->cmd == READ) ? XFER_READ: XFER_WRITE; c->Request.Timeout = 0; /* Don't time out */ c->Request.CDB[0] = (creq->cmd == READ) ? CCISS_READ : CCISS_WRITE; start_blk = hba[h->ctlr]->hd[MINOR(creq->rq_dev)].start_sect + creq->sector; #ifdef CCISS_DEBUG if (bh == NULL) panic("cciss: bh== NULL?"); printk(KERN_DEBUG "cciss: sector =%d nr_sectors=%d\n",(int) creq->sector, (int) creq->nr_sectors); #endif /* CCISS_DEBUG */ seg = 0; lastdataend = ~0ULL; while(bh) { if (bh_phys(bh) == lastdataend) { /* tack it on to the last segment */ tmp_sg[seg-1].length +=bh->b_size; lastdataend += bh->b_size; } else { if (seg == MAXSGENTRIES) BUG(); tmp_sg[seg].page = bh->b_page; tmp_sg[seg].length = bh->b_size; tmp_sg[seg].offset = bh_offset(bh); lastdataend = bh_phys(bh) + bh->b_size; seg++; } bh = bh->b_reqnext; } /* get the DMA records for the setup */ if (c->Request.Type.Direction == XFER_READ) ddir = PCI_DMA_FROMDEVICE; else ddir = PCI_DMA_TODEVICE; for (i=0; iSG[i].Len = tmp_sg[i].length; temp64.val = pci_map_page(h->pdev, tmp_sg[i].page, tmp_sg[i].offset, tmp_sg[i].length, ddir); c->SG[i].Addr.lower = temp64.val32.lower; c->SG[i].Addr.upper = temp64.val32.upper; c->SG[i].Ext = 0; /* we are not chaining */ } /* track how many SG entries we are using */ if (seg > h->maxSG) h->maxSG = seg; #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n", sect, seg); #endif /* CCISS_DEBUG */ c->Header.SGList = c->Header.SGTotal = seg; c->Request.CDB[1]= 0; c->Request.CDB[2]= (start_blk >> 24) & 0xff; /* MSB */ c->Request.CDB[3]= (start_blk >> 16) & 0xff; c->Request.CDB[4]= (start_blk >> 8) & 0xff; c->Request.CDB[5]= start_blk & 0xff; c->Request.CDB[6]= 0; /* (sect >> 24) & 0xff; MSB */ c->Request.CDB[7]= (creq->nr_sectors >> 8) & 0xff; c->Request.CDB[8]= creq->nr_sectors & 0xff; c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0; spin_lock_irq(&io_request_lock); addQ(&(h->reqQ),c); h->Qdepth++; if (h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; goto next; startio: start_io(h); } static void do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs) { ctlr_info_t *h = dev_id; CommandList_struct *c; unsigned long flags; __u32 a, a1; /* Is this interrupt for us? */ if ((h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0)) return; /* * If there are completed commands in the completion queue, * we had better do something about it. */ spin_lock_irqsave(&io_request_lock, flags); while( h->access.intr_pending(h)) { while((a = h->access.command_completed(h)) != FIFO_EMPTY) { a1 = a; a &= ~3; if ((c = h->cmpQ) == NULL) { printk(KERN_WARNING "cciss: Completion of %08lx ignored\n", (unsigned long)a1); continue; } while(c->busaddr != a) { c = c->next; if (c == h->cmpQ) break; } /* * If we've found the command, take it off the * completion Q and free it */ if (c->busaddr == a) { removeQ(&h->cmpQ, c); if (c->cmd_type == CMD_RWREQ) { complete_command(h, c, 0); } else if (c->cmd_type == CMD_IOCTL_PEND) { complete(c->waiting); } # ifdef CONFIG_CISS_SCSI_TAPE else if (c->cmd_type == CMD_SCSI) { complete_scsi_command(c, 0, a1); } # endif continue; } } } /* * See if we can queue up some more IO */ do_cciss_request(BLK_DEFAULT_QUEUE(h->major)); spin_unlock_irqrestore(&io_request_lock, flags); } /* * We cannot read the structure directly, for portablity we must use * the io functions. * This is for debug only. */ #ifdef CCISS_DEBUG static void print_cfg_table( CfgTable_struct *tb) { int i; char temp_name[17]; printk("Controller Configuration information\n"); printk("------------------------------------\n"); for(i=0;i<4;i++) temp_name[i] = readb(&(tb->Signature[i])); temp_name[4]='\0'; printk(" Signature = %s\n", temp_name); printk(" Spec Number = %d\n", readl(&(tb->SpecValence))); printk(" Transport methods supported = 0x%x\n", readl(&(tb-> TransportSupport))); printk(" Transport methods active = 0x%x\n", readl(&(tb->TransportActive))); printk(" Requested transport Method = 0x%x\n", readl(&(tb->HostWrite.TransportRequest))); printk(" Coalese Interrupt Delay = 0x%x\n", readl(&(tb->HostWrite.CoalIntDelay))); printk(" Coalese Interrupt Count = 0x%x\n", readl(&(tb->HostWrite.CoalIntCount))); printk(" Max outstanding commands = 0x%d\n", readl(&(tb->CmdsOutMax))); printk(" Bus Types = 0x%x\n", readl(&(tb-> BusTypes))); for(i=0;i<16;i++) temp_name[i] = readb(&(tb->ServerName[i])); temp_name[16] = '\0'; printk(" Server Name = %s\n", temp_name); printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat))); } #endif /* CCISS_DEBUG */ static void release_io_mem(ctlr_info_t *c) { /* if IO mem was not protected do nothing */ if (c->io_mem_addr == 0) return; release_region(c->io_mem_addr, c->io_mem_length); c->io_mem_addr = 0; c->io_mem_length = 0; } static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) { int i, offset, mem_type, bar_type; if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ return 0; offset = 0; for (i=0; isubsystem_vendor; subsystem_device_id = pdev->subsystem_device; board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) | subsystem_vendor_id ); /* search for our IO range so we can protect it */ for (i=0; iio_mem_addr = pci_resource_start(pdev, i); c->io_mem_length = pci_resource_end(pdev, i) - pci_resource_start(pdev, i) + 1; #ifdef CCISS_DEBUG printk("IO value found base_addr[%d] %lx %lx\n", i, c->io_mem_addr, c->io_mem_length); #endif /* CCISS_DEBUG */ /* register the IO range */ if (!request_region( c->io_mem_addr, c->io_mem_length, "cciss")) { printk(KERN_WARNING "cciss I/O memory range already in " "use addr=%lx length=%ld\n", c->io_mem_addr, c->io_mem_length); c->io_mem_addr= 0; c->io_mem_length = 0; } break; } } #ifdef CCISS_DEBUG printk("command = %x\n", command); printk("irq = %x\n", pdev->irq); printk("board_id = %x\n", board_id); #endif /* CCISS_DEBUG */ c->intr = pdev->irq; /* * Memory base addr is first addr , the second points to the config * table */ c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */ #ifdef CCISS_DEBUG printk("address 0 = %x\n", c->paddr); #endif /* CCISS_DEBUG */ c->vaddr = remap_pci_mem(c->paddr, 200); /* Wait for the board to become ready. (PCI hotplug needs this.) * We poll for up to 120 secs, once per 100ms. */ for (i=0; i < 1200; i++) { scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET); if (scratchpad == 0xffff0000) { ready = 1; break; } set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 10); /* wait 100ms */ } if (!ready) { printk(KERN_WARNING "cciss: Board not ready. Timed out.\n"); return -1; } /* get the address index number */ cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET); cfg_base_addr &= (__u32) 0x0000ffff; #ifdef CCISS_DEBUG printk("cfg base address = %x\n", cfg_base_addr); #endif /* CCISS_DEBUG */ cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr); #ifdef CCISS_DEBUG printk("cfg base address index = %x\n", cfg_base_addr_index); #endif /* CCISS_DEBUG */ if (cfg_base_addr_index == -1) { printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n"); release_io_mem(c); return -1; } cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET); #ifdef CCISS_DEBUG printk("cfg offset = %x\n", cfg_offset); #endif /* CCISS_DEBUG */ c->cfgtable = (CfgTable_struct *) remap_pci_mem(pci_resource_start(pdev, cfg_base_addr_index) + cfg_offset, sizeof(CfgTable_struct)); c->board_id = board_id; #ifdef CCISS_DEBUG print_cfg_table(c->cfgtable); #endif /* CCISS_DEBUG */ for(i=0; iproduct_name = products[i].product_name; c->access = *(products[i].access); break; } } if ( (readb(&c->cfgtable->Signature[0]) != 'C') || (readb(&c->cfgtable->Signature[1]) != 'I') || (readb(&c->cfgtable->Signature[2]) != 'S') || (readb(&c->cfgtable->Signature[3]) != 'S') ) { printk("Does not appear to be a valid CISS config table\n"); return -1; } /* We didn't find the controller in our list. We know the * signature is valid. If it's an HP device let's try to * bind to the device and fire it up. Otherwise we bail. */ if (i == NR_PRODUCTS) { if (subsystem_vendor_id == PCI_VENDOR_ID_HP) { c->product_name = products[NR_PRODUCTS-1].product_name; c->access = *(products[NR_PRODUCTS-1].access); printk(KERN_WARNING "cciss: This is an unknown " "Smart Array controller.\n" "cciss: Please update to the latest driver " "available from www.hp.com.\n"); } else { printk(KERN_WARNING "cciss: Sorry, I don't know how" " to access the Smart Array controller %08lx\n" , (unsigned long)board_id); return -1; } } #ifdef CONFIG_X86 { /* Need to enable prefetch in the SCSI core for 6400 in x86 */ __u32 prefetch; prefetch = readl(&(c->cfgtable->SCSI_Prefetch)); prefetch |= 0x100; writel(prefetch, &(c->cfgtable->SCSI_Prefetch)); } #endif #ifdef CCISS_DEBUG printk("Trying to put board into Simple mode\n"); #endif /* CCISS_DEBUG */ c->max_commands = readl(&(c->cfgtable->CmdsOutMax)); /* Update the field, and then ring the doorbell */ writel( CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest)); writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL); /* Here, we wait, possibly for a long time, (4 secs or more). * In some unlikely cases, (e.g. A failed 144 GB drive in a * RAID 5 set was hot replaced just as we're coming in here) it * can take that long. Normally (almost always) we will wait * less than 1 sec. */ for(i=0;ivaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; /* delay and try again */ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1); } #ifdef CCISS_DEBUG printk(KERN_DEBUG "I counter got to %d %x\n", i, readl(c->vaddr + SA5_DOORBELL)); #endif /* CCISS_DEBUG */ #ifdef CCISS_DEBUG print_cfg_table(c->cfgtable); #endif /* CCISS_DEBUG */ if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { printk(KERN_WARNING "cciss: unable to get board into" " simple mode\n"); return -1; } return 0; } /* * Gets information about the local volumes attached to the controller. */ static void cciss_getgeometry(int cntl_num) { ReportLunData_struct *ld_buff; ReadCapdata_struct *size_buff; InquiryData_struct *inq_buff; int return_code; int i; int listlength = 0; __u32 lunid = 0; int block_size; int total_size; ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL); if (ld_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); return; } memset(ld_buff, 0, sizeof(ReportLunData_struct)); size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL); if (size_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); kfree(ld_buff); return; } inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL); if (inq_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); kfree(ld_buff); kfree(size_buff); return; } /* Get the firmware version */ return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff, sizeof(InquiryData_struct), 0, 0 ,0, NULL); if (return_code == IO_OK) { hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32]; hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33]; hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34]; hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35]; } else { /* send command failed */ printk(KERN_WARNING "cciss: unable to determine firmware" " version of controller\n"); } /* Get the number of logical volumes */ return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff, sizeof(ReportLunData_struct), 0, 0, 0, NULL); if (return_code == IO_OK) { #ifdef CCISS_DEBUG printk("LUN Data\n--------------------------\n"); #endif /* CCISS_DEBUG */ listlength = be32_to_cpu(*((__u32 *) &ld_buff->LUNListLength[0])); } else { /* reading number of logical volumes failed */ printk(KERN_WARNING "cciss: report logical volume" " command failed\n"); listlength = 0; } hba[cntl_num]->num_luns = listlength / 8; /* 8 bytes pre entry */ if (hba[cntl_num]->num_luns > CISS_MAX_LUN) { printk(KERN_ERR "cciss: only %d number of logical volumes supported\n", CISS_MAX_LUN); hba[cntl_num]->num_luns = CISS_MAX_LUN; } #ifdef CCISS_DEBUG printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0], ld_buff->LUNListLength[1], ld_buff->LUNListLength[2], ld_buff->LUNListLength[3], hba[cntl_num]->num_luns); #endif /* CCISS_DEBUG */ hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns-1; for(i=0; i< hba[cntl_num]->num_luns; i++) { lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24; lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16; lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8; lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]); hba[cntl_num]->drv[i].LunID = lunid; #ifdef CCISS_DEBUG printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i, ld_buff->LUN[i][0], ld_buff->LUN[i][1],ld_buff->LUN[i][2], ld_buff->LUN[i][3], hba[cntl_num]->drv[i].LunID); #endif /* CCISS_DEBUG */ memset(size_buff, 0, sizeof(ReadCapdata_struct)); return_code = sendcmd(CCISS_READ_CAPACITY, cntl_num, size_buff, sizeof( ReadCapdata_struct), 1, i, 0, NULL); if (return_code == IO_OK) { total_size = (0xff & (unsigned int)(size_buff->total_size[0])) << 24; total_size |= (0xff & (unsigned int)(size_buff->total_size[1])) << 16; total_size |= (0xff & (unsigned int)(size_buff->total_size[2])) << 8; total_size |= (0xff & (unsigned int) (size_buff->total_size[3])); total_size++; /* command returns highest */ /* block address */ block_size = (0xff & (unsigned int)(size_buff->block_size[0])) << 24; block_size |= (0xff & (unsigned int)(size_buff->block_size[1])) << 16; block_size |= (0xff & (unsigned int)(size_buff->block_size[2])) << 8; block_size |= (0xff & (unsigned int)(size_buff->block_size[3])); } else { /* read capacity command failed */ printk(KERN_WARNING "cciss: read capacity failed\n"); total_size = block_size = 0; } printk(KERN_INFO " blocks= %d block_size= %d\n", total_size, block_size); /* Execute the command to read the disk geometry */ memset(inq_buff, 0, sizeof(InquiryData_struct)); return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff, sizeof(InquiryData_struct), 1, i, 0xC1, NULL ); if (return_code == IO_OK) { if (inq_buff->data_byte[8] == 0xFF) { printk(KERN_WARNING "cciss: reading geometry failed, volume does not support reading geometry\n"); hba[cntl_num]->drv[i].block_size = block_size; hba[cntl_num]->drv[i].nr_blocks = total_size; hba[cntl_num]->drv[i].heads = 255; hba[cntl_num]->drv[i].sectors = 32; /* Sectors */ /* per track */ hba[cntl_num]->drv[i].cylinders = total_size / 255 / 32; } else { hba[cntl_num]->drv[i].block_size = block_size; hba[cntl_num]->drv[i].nr_blocks = total_size; hba[cntl_num]->drv[i].heads = inq_buff->data_byte[6]; hba[cntl_num]->drv[i].sectors = inq_buff->data_byte[7]; hba[cntl_num]->drv[i].cylinders = (inq_buff->data_byte[4] & 0xff) << 8; hba[cntl_num]->drv[i].cylinders += inq_buff->data_byte[5]; hba[cntl_num]->drv[i].raid_level = inq_buff->data_byte[8]; } } else { /* Get geometry failed */ printk(KERN_WARNING "cciss: reading geometry failed, continuing with default geometry\n"); hba[cntl_num]->drv[i].block_size = block_size; hba[cntl_num]->drv[i].nr_blocks = total_size; hba[cntl_num]->drv[i].heads = 255; hba[cntl_num]->drv[i].sectors = 32; /* Sectors */ /* per track */ hba[cntl_num]->drv[i].cylinders = total_size / 255 / 32; } if (hba[cntl_num]->drv[i].raid_level > 5) hba[cntl_num]->drv[i].raid_level = RAID_UNKNOWN; printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d RAID %s\n\n", hba[cntl_num]->drv[i].heads, hba[cntl_num]->drv[i].sectors, hba[cntl_num]->drv[i].cylinders, raid_label[hba[cntl_num]->drv[i].raid_level]); } kfree(ld_buff); kfree(size_buff); kfree(inq_buff); } /* Function to find the first free pointer into our hba[] array */ /* Returns -1 if no free entries are left. */ static int alloc_cciss_hba(void) { int i; for(i=0; i< MAX_CTLR; i++) { if (hba[i] == NULL) { hba[i] = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL); if (hba[i]==NULL) { printk(KERN_ERR "cciss: out of memory.\n"); return -1; } return i; } } printk(KERN_WARNING "cciss: This driver supports a maximum of %d controllers.\n" "You can change this value in cciss.c and recompile.\n", MAX_CTLR); return -1; } static void free_hba(int i) { kfree(hba[i]); hba[i]=NULL; } #ifdef CONFIG_CISS_MONITOR_THREAD static void fail_all_cmds(unsigned long ctlr) { /* If we get here, the board is apparently dead. */ ctlr_info_t *h = hba[ctlr]; CommandList_struct *c; unsigned long flags; printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr); h->alive = 0; /* the controller apparently died... */ spin_lock_irqsave(&io_request_lock, flags); pci_disable_device(h->pdev); /* Make sure it is really dead. */ /* move everything off the request queue onto the completed queue */ while( (c = h->reqQ) != NULL ) { removeQ(&(h->reqQ), c); h->Qdepth--; addQ (&(h->cmpQ), c); } /* Now, fail everything on the completed queue with a HW error */ while( (c = h->cmpQ) != NULL ) { removeQ(&h->cmpQ, c); c->err_info->CommandStatus = CMD_HARDWARE_ERR; if (c->cmd_type == CMD_RWREQ) { complete_command(h, c, 0); } else if (c->cmd_type == CMD_IOCTL_PEND) complete(c->waiting); # ifdef CONFIG_CISS_SCSI_TAPE else if (c->cmd_type == CMD_SCSI) complete_scsi_command(c, 0, 0); # endif } spin_unlock_irqrestore(&io_request_lock, flags); return; } static int cciss_monitor(void *ctlr) { /* If the board fails, we ought to detect that. So we periodically send down a No-Op message and expect it to complete quickly. If it doesn't, then we assume the board is dead, and fail all commands. This is useful mostly in a multipath configuration, so that failover will happen. */ int rc; ctlr_info_t *h = (ctlr_info_t *) ctlr; unsigned long flags; u32 current_timer; daemonize(); exit_files(current); reparent_to_init(); printk("cciss%d: Monitor thread starting.\n", h->ctlr); /* only listen to signals if the HA was loaded as a module. */ #define SHUTDOWN_SIGS (sigmask(SIGKILL)|sigmask(SIGINT)|sigmask(SIGTERM)) siginitsetinv(¤t->blocked, SHUTDOWN_SIGS); sprintf(current->comm, "ccissmon%d", h->ctlr); h->monitor_thread = current; init_timer(&h->watchdog); h->watchdog.function = fail_all_cmds; h->watchdog.data = (unsigned long) h->ctlr; while (1) { /* check heartbeat timer */ current_timer = readl(&h->cfgtable->HeartBeat); current_timer &= 0x0fffffff; if (heartbeat_timer == current_timer) { fail_all_cmds(h->ctlr); break; } else heartbeat_timer = current_timer; set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(h->monitor_period * HZ); h->watchdog.expires = jiffies + HZ * h->monitor_deadline; add_timer(&h->watchdog); /* send down a trivial command (no op message) to ctlr */ rc = sendcmd_withirq(3, h->ctlr, NULL, 0, 0, 0, 0, TYPE_MSG); del_timer(&h->watchdog); if (!CTLR_IS_ALIVE(h)) break; if (signal_pending(current)) { printk(KERN_WARNING "%s received signal.\n", current->comm); break; } if (h->monitor_period == 0) /* zero period means exit thread */ break; } printk(KERN_INFO "%s exiting.\n", current->comm); spin_lock_irqsave(&io_request_lock, flags); h->monitor_started = 0; h->monitor_thread = NULL; spin_unlock_irqrestore(&io_request_lock, flags); return 0; } static int start_monitor_thread(ctlr_info_t *h, unsigned char *cmd, unsigned long count, int (*cciss_monitor)(void *), int *rc) { unsigned long flags; unsigned int new_period, old_period, new_deadline, old_deadline; if (strncmp("monitor", cmd, 7) == 0) { new_period = simple_strtol(cmd + 8, NULL, 10); spin_lock_irqsave(&io_request_lock, flags); new_deadline = h->monitor_deadline; spin_unlock_irqrestore(&io_request_lock, flags); } else if (strncmp("deadline", cmd, 8) == 0) { new_deadline = simple_strtol(cmd + 9, NULL, 10); spin_lock_irqsave(&io_request_lock, flags); new_period = h->monitor_period; spin_unlock_irqrestore(&io_request_lock, flags); } else return -1; if (new_period != 0 && new_period < CCISS_MIN_PERIOD) new_period = CCISS_MIN_PERIOD; if (new_period > CCISS_MAX_PERIOD) new_period = CCISS_MAX_PERIOD; if (new_deadline >= new_period) { new_deadline = new_period - 5; printk(KERN_INFO "setting deadline to %d\n", new_deadline); } spin_lock_irqsave(&io_request_lock, flags); if (h->monitor_started != 0) { old_period = h->monitor_period; old_deadline = h->monitor_deadline; h->monitor_period = new_period; h->monitor_deadline = new_deadline; spin_unlock_irqrestore(&io_request_lock, flags); if (new_period == 0) { printk(KERN_INFO "cciss%d: stopping monitor thread\n", h->ctlr); *rc = count; return 0; } if (new_period != old_period) printk(KERN_INFO "cciss%d: adjusting monitor thread " "period from %d to %d seconds\n", h->ctlr, old_period, new_period); if (new_deadline != old_deadline) printk(KERN_INFO "cciss%d: adjusting monitor thread " "deadline from %d to %d seconds\n", h->ctlr, old_deadline, new_deadline); *rc = count; return 0; } h->monitor_started = 1; h->monitor_period = new_period; h->monitor_deadline = new_deadline; spin_unlock_irqrestore(&io_request_lock, flags); kernel_thread(cciss_monitor, h, 0); *rc = count; return 0; } static void kill_monitor_thread(ctlr_info_t *h) { if (h->monitor_thread) send_sig(SIGKILL, h->monitor_thread, 1); } #else #define kill_monitor_thread(h) #endif /* * This is it. Find all the controllers and register them. I really hate * stealing all these major device numbers. * returns the number of block devices registered. */ static int __init cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { request_queue_t *q; int i; int j; int rc; printk(KERN_DEBUG "cciss: Device 0x%x has been found at" " bus %d dev %d func %d\n", pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); i = alloc_cciss_hba(); if (i < 0 ) return -1; memset(hba[i], 0, sizeof(ctlr_info_t)); if (cciss_pci_init(hba[i], pdev) != 0) { free_hba(i); return -1; } sprintf(hba[i]->devname, "cciss%d", i); hba[i]->ctlr = i; /* register with the major number, or get a dynamic major number */ /* by passing 0 as argument */ if (i < MAX_CTLR_ORIG) hba[i]->major = MAJOR_NR + i; hba[i]->pdev = pdev; ASSERT_CTLR_ALIVE(hba[i]); rc = (register_blkdev(hba[i]->major, hba[i]->devname, &cciss_fops)); if (rc < 0) { printk(KERN_ERR "cciss: Unable to get major number " "%d for %s\n", hba[i]->major, hba[i]->devname); release_io_mem(hba[i]); free_hba(i); return -1; } else { if (i < MAX_CTLR_ORIG) { hba[i]->major = MAJOR_NR + i; map_major_to_ctlr[MAJOR_NR + i] = i; } else { hba[i]->major = rc; map_major_to_ctlr[rc] = i; } } /* make sure the board interrupts are off */ hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF); if (request_irq(hba[i]->intr, do_cciss_intr, SA_INTERRUPT | SA_SHIRQ | SA_SAMPLE_RANDOM, hba[i]->devname, hba[i])) { printk(KERN_ERR "cciss: Unable to get irq %d for %s\n", hba[i]->intr, hba[i]->devname); unregister_blkdev( hba[i]->major, hba[i]->devname); map_major_to_ctlr[hba[i]->major] = 0; release_io_mem(hba[i]); free_hba(i); return -1; } hba[i]->cmd_pool_bits = (__u32*)kmalloc( ((NR_CMDS+31)/32)*sizeof(__u32), GFP_KERNEL); hba[i]->cmd_pool = (CommandList_struct *)pci_alloc_consistent( hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct), &(hba[i]->cmd_pool_dhandle)); hba[i]->errinfo_pool = (ErrorInfo_struct *)pci_alloc_consistent( hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct), &(hba[i]->errinfo_pool_dhandle)); if ((hba[i]->cmd_pool_bits == NULL) || (hba[i]->cmd_pool == NULL) || (hba[i]->errinfo_pool == NULL)) { if (hba[i]->cmd_pool_bits) kfree(hba[i]->cmd_pool_bits); if (hba[i]->cmd_pool) pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct), hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); if (hba[i]->errinfo_pool) pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct), hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle); free_irq(hba[i]->intr, hba[i]); unregister_blkdev(hba[i]->major, hba[i]->devname); map_major_to_ctlr[hba[i]->major] = 0; release_io_mem(hba[i]); free_hba(i); printk( KERN_ERR "cciss: out of memory"); return -1; } /* Initialize the pdev driver private data. have it point to hba[i]. */ pci_set_drvdata(pdev, hba[i]); /* command and error info recs zeroed out before they are used */ memset(hba[i]->cmd_pool_bits, 0, ((NR_CMDS+31)/32)*sizeof(__u32)); #ifdef CCISS_DEBUG printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n",i); #endif /* CCISS_DEBUG */ cciss_getgeometry(i); cciss_find_non_disk_devices(i); /* find our tape drives, if any */ /* Turn the interrupts on so we can service requests */ hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON); cciss_procinit(i); q = BLK_DEFAULT_QUEUE(hba[i]->major); q->queuedata = hba[i]; blk_init_queue(q, do_cciss_request); blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask); blk_queue_headactive(q, 0); /* fill in the other Kernel structs */ blksize_size[hba[i]->major] = hba[i]->blocksizes; hardsect_size[hba[i]->major] = hba[i]->hardsizes; read_ahead[hba[i]->major] = READ_AHEAD; /* Set the pointers to queue functions */ q->back_merge_fn = cpq_back_merge_fn; q->front_merge_fn = cpq_front_merge_fn; q->merge_requests_fn = cpq_merge_requests_fn; /* Fill in the gendisk data */ hba[i]->gendisk.major = hba[i]->major; hba[i]->gendisk.major_name = "cciss"; hba[i]->gendisk.minor_shift = NWD_SHIFT; hba[i]->gendisk.max_p = MAX_PART; hba[i]->gendisk.part = hba[i]->hd; hba[i]->gendisk.sizes = hba[i]->sizes; hba[i]->gendisk.nr_real = hba[i]->highest_lun+1; hba[i]->gendisk.fops = &cciss_fops; /* Get on the disk list */ add_gendisk(&(hba[i]->gendisk)); cciss_geninit(i); for(j=0; jgendisk), MKDEV(hba[i]->major, j <<4), MAX_PART, &cciss_fops, hba[i]->drv[j].nr_blocks); cciss_register_scsi(i, 1); /* hook ourself into SCSI subsystem */ return 1; } static void __devexit cciss_remove_one (struct pci_dev *pdev) { ctlr_info_t *tmp_ptr; int i; char flush_buf[4]; int return_code; if (pci_get_drvdata(pdev) == NULL) { printk( KERN_ERR "cciss: Unable to remove device \n"); return; } tmp_ptr = pci_get_drvdata(pdev); i = tmp_ptr->ctlr; if (hba[i] == NULL) { printk(KERN_ERR "cciss: device appears to " "already be removed \n"); return; } kill_monitor_thread(hba[i]); /* no sense in trying to flush a dead board's cache. */ if (CTLR_IS_ALIVE(hba[i])) { /* Turn board interrupts off and flush the cache */ /* write all data in the battery backed cache to disks */ memset(flush_buf, 0, 4); return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL); if (return_code != IO_OK) printk(KERN_WARNING "cciss%d: Error flushing cache\n", i); } free_irq(hba[i]->intr, hba[i]); pci_set_drvdata(pdev, NULL); iounmap((void*)hba[i]->vaddr); cciss_unregister_scsi(i); /* unhook from SCSI subsystem */ unregister_blkdev(hba[i]->major, hba[i]->devname); map_major_to_ctlr[hba[i]->major] = 0; remove_proc_entry(hba[i]->devname, proc_cciss); /* remove it from the disk list */ del_gendisk(&(hba[i]->gendisk)); pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct), hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct), hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle); kfree(hba[i]->cmd_pool_bits); release_io_mem(hba[i]); free_hba(i); } static struct pci_driver cciss_pci_driver = { name: "cciss", probe: cciss_init_one, remove: __devexit_p(cciss_remove_one), id_table: cciss_pci_device_id, /* id_table */ }; /* * This is it. Register the PCI driver information for the cards we control * the OS will call our registered routines when it finds one of our cards. */ int __init cciss_init(void) { printk(KERN_INFO DRIVER_NAME "\n"); /* Register for out PCI devices */ return pci_module_init(&cciss_pci_driver); } EXPORT_NO_SYMBOLS; static int __init init_cciss_module(void) { register_cciss_ioctl32(); return cciss_init(); } static void __exit cleanup_cciss_module(void) { int i; unregister_cciss_ioctl32(); pci_unregister_driver(&cciss_pci_driver); /* double check that all controller entrys have been removed */ for (i=0; i< MAX_CTLR; i++) { if (hba[i] != NULL) { printk(KERN_WARNING "cciss: had to remove" " controller %d\n", i); cciss_remove_one(hba[i]->pdev); } } remove_proc_entry("cciss", proc_root_driver); } module_init(init_cciss_module); module_exit(cleanup_cciss_module);