/* lanai.c -- Copyright 1999 by Mitchell Blank Jr * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * This driver supports ATM cards based on the Efficient "Lanai" * chipset such as the Speedstream 3010 and the ENI-25p. The * Speedstream 3060 is currently not supported since we don't * have the code to drive the on-board Alcatel DSL chipset (yet). * * Thanks to Efficient for supporting this project with hardware, * documentation, and by answering my questions. * * Things not working yet: * * o We're only set up to compile as a module currently. i.e. * you should put the source in drivers/atm/lanai.c and then * just do "make drivers/atm/lanai.o" from the main * source directory. This will produce a drivers/atm/lanai.o * file suitable for insmod'ing * * o We don't support the Speedstream 3060 yet - this card has * an on-board DSL modem chip by Alcatel and the driver will * need some extra code added to handle it * * o Note that due to limitations of the Lanai only one VCC can be * in CBR at once * * o We don't currently parse the EEPROM at all. The code is all * there as per the spec, but it doesn't actually work. I think * there may be some issues with the docs. Anyway, do NOT * enable it yet - bugs in that code may actually damage your * hardware! Because of this you should hardware an ESI before * trying to use this in a LANE or MPOA environment. * * o AAL0 is stubbed in but the actual rx/tx path isn't written yet: * vcc_tx_aal0() needs to send or queue a SKB * vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs * vcc_rx_aal0() needs to handle AAL0 interrupts * This isn't too much work - I just wanted to get other things * done first. * * o lanai_change_qos() isn't written yet * * o There aren't any ioctl's yet -- I'd like to eventually support * setting loopback and LED modes that way. (see lanai_ioctl) * * o If the segmentation engine or DMA gets shut down we should restart * card as per section 17.0i. (see lanai_reset) * * o setsockopt(SO_CIRANGE) isn't done (although despite what the * API says it isn't exactly commonly implemented) */ /* Version history: * v.0.02 -- 11-JAN-2000 -- Endian fixes * v.0.01 -- 30-NOV-1999 -- Initial release */ #include #include #include #include #include #include #include #include #include #include #ifndef PCI_VENDOR_ID_EF_ATM_LANAI2 /* These need to eventually go into - they're here for now */ #define PCI_VENDOR_ID_EF_ATM_LANAI2 0x0003 #define PCI_VENDOR_ID_EF_ATM_LANAIHB 0x0005 #endif /* -------------------- TUNABLE PARAMATERS: */ /* * Maximum number of VCIs per card. Setting it lower could theoretically * save some memory, but since we allocate our vcc list with get_free_pages, * it's not really likely for most architectures */ #define NUM_VCI (1024) /* * Enable extra debugging */ #define DEBUG /* * Debug _all_ register operations with card, except the memory test. * Also disables the timed poll to prevent extra chattiness. This * isn't for normal use */ #undef DEBUG_RW /* * The programming guide specifies a full test of the on-board SRAM * at initialization time. Undefine to remove this */ #define FULL_MEMORY_TEST /* * This is the number of (4 byte) service entries that we will * try to allocate at startup. Note that we will end up with * one PAGE_SIZE's worth regardless of what this is set to */ #define SERVICE_ENTRIES (1024) /* TODO: make above a module load-time option */ /* * We normally read the onboard EEPROM in order to discover our MAC * address. Undefine to _not_ do this */ /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */ /* TODO: make above a module load-time option (also) */ /* * Depth of TX fifo (in 128 byte units; range 2-31) * Smaller numbers are better for network latency * Larger numbers are better for PCI latency * I'm really sure where the best tradeoff is, but the BSD driver uses * 7 and it seems to work ok. */ #define TX_FIFO_DEPTH (7) /* TODO: make above a module load-time option */ /* * How often (in jiffies) we will try to unstick stuck connections - * shouldn't need to happen much */ #define LANAI_POLL_PERIOD (10*HZ) /* TODO: make above a module load-time option */ /* * When allocating an AAL5 receiving buffer, try to make it at least * large enough to hold this many max_sdu sized PDUs */ #define AAL5_RX_MULTIPLIER (3) /* TODO: make above a module load-time option */ /* * Same for transmitting buffer */ #define AAL5_TX_MULTIPLIER (3) /* TODO: make above a module load-time option */ /* * When allocating an AAL0 transmiting buffer, how many cells should fit. * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't * really critical */ #define AAL0_TX_MULTIPLIER (40) /* TODO: make above a module load-time option */ /* * How large should we make the AAL0 receiving buffer. Remember that this * is shared between all AAL0 VC's */ #define AAL0_RX_BUFFER_SIZE (PAGE_SIZE) /* TODO: make above a module load-time option */ /* * Should we use Lanai's "powerdown" feature when no vcc's are bound? */ /* #define USE_POWERDOWN */ /* TODO: make above a module load-time option (also) */ /* -------------------- DEBUGGING AIDS: */ #define DEV_LABEL "lanai" #ifdef DEBUG #define DPRINTK(format, args...) \ printk(KERN_DEBUG DEV_LABEL ": " format, ##args) #define APRINTK(truth, format, args...) \ do { \ if (!(truth)) \ printk(KERN_ERR DEV_LABEL ": " format, ##args); \ } while (0) #else /* !DEBUG */ #define DPRINTK(format, args...) #define APRINTK(truth, format, args...) #endif /* DEBUG */ #ifdef DEBUG_RW #define RWDEBUG(format, args...) \ printk(KERN_DEBUG DEV_LABEL ": " format, ##args) #else /* !DEBUG_RW */ #define RWDEBUG(format, args...) #endif /* -------------------- DATA DEFINITIONS: */ #define LANAI_MAPPING_SIZE (0x40000) #define LANAI_EEPROM_SIZE (128) typedef int vci_t; typedef unsigned long bus_addr_t; /* A bitfield large enough for NUM_VCI */ #define VCI_BITFIELD_NELEM ((NUM_VCI + BITS_PER_LONG - 1) / BITS_PER_LONG) typedef struct { unsigned long ul[VCI_BITFIELD_NELEM]; } vci_bitfield; /* DMA buffer in host memory for TX, RX, or service list. */ struct lanai_buffer { u32 *start; /* From get_free_pages */ u32 *end; /* One past last byte */ u32 *ptr; /* Pointer to current host location */ int order; /* log2(size/PAGE_SIZE) */ }; struct lanai_vcc_stats { unsigned rx_nomem; union { struct { unsigned rx_badlen; unsigned service_trash; unsigned service_stream; unsigned service_rxcrc; } aal5; struct { } aal0; } x; }; struct lanai_dev; /* Forward declaration */ /* * This is the card-specific per-vcc data. Note that unlike some other * drivers there is NOT a 1-to-1 correspondance between these and * atm_vcc's - each one of these represents an actual 2-way vcc, but * an atm_vcc can be 1-way and share with a 1-way vcc in the other * direction. To make it weirder, there can even be 0-way vccs * bound to us, waiting to do a change_qos */ struct lanai_vcc { bus_addr_t vbase; /* Base of VCC's registers */ struct lanai_vcc_stats stats; int nref; /* # of atm_vcc's who reference us */ vci_t vci; struct { struct lanai_buffer buf; struct atm_vcc *atmvcc; /* atm_vcc who is receiver */ } rx; struct { struct lanai_buffer buf; struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */ int endptr; /* last endptr from service entry */ struct sk_buff_head backlog; struct sk_buff *inprogress; /* We're streaming this PDU */ unsigned char *pptr; /* Where we are in above */ int inprogleft; /* Bytes left to send "inprogress" */ void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int); } tx; }; enum lanai_type { lanai2 = PCI_VENDOR_ID_EF_ATM_LANAI2, lanaihb = PCI_VENDOR_ID_EF_ATM_LANAIHB }; struct lanai_dev_stats { unsigned ovfl_trash; /* # of cells dropped - buffer overflow */ unsigned vci_trash; /* # of cells dropped - closed vci */ unsigned hec_err; /* # of cells dropped - bad HEC */ unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */ unsigned pcierr_parity_detect; unsigned pcierr_serr_set; unsigned pcierr_master_abort; unsigned pcierr_m_target_abort; unsigned pcierr_s_target_abort; unsigned pcierr_master_parity; unsigned service_novcc_rx; unsigned service_novcc_tx; unsigned service_notx; unsigned service_norx; unsigned service_rxnotaal5; unsigned dma_reenable; unsigned card_reset; }; struct lanai_dev { bus_addr_t base; struct lanai_dev_stats stats; struct lanai_buffer service; struct lanai_vcc **vccs; #ifdef USE_POWERDOWN int nbound; /* number of bound vccs */ #endif enum lanai_type type; vci_t num_vci; /* Currently just NUM_VCI */ u8 eeprom[LANAI_EEPROM_SIZE]; u32 serialno, magicno; struct pci_dev *pci; vci_bitfield backlog_vccs; /* VCCs that are backlogged */ vci_bitfield transmit_ready; /* VCCs that have transmit space */ struct timer_list timer; int naal0; struct lanai_buffer aal0buf; /* AAL0 RX buffers */ u32 conf1, conf2; /* CONFIG[12] registers */ u32 status; /* STATUS register */ spinlock_t txlock; spinlock_t servicelock; struct atm_vcc *cbrvcc; int number; int board_rev; u8 pci_revision; /* TODO - look at race conditions with maintence of conf1/conf2 */ /* TODO - transmit locking: should we use _irq not _irqsave? */ /* TODO - organize above in some rational fashion (see ) */ }; /* -------------------- VCI_BITFIELD UTILITIES: */ /* * These functions assume that BITS_PER_LONG is a power of two, which * should be safe */ #if (BITS_PER_LONG & (BITS_PER_LONG - 1)) #error lanai driver requires type long to have a power of two number of bits #endif /* * In vci_bitfield_{set,clear} we do the operation in three * parts to ensure that gcc doesn't cast anything down to * 32 bits (and then sign extend them later) on 64-bit * platforms like the alpha */ static inline void vci_bitfield_set(vci_bitfield *bf, vci_t vci) { unsigned long bit = 1; bit <<= (unsigned long) (vci & (BITS_PER_LONG - 1)); bf->ul[vci / BITS_PER_LONG] |= bit; } static inline void vci_bitfield_clear(vci_bitfield *bf, vci_t vci) { unsigned long bit = 1; bit <<= (unsigned long) (vci & (BITS_PER_LONG - 1)); bf->ul[vci / BITS_PER_LONG] &= ~bit; } static inline void vci_bitfield_init(vci_bitfield *bf) { memset(bf, 0, sizeof(*bf)); } static void vci_bitfield_iterate(struct lanai_dev *lanai, const vci_bitfield *bf, void (*func)(struct lanai_dev *,vci_t vci)) { vci_t vci; unsigned long mask; const unsigned long *lp = &(bf->ul[0]); for (vci = 0; vci < NUM_VCI; lp++) if (*lp == 0) vci += BITS_PER_LONG; else for (mask = 1; mask != 0; mask <<= 1, vci++) if (*lp & mask) func(lanai, vci); } /* -------------------- BUFFER UTILITIES: */ /* * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes - * we assume that any page allocation will do. I'm sure this is * never going to be a problem, but it's good to document assumtions */ #if PAGE_SIZE < 1024 #error PAGE_SIZE too small to support LANAI chipset #endif /* * We also assume that the maximum buffer size will be some number * of whole pages, although that wouldn't be too hard to fix */ #if PAGE_SIZE > (128 * 1024) #error PAGE_SIZE too large to support LANAI chipset #endif /* Convert a size to "order" for __get_free_pages */ static int bytes_to_order(int bytes) { int order = 0; if (bytes > (128 * 1024)) bytes = 128 * 1024; /* Max buffer size for lanai */ while ((PAGE_SIZE << order) < bytes) order++; return order; } /* * Allocate a buffer in host RAM for service list, RX, or TX * Returns buf->order<0 if no memory * Note that the size will be rounded up to an "order" of pages, and * if we can't allocate that we'll settle for something smaller * until minbytes * * NOTE: buffer must be 32-bit DMA capable - when linux can * make distinction, this will need tweaking for this * to work on BIG memory machines. */ static void lanai_buf_allocate(struct lanai_buffer *buf, int bytes, int minbytes) { unsigned long address; int order = bytes_to_order(bytes); do { address = __get_free_pages(GFP_KERNEL, order); if (address != 0) { /* Success */ bytes = PAGE_SIZE << order; buf->start = buf->ptr = (u32 *) address; buf->end = (u32 *) (address + bytes); memset((void *) address, 0, bytes); break; } if ((PAGE_SIZE << --order) < minbytes) order = -1; /* Too small - give up */ } while (order >= 0); buf->order = order; } static inline void lanai_buf_deallocate(struct lanai_buffer *buf) { if (buf->order >= 0) { APRINTK(buf->start != 0, "lanai_buf_deallocate: start==0!\n"); free_pages((unsigned long) buf->start, buf->order); buf->start = buf->end = buf->ptr = 0; } } /* size of buffer in bytes */ static inline int lanai_buf_size(const struct lanai_buffer *buf) { return ((unsigned long) buf->end) - ((unsigned long) buf->start); } /* size of buffer as "card order" (0=1k .. 7=128k) */ static inline int lanai_buf_size_cardorder(const struct lanai_buffer *buf) { return buf->order + PAGE_SHIFT - 10; } /* DMA-able address for this buffer */ static unsigned long lanai_buf_dmaaddr(const struct lanai_buffer *buf) { unsigned long r = virt_to_bus(buf->start); APRINTK((r & ~0xFFFFFF00) == 0, "bad dmaaddr: 0x%lx\n", (long) r); return r; } /* -------------------- HANDLE BACKLOG_VCCS BITFIELD: */ static inline void vcc_mark_backlogged(struct lanai_dev *lanai, const struct lanai_vcc *lvcc) { APRINTK(lvcc->vbase != 0, "vcc_mark_backlogged: zero vbase!\n"); vci_bitfield_set(&lanai->backlog_vccs, lvcc->vci); } static inline void vcc_unmark_backlogged(struct lanai_dev *lanai, const struct lanai_vcc *lvcc) { APRINTK(lvcc->vbase != 0, "vcc_unmark_backlogged: zero vbase!\n"); vci_bitfield_clear(&lanai->backlog_vccs, lvcc->vci); } static inline void vcc_backlog_init(struct lanai_dev *lanai) { vci_bitfield_init(&lanai->backlog_vccs); } static inline int vcc_is_backlogged(/*const*/ struct lanai_vcc *lvcc) { return lvcc->tx.inprogress != NULL || !skb_queue_empty(&lvcc->tx.backlog); } /* -------------------- PORT I/O UTILITIES: */ /* Registers (and their bit-fields) */ enum lanai_register { Reset_Reg = 0x00, /* Reset; read for chip type; bits: */ #define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */ #define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */ #define BOARD_ID_LANAI256 (0) /* 25.6M adaptor card */ Endian_Reg = 0x04, /* Endian setting */ IntStatus_Reg = 0x08, /* Interrupt status */ IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */ IntAck_Reg = 0x10, /* Interrupt acknowledge */ IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */ IntStatusSet_Reg = 0x18, /* Get status + enable/disable */ IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */ IntControlEna_Reg = 0x20, /* Interrupt control enable */ IntControlDis_Reg = 0x24, /* Interrupt control disable */ Status_Reg = 0x28, /* Status */ #define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */ #define STATUS_WAITING (0x00000002) /* Interrupt being delayed */ #define STATUS_SOOL (0x00000004) /* SOOL alarm */ #define STATUS_LOCD (0x00000008) /* LOCD alarm */ #define STATUS_LED (0x00000010) /* LED (HAPPI) output */ #define STATUS_GPIN (0x00000020) /* GPIN pin */ #define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */ Config1_Reg = 0x2C, /* Config word 1; bits: */ #define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */ #define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */ #define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */ #define READMODE_PLAIN (0) /* Plain memory read */ #define READMODE_LINE (2) /* Memory read line */ #define READMODE_MULTIPLE (3) /* Memory read multiple */ #define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */ #define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */ #define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */ #define LOOPMODE_NORMAL (0) /* Normal - no loop */ #define LOOPMODE_TIME (1) #define LOOPMODE_DIAG (2) #define LOOPMODE_LINE (3) #define CONFIG1_MASK_LOOPMODE (0x00000180) #define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */ #define LEDMODE_NOT_SOOL (0) /* !SOOL */ #define LEDMODE_OFF (1) /* 0 */ #define LEDMODE_ON (2) /* 1 */ #define LEDMODE_NOT_LOCD (3) /* !LOCD */ #define LEDMORE_GPIN (4) /* GPIN */ #define LEDMODE_NOT_GPIN (7) /* !GPIN */ #define CONFIG1_MASK_LEDMODE (0x00000E00) #define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */ #define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */ #define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */ Config2_Reg = 0x30, /* Config word 2; bits: */ #define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */ #define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */ #define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */ #define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */ #define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */ #define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */ #define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */ #define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */ #define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */ Statistics_Reg = 0x34, /* Statistics; bits: */ #define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */ #define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */ #define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */ #define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */ ServiceStuff_Reg = 0x38, /* Service stuff; bits: */ #define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */ #define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */ ServWrite_Reg = 0x3C, /* ServWrite Pointer */ ServRead_Reg = 0x40, /* ServRead Pointer */ TxDepth_Reg = 0x44, /* FIFO Transmit Depth */ Butt_Reg = 0x48, /* Butt register */ CBR_ICG_Reg = 0x50, CBR_PTR_Reg = 0x54, PingCount_Reg = 0x58, /* Ping count */ DMA_Addr_Reg = 0x5C /* DMA address */ }; static inline bus_addr_t reg_addr(const struct lanai_dev *lanai, enum lanai_register reg) { return lanai->base + (bus_addr_t) reg; } static inline u32 reg_read(const struct lanai_dev *lanai, enum lanai_register reg) { u32 t; t = readl(reg_addr(lanai, reg)); RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base, (int) reg, t); return t; } static inline void reg_write(const struct lanai_dev *lanai, u32 val, enum lanai_register reg) { RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base, (int) reg, val); writel(val, reg_addr(lanai, reg)); mdelay(1); } static inline void conf1_write(const struct lanai_dev *lanai) { reg_write(lanai, lanai->conf1, Config1_Reg); } static inline void conf2_write(const struct lanai_dev *lanai) { reg_write(lanai, lanai->conf2, Config2_Reg); } static inline void reset_board(const struct lanai_dev *lanai) { DPRINTK("about to reset board\n"); reg_write(lanai, 0, Reset_Reg); /* * If we don't delay a little while here then we can end up * leaving the card in a VERY weird state and lock up the * PCI bus. This isn't documented anywhere but I've convinced * myself after a lot of painful experimentation */ udelay(5); } /* -------------------- VCC LIST LOCK: */ /* * The linux-atm code disables local IRQs while managing the list of * VCCs on a card. This is good, but it doesn't save us against * SMP. Unfortunately, fixing this will require changes in the * API which will have to wait a little bit. It's a hard race to * trigger accidentally, so it isn't TOO horrible so far. * * One possible solution would be to have an rwlock which is * always grabbed _irq-style on writing. This would automatically * be grabbed (for writing) by the higher layers on things that * would result in a change in the vcc list (_open, _close, * probably _change_qos) - thus it would also protect the * higher-level list of vccs on each device (atm_dev->vccs). * The driver would be responsible for grabbing it as a read_lock * anytime it wants to consult its table of vccs - for instance * when handling an incoming PDU. This also explains why we would * probably want the write_lock while in _change_qos - to prevent * handling of PDUs while possibly in an inconsistant state. * Also, _send would grab the lock for reading. * * One problem with this is that _open and _close could no longer * do anything that might provoke a schedule. First, it would * force us to use GFP_ATOMIC memory (which is bad), but also * some devices pretty much require scheduling due to long * delays (see lanai_close for an example). So in this case * we need a way to schedule without losing the spinlock. * The cleanest way to do this is probably have a way to mark a * VCC as "in progress" so that the interrupt handler can * still disregard any traffic for it while _open or _close * are sleeping on it. Then it will need to be _open and * _close's job to relinquish the write_lock. Thus, the * lock could be dropped around the times that scheduling * might occur. Perhaps the _READY flag can be used for * this purpose. * * One short note about this "upper layer grabs, driver * relinquishes" write lock - since this needs to be * an _irq lock we're going to have problem saving * and restoring flags (_irqsave/_irqrestore). This * shouldn't be a problem, however - we must just * require that those syscalls are never called with * interrupts disabled so we can use the non-flags-saving * versions. * * Anyway, all of the above is vaporware currently - fixing * this right will require changes in the API and all of * the drivers - this will wait until 2.5.x most likely. * The following NOP macros are just here to mark where * the locks will be needed in the future. */ #define vcclist_read_lock() do {} while (0) #define vcclist_read_unlock() do {} while (0) #define vcclist_write_lock() do {} while (0) #define vcclist_write_unlock() do {} while (0) /* -------------------- CARD SRAM UTILITIES: */ /* The SRAM is mapped into normal PCI memory space - the only catch is * that it is only 16-bits wide but must be accessed as 32-bit. The * 16 high bits will be zero. We don't hide this, since they get * programmed mostly like discrete registers anyway */ #define SRAM_START (0x20000) #define SRAM_BYTES (0x20000) /* Again, half don't really exist */ static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset) { return lanai->base + SRAM_START + offset; } static inline u32 sram_read(const struct lanai_dev *lanai, int offset) { return readl(sram_addr(lanai, offset)); } static inline void sram_write(const struct lanai_dev *lanai, u32 val, int offset) { writel(val, sram_addr(lanai, offset)); } static int __init sram_test_word( const struct lanai_dev *lanai, int offset, u32 pattern) { u32 readback; sram_write(lanai, pattern, offset); readback = sram_read(lanai, offset); if (readback == pattern) return 0; printk(KERN_ERR DEV_LABEL "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n", lanai->number, offset, pattern, readback); return -EIO; } static int __init sram_test_pass(const struct lanai_dev *lanai, u32 pattern) { int offset, result = 0; for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4) result = sram_test_word(lanai, offset, pattern); return result; } static int __init sram_test_and_clear(const struct lanai_dev *lanai) { #ifdef FULL_MEMORY_TEST int result; DPRINTK("testing SRAM\n"); if ((result = sram_test_pass(lanai, 0x5555)) != 0) return result; if ((result = sram_test_pass(lanai, 0xAAAA)) != 0) return result; #endif DPRINTK("clearing SRAM\n"); return sram_test_pass(lanai, 0x0000); } /* -------------------- CARD-BASED VCC TABLE UTILITIES: */ /* vcc table */ enum lanai_vcc_offset { vcc_rxaddr1 = 0x00, /* Location1, plus bits: */ #define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */ #define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */ #define RMMODE_TRASH (0) /* discard */ #define RMMODE_PRESERVE (1) /* input as AAL0 */ #define RMMODE_PIPE (2) /* pipe to coscheduler */ #define RMMODE_PIPEALL (3) /* pipe non-RM too */ #define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */ #define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */ #define RXMODE_TRASH (0) /* discard */ #define RXMODE_AAL0 (1) /* non-AAL5 mode */ #define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */ #define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */ vcc_rxaddr2 = 0x04, /* Location2 */ vcc_rxcrc1 = 0x08, /* RX CRC claculation space */ vcc_rxcrc2 = 0x0C, vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */ #define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */ #define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */ #define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */ vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */ #define RXBUFSTART_CLP (0x00004000) #define RXBUFSTART_CI (0x00008000) vcc_rxreadptr = 0x18, /* RX readptr */ vcc_txicg = 0x1C, /* TX ICG */ vcc_txaddr1 = 0x20, /* Location1, plus bits: */ #define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */ #define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */ vcc_txaddr2 = 0x24, /* Location2 */ vcc_txcrc1 = 0x28, /* TX CRC claculation space */ vcc_txcrc2 = 0x2C, vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */ #define TXREADPTR_GET_PTR(x) ((x)&0x01FFF) #define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */ vcc_txendptr = 0x34, /* TX Endptr, plus bits: */ #define TXENDPTR_CLP (0x00002000) #define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */ #define PDUMODE_AAL0 (0*0x04000) #define PDUMODE_AAL5 (2*0x04000) #define PDUMODE_AAL5STREAM (3*0x04000) vcc_txwriteptr = 0x38, /* TX Writeptr */ #define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF) vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */ #define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */ }; #define CARDVCC_SIZE (0x40) static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai, vci_t vci) { return sram_addr(lanai, vci * CARDVCC_SIZE); } static inline u32 cardvcc_read(const struct lanai_vcc *lvcc, enum lanai_vcc_offset offset) { u32 val; APRINTK(lvcc->vbase != 0, "cardvcc_read: unbound vcc!\n"); val= readl(lvcc->vbase + (bus_addr_t) offset); RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n", lvcc->vci, (int) offset, val); return val; } static inline void cardvcc_write(const struct lanai_vcc *lvcc, u32 val, enum lanai_vcc_offset offset) { APRINTK(lvcc->vbase != 0, "cardvcc_write: unbound vcc!\n"); APRINTK((val & ~0xFFFF) == 0, "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n", val, lvcc->vci, (int) offset); RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n", lvcc->vci, (int) offset, val); writel(val, lvcc->vbase + (bus_addr_t) offset); } /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */ /* How many bytes will an AAL5 PDU take to transmit - remember that: * o we need to add 8 bytes for length, CPI, UU, and CRC * o we need to round up to 48 bytes for cells */ static inline int aal5_size(int size) { int cells = (size + 8 + 47) / 48; return cells * 48; } /* How many bytes can we send if we have "space" space, assuming we have * to send full cells */ static inline int aal5_spacefor(int space) { int cells = space / 48; return cells * 48; } /* -------------------- FREE AN ATM SKB: */ static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb) { if (atmvcc->pop != NULL) atmvcc->pop(atmvcc, skb); else dev_kfree_skb_any(skb); } /* -------------------- TURN VCCS ON AND OFF: */ static void host_vcc_start_rx(const struct lanai_vcc *lvcc) { u32 addr1; if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) { unsigned long dmaaddr = lanai_buf_dmaaddr(&lvcc->rx.buf); cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1); cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2); cardvcc_write(lvcc, 0, vcc_rxwriteptr); cardvcc_write(lvcc, 0, vcc_rxbufstart); cardvcc_write(lvcc, 0, vcc_rxreadptr); cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2); addr1 = ((dmaaddr >> 8) & 0xFF) | RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))| RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */ /* RXADDR1_OAM_PRESERVE | --- no OAM support yet */ RXADDR1_SET_MODE(RXMODE_AAL5); } else addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */ RXADDR1_OAM_PRESERVE | /* ??? */ RXADDR1_SET_MODE(RXMODE_AAL0); /* This one must be last! */ cardvcc_write(lvcc, addr1, vcc_rxaddr1); } static void host_vcc_start_tx(const struct lanai_vcc *lvcc) { unsigned long dmaaddr = lanai_buf_dmaaddr(&lvcc->tx.buf); cardvcc_write(lvcc, 0, vcc_txicg); cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1); cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2); cardvcc_write(lvcc, 0, vcc_txreadptr); cardvcc_write(lvcc, 0, vcc_txendptr); cardvcc_write(lvcc, 0, vcc_txwriteptr); cardvcc_write(lvcc, (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ? TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next); cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2); cardvcc_write(lvcc, ((dmaaddr >> 8) & 0xFF) | TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)), vcc_txaddr1); } /* Shutdown receiving on card */ static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc) { if (lvcc->vbase == 0) /* We were never bound to a VCI */ return; /* 15.1.1 - set to trashing, wait one cell time (15us) */ cardvcc_write(lvcc, RXADDR1_SET_RMMODE(RMMODE_TRASH) | RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1); udelay(15); /* 15.1.2 - clear rest of entries */ cardvcc_write(lvcc, 0, vcc_rxaddr2); cardvcc_write(lvcc, 0, vcc_rxcrc1); cardvcc_write(lvcc, 0, vcc_rxcrc2); cardvcc_write(lvcc, 0, vcc_rxwriteptr); cardvcc_write(lvcc, 0, vcc_rxbufstart); cardvcc_write(lvcc, 0, vcc_rxreadptr); } /* Shutdown transmitting on card. * Unfortunately the lanai needs us to wait until all the data * drains out of the buffer before we can dealloc it, so this * can take awhile -- up to 370ms for a full 128KB buffer * assuming everone else is quiet. In theory the time is * boundless if there's a CBR VCC holding things up. */ static void lanai_shutdown_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc) { struct sk_buff *skb; unsigned long flags, timeout; int read, write, lastread = -1; APRINTK(!in_interrupt(), "lanai_shutdown_tx_vci called w/o process context!\n"); if (lvcc->vbase == 0) /* We were never bound to a VCI */ return; /* 15.2.1 - wait for queue to drain */ spin_lock_irqsave(&lanai->txlock, flags); if (lvcc->tx.inprogress != NULL) { lanai_free_skb(lvcc->tx.atmvcc, lvcc->tx.inprogress); lvcc->tx.inprogress = NULL; } while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL) lanai_free_skb(lvcc->tx.atmvcc, skb); vcc_unmark_backlogged(lanai, lvcc); spin_unlock_irqrestore(&lanai->txlock, flags); timeout = jiffies + ((lanai_buf_size(&lvcc->tx.buf) * HZ) >> 17); write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr)); goto start; while (time_before_eq(jiffies, timeout)) { schedule_timeout(HZ / 25); start: read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)); if (read == write && /* Is TX buffer empty? */ (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR || (cardvcc_read(lvcc, vcc_txcbr_next) & TXCBR_NEXT_BOZO) == 0)) goto done; if (read != lastread) { /* Has there been any progress? */ lastread = read; timeout += HZ / 10; } } printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on backlog closing " "vci %d\n", lvcc->tx.atmvcc->dev->number, lvcc->vci); DPRINTK("read, write = %d, %d\n", read, write); done: /* 15.2.2 - clear out all tx registers */ cardvcc_write(lvcc, 0, vcc_txreadptr); cardvcc_write(lvcc, 0, vcc_txwriteptr); cardvcc_write(lvcc, 0, vcc_txendptr); cardvcc_write(lvcc, 0, vcc_txcrc1); cardvcc_write(lvcc, 0, vcc_txcrc2); cardvcc_write(lvcc, 0, vcc_txaddr2); cardvcc_write(lvcc, 0, vcc_txaddr1); } /* -------------------- MANAGING AAL0 RX BUFFER: */ static inline int aal0_buffer_allocate(struct lanai_dev *lanai) { DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n"); lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80); return (lanai->aal0buf.order < 0) ? -ENOMEM : 0; } static inline void aal0_buffer_free(struct lanai_dev *lanai) { DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n"); lanai_buf_deallocate(&lanai->aal0buf); } /* -------------------- EEPROM UTILITIES: */ /* Offsets of data in the EEPROM */ #define EEPROM_COPYRIGHT (0) #define EEPROM_COPYRIGHT_LEN (44) #define EEPROM_CHECKSUM (62) #define EEPROM_CHECKSUM_REV (63) #define EEPROM_MAC (64) #define EEPROM_MAC_REV (70) #define EEPROM_SERIAL (112) #define EEPROM_SERIAL_REV (116) #define EEPROM_MAGIC (120) #define EEPROM_MAGIC_REV (124) #define EEPROM_MAGIC_VALUE (0x5AB478D2) #ifndef READ_EEPROM /* Stub functions to use if EEPROM reading is disabled */ static int __init eeprom_read(struct lanai_dev *lanai) { printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n", lanai->number); memset(&lanai->eeprom[EEPROM_MAC], 0, 6); return 0; } static int __init eeprom_validate(struct lanai_dev *lanai) { lanai->serialno = 0; lanai->magicno = EEPROM_MAGIC_VALUE; return 0; } #else /* READ_EEPROM */ static int __init eeprom_read(struct lanai_dev *lanai) { int i, address; u8 data; u32 tmp; #define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \ } while (0) #define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK) #define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK) #define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA) #define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA) #define pre_read() do { data_h(); clock_h(); udelay(5); } while (0) #define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA) #define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \ data_h(); udelay(5); } while (0) /* start with both clock and data high */ data_h(); clock_h(); udelay(5); for (address = 0; address < LANAI_EEPROM_SIZE; address++) { data = (address << 1) | 1; /* Command=read + address */ /* send start bit */ data_l(); udelay(5); clock_l(); udelay(5); for (i = 128; i != 0; i >>= 1) { /* write command out */ tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) | (data & i) ? CONFIG1_PROMDATA : 0; if (lanai->conf1 != tmp) { set_config1(tmp); udelay(5); /* Let new data settle */ } clock_h(); udelay(5); clock_l(); udelay(5); } /* look for ack */ data_h(); clock_h(); udelay(5); if (read_pin() != 0) goto error; /* No ack seen */ clock_l(); udelay(5); /* read back result */ for (data = 0, i = 7; i >= 0; i--) { data_h(); clock_h(); udelay(5); data = (data << 1) | !!read_pin(); clock_l(); udelay(5); } /* look again for ack */ data_h(); clock_h(); udelay(5); if (read_pin() == 0) goto error; /* Spurious ack */ clock_l(); udelay(5); send_stop(); lanai->eeprom[address] = data; DPRINTK("EEPROM 0x%04X %02X\n", address, data); } return 0; error: clock_l(); udelay(5); /* finish read */ send_stop(); printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n", lanai->number, address); return -EIO; #undef set_config1 #undef clock_h #undef clock_l #undef data_h #undef data_l #undef pre_read #undef read_pin #undef send_stop } /* read a big-endian 4-byte value out of eeprom */ static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address) { return be32_to_cpup((u32 *) (&lanai->eeprom[address])); } /* Checksum/validate EEPROM contents */ static int __init eeprom_validate(struct lanai_dev *lanai) { int i, s; u32 v; const u8 *e = lanai->eeprom; #ifdef DEBUG /* First, see if we can get an ASCIIZ string out of the copyright */ for (i = EEPROM_COPYRIGHT; i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++) if (e[i] < 0x20 || e[i] > 0x7E) break; if ( i != EEPROM_COPYRIGHT && i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0') DPRINTK("eeprom: copyright = \"%s\"\n", (char *) &e[EEPROM_COPYRIGHT]); else DPRINTK("eeprom: copyright not found\n"); #endif /* Validate checksum */ for (i = s = 0; i < EEPROM_CHECKSUM; i++) s += e[i]; s &= 0xFF; if (s != e[EEPROM_CHECKSUM]) { printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad " "(wanted 0x%02X, got 0x%02X)\n", lanai->number, s, e[EEPROM_CHECKSUM]); return -EIO; } s ^= 0xFF; if (s != e[EEPROM_CHECKSUM_REV]) { printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum " "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number, s, e[EEPROM_CHECKSUM_REV]); return -EIO; } /* Verify MAC address */ for (i = 0; i < 6; i++) if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) { printk(KERN_ERR DEV_LABEL "(itf %d) : EEPROM MAC addresses don't match " "(0x%02X, inverse 0x%02X)\n", lanai->number, e[EEPROM_MAC + i], e[EEPROM_MAC_REV + i]); return -EIO; } DPRINTK("eeprom: MAC address = %02X:%02X:%02X:%02X:%02X:%02X\n", e[EEPROM_MAC + 0], e[EEPROM_MAC + 1], e[EEPROM_MAC + 2], e[EEPROM_MAC + 3], e[EEPROM_MAC + 4], e[EEPROM_MAC + 5]); /* Verify serial number */ lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL); v = eeprom_be4(lanai, EEPROM_SERIAL_REV); if ((lanai->serialno ^ v) != 0xFFFFFFFF) { printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers " "don't match (0x%08X, inverse 0x%08X)\n", lanai->number, lanai->serialno, v); return -EIO; } DPRINTK("eeprom: Serial number = %d\n", lanai->serialno); /* Verify magic number */ lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC); v = eeprom_be4(lanai, EEPROM_MAGIC_REV); if ((lanai->magicno ^ v) != 0xFFFFFFFF) { printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers " "don't match (0x%08X, inverse 0x%08X)\n", lanai->number, lanai->magicno, v); return -EIO; } DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno); if (lanai->magicno != EEPROM_MAGIC_VALUE) printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM " "magic not what expected (got 0x%08X, not 0x%08X)\n", lanai->number, lanai->magicno, EEPROM_MAGIC_VALUE); return 0; } #endif /* READ_EEPROM */ static inline const u8 *eeprom_mac(const struct lanai_dev *lanai) { return &lanai->eeprom[EEPROM_MAC]; } /* -------------------- INTERRUPT HANDLING UTILITIES: */ /* Interrupt types */ #define INT_STATS (0x00000002) /* Statistics counter overflow */ #define INT_SOOL (0x00000004) /* SOOL changed state */ #define INT_LOCD (0x00000008) /* LOCD changed state */ #define INT_LED (0x00000010) /* LED (HAPPI) changed state */ #define INT_GPIN (0x00000020) /* GPIN changed state */ #define INT_PING (0x00000040) /* PING_COUNT fulfilled */ #define INT_WAKE (0x00000080) /* Lanai wants bus */ #define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */ #define INT_LOCK (0x00000200) /* Service list overflow */ #define INT_MISMATCH (0x00000400) /* TX magic list mismatch */ #define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */ #define INT_AAL0 (0x00001000) /* Non-AAL5 data available */ #define INT_SERVICE (0x00002000) /* Service list entries available */ #define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */ #define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */ #define INT_TIMEOUTBM (0x00010000) /* No response to bus master */ #define INT_PCIPARITY (0x00020000) /* Parity error on PCI */ /* Sets of the above */ #define INT_ALL (0x0003FFFE) /* All interrupts */ #define INT_STATUS (0x0000003C) /* Some status pin changed */ #define INT_DMASHUT (0x00038000) /* DMA engine got shut down */ #define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */ static inline u32 intr_pending(const struct lanai_dev *lanai) { return reg_read(lanai, IntStatusMasked_Reg); } static inline void intr_enable(const struct lanai_dev *lanai, u32 i) { reg_write(lanai, i, IntControlEna_Reg); } static inline void intr_disable(const struct lanai_dev *lanai, u32 i) { reg_write(lanai, i, IntControlDis_Reg); } /* -------------------- CARD/PCI STATUS: */ static void status_message(int itf, const char *name, int status) { static const char *onoff[2] = { "off to on", "on to off" }; printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n", itf, name, onoff[!status]); } static void lanai_check_status(struct lanai_dev *lanai) { u32 new = reg_read(lanai, Status_Reg); u32 changes = new ^ lanai->status; lanai->status = new; #define e(flag, name) \ if (changes & flag) \ status_message(lanai->number, name, new & flag) e(STATUS_SOOL, "SOOL"); e(STATUS_LOCD, "LOCD"); e(STATUS_LED, "LED"); e(STATUS_GPIN, "GPIN"); #undef e } static void pcistatus_got(int itf, const char *name) { printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name); } static void pcistatus_check(struct lanai_dev *lanai, int clearonly) { u16 s; int result; result = pci_read_config_word(lanai->pci, PCI_STATUS, &s); if (result != PCIBIOS_SUCCESSFUL) { printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: " "%d\n", lanai->number, result); return; } s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY; if (s == 0) return; result = pci_write_config_word(lanai->pci, PCI_STATUS, s); if (result != PCIBIOS_SUCCESSFUL) printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: " "%d\n", lanai->number, result); if (clearonly) return; #define e(flag, name, stat) \ if (s & flag) { \ pcistatus_got(lanai->number, name); \ ++lanai->stats.pcierr_##stat; \ } e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect); e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set); e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort); e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort); e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort); e(PCI_STATUS_PARITY, "master parity", master_parity); #undef e } /* -------------------- VCC TX BUFFER UTILITIES: */ /* space left in tx buffer in bytes */ static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr) { int r; r = endptr * 16; r -= ((unsigned long) lvcc->tx.buf.ptr) - ((unsigned long) lvcc->tx.buf.start); r -= 16; /* Leave "bubble" - if start==end it looks empty */ if (r < 0) r += lanai_buf_size(&lvcc->tx.buf); return r; } /* Bit fields in the segmentation buffer descriptor */ #define DESCRIPTOR_MAGIC (0xD0000000) #define DESCRIPTOR_AAL5 (0x00008000) #define DESCRIPTOR_AAL5_STREAM (0x00004000) #define DESCRIPTOR_CLP (0x00002000) /* Add 32-bit descriptor with it's padding */ static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc, u32 flags, int len) { int pos; APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0, "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr); lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */ pos = ((unsigned char *) lvcc->tx.buf.ptr) - (unsigned char *) lvcc->tx.buf.start; APRINTK((pos & ~0x0001FFF0) == 0, "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, " "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end); pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1); APRINTK((pos & ~0x0001FFF0) == 0, "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, " "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end); lvcc->tx.buf.ptr[-1] = cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 | ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ? DESCRIPTOR_CLP : 0) | flags | pos >> 4); if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end) lvcc->tx.buf.ptr = lvcc->tx.buf.start; } /* Add 32-bit AAL5 trailer and leave room for its CRC */ static inline void vcc_tx_add_aal5trailer(struct lanai_vcc *lvcc, int len, int cpi, int uu) { APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8, "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr); lvcc->tx.buf.ptr += 2; lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len); if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end) lvcc->tx.buf.ptr = lvcc->tx.buf.start; } static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc, const unsigned char *src, int n) { unsigned char *e; int m; e = ((unsigned char *) lvcc->tx.buf.ptr) + n; m = e - (unsigned char *) lvcc->tx.buf.end; if (m < 0) m = 0; memcpy(lvcc->tx.buf.ptr, src, n - m); if (m != 0) { memcpy(lvcc->tx.buf.start, src + n - m, m); e = ((unsigned char *) lvcc->tx.buf.start) + m; } lvcc->tx.buf.ptr = (u32 *) e; } static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n) { unsigned char *e; int m; if (n == 0) return; e = ((unsigned char *) lvcc->tx.buf.ptr) + n; m = e - (unsigned char *) lvcc->tx.buf.end; if (m < 0) m = 0; memset(lvcc->tx.buf.ptr, 0, n - m); if (m != 0) { memset(lvcc->tx.buf.start, 0, m); e = ((unsigned char *) lvcc->tx.buf.start) + m; } lvcc->tx.buf.ptr = (u32 *) e; } /* Update "butt" register to specify new WritePtr */ static inline void lanai_endtx(const struct lanai_dev *lanai, const struct lanai_vcc *lvcc) { int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) - (unsigned char *) lvcc->tx.buf.start; APRINTK((ptr & ~0x0001FFF0) == 0, "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n", ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end); /* * We need to check if the "butt busy" bit is set before * updating the butt register. In theory this should * never happen because the ATM card is plenty fast at * updating the register. Still, we should make sure */ for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) { if (i > 50) { printk(KERN_ERR DEV_LABEL "(itf %d): butt register " "always busy!\n", lanai->number); break; } udelay(5); } reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg); } /* Try to fill the buffer - don't call unless there is backlog */ static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc, int endptr) { int pad, n; struct sk_buff *skb; int space = vcc_tx_space(lvcc, endptr); APRINTK(vcc_is_backlogged(lvcc), "vcc_tx_unqueue() called with empty backlog (vci=%d)\n", lvcc->vci); if (space < 64) return; /* No space for even 1 cell+descriptor */ if (lvcc->tx.inprogress != NULL) { APRINTK((lvcc->tx.inprogleft % 48) == 0, "vcc_tx_unqueue_aal5: bad progleft=%d\n", lvcc->tx.inprogleft); if (lvcc->tx.inprogleft + 16 > space) { /* Can't send all? */ n = aal5_spacefor(space - 16); /* Bytes to send */ vcc_tx_add_aal5_descriptor(lvcc, DESCRIPTOR_AAL5_STREAM, n); pad = lvcc->tx.pptr + n - lvcc->tx.inprogress->tail; if (pad < 0) pad = 0; vcc_tx_memcpy(lvcc, lvcc->tx.pptr, n - pad); vcc_tx_memzero(lvcc, pad); lvcc->tx.pptr += n; lvcc->tx.inprogleft -= n; goto end; /* Buffer is now full */ } /* OK, there's at least space for all of "inprogress" skb */ vcc_tx_add_aal5_descriptor(lvcc, 0, lvcc->tx.inprogleft); pad = lvcc->tx.pptr + lvcc->tx.inprogleft - lvcc->tx.inprogress->tail; if (pad >= lvcc->tx.inprogleft) { /* Nothing but pad left */ APRINTK(lvcc->tx.inprogleft == 48, "vcc_tx_unqueue_aal5: bad pure-pad=%d\n", lvcc->tx.inprogleft); pad = 48; } else vcc_tx_memcpy(lvcc, lvcc->tx.pptr, lvcc->tx.inprogleft - pad); vcc_tx_memzero(lvcc, pad - 8); vcc_tx_add_aal5trailer(lvcc, lvcc->tx.inprogress->len, 0, 0); lanai_free_skb(lvcc->tx.atmvcc, lvcc->tx.inprogress); lvcc->tx.inprogress = NULL; space -= lvcc->tx.inprogleft + 16; atomic_inc(&lvcc->tx.atmvcc->stats->tx); } while (space >= 64) { if ((skb = skb_dequeue(&lvcc->tx.backlog)) == NULL) break; n = aal5_size(skb->len); if (n + 16 > space) { /* Can only send part */ int m = aal5_spacefor(space - 16); /* Bytes to send */ vcc_tx_add_aal5_descriptor(lvcc, DESCRIPTOR_AAL5_STREAM, m); lvcc->tx.pptr = skb->data + m; pad = lvcc->tx.pptr - skb->tail; if (pad < 0) pad = 0; vcc_tx_memcpy(lvcc, skb->data, m - pad); vcc_tx_memzero(lvcc, pad); lvcc->tx.inprogleft = n - m; lvcc->tx.inprogress = skb; goto end; } vcc_tx_add_aal5_descriptor(lvcc, 0, n); pad = n - skb->len - 8; vcc_tx_memcpy(lvcc, skb->data, skb->len); vcc_tx_memzero(lvcc, pad); lanai_free_skb(lvcc->tx.atmvcc, skb); vcc_tx_add_aal5trailer(lvcc, skb->len, 0, 0); space -= n + 16; atomic_inc(&lvcc->tx.atmvcc->stats->tx); } if (skb_queue_empty(&lvcc->tx.backlog)) vcc_unmark_backlogged(lanai, lvcc); end: lanai_endtx(lanai, lvcc); } /* Given an skb that we want to transmit either send it now or queue */ static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc, struct sk_buff *skb) { int space, n, pad; if (vcc_is_backlogged(lvcc)) /* Already backlogged */ goto queue_it; space = vcc_tx_space(lvcc, TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr))); if (space < 64) { vcc_mark_backlogged(lanai, lvcc); /* No space */ goto queue_it; } if (space >= 16 + (n = aal5_size(skb->len))) { /* We can send the whole thing now */ vcc_tx_add_aal5_descriptor(lvcc, 0, n); pad = n - skb->len; vcc_tx_memcpy(lvcc, skb->data, skb->len); vcc_tx_memzero(lvcc, pad - 8); vcc_tx_add_aal5trailer(lvcc, skb->len, 0, 0); lanai_free_skb(lvcc->tx.atmvcc, skb); atomic_inc(&lvcc->tx.atmvcc->stats->tx); } else { /* Space for only part of skb */ int bytes = aal5_spacefor(space - 16); /* Bytes to send */ vcc_tx_add_aal5_descriptor(lvcc, DESCRIPTOR_AAL5_STREAM, bytes); pad = bytes - skb->len; if (pad < 0) pad = 0; vcc_tx_memcpy(lvcc, skb->data, bytes - pad); vcc_tx_memzero(lvcc, pad); lvcc->tx.inprogress = skb; lvcc->tx.inprogleft = n - bytes; lvcc->tx.pptr = skb->data + bytes; vcc_mark_backlogged(lanai, lvcc); } lanai_endtx(lanai, lvcc); return; queue_it: skb_queue_tail(&lvcc->tx.backlog, skb); } static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc, int endptr) { printk(KERN_INFO DEV_LABEL ": vcc_tx_unqueue_aal0: not implemented\n"); } static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc, struct sk_buff *skb) { printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n"); /* Remember to increment lvcc->tx.atmvcc->stats->tx */ lanai_free_skb(lvcc->tx.atmvcc, skb); } /* Try to undequeue 1 backlogged vcc */ static void iter_dequeue(struct lanai_dev *lanai, vci_t vci) { struct lanai_vcc *lvcc = lanai->vccs[vci]; int endptr; if (lvcc == NULL || !vcc_is_backlogged(lvcc)) { vci_bitfield_clear(&lanai->backlog_vccs, vci); return; } endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)); lvcc->tx.unqueue(lanai, lvcc, endptr); } /* Try a dequeue on all backlogged connections */ static inline void vcc_tx_dequeue_all(struct lanai_dev *lanai) { unsigned long flags; spin_lock_irqsave(&lanai->txlock, flags); vci_bitfield_iterate(lanai, &lanai->backlog_vccs, iter_dequeue); spin_unlock_irqrestore(&lanai->txlock, flags); } /* -------------------- VCC RX BUFFER UTILITIES: */ /* unlike the _tx_ cousins, this doesn't update ptr */ static inline void vcc_rx_memcpy(unsigned char *dest, const struct lanai_vcc *lvcc, int n) { int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n - ((const unsigned char *) (lvcc->rx.buf.end)); if (m < 0) m = 0; memcpy(dest, lvcc->rx.buf.ptr, n - m); memcpy(dest + n - m, lvcc->rx.buf.start, m); } /* Receive AAL5 data on a VCC with a particular endptr */ static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr) { int size; struct sk_buff *skb; /*const*/ u32 *x, *end = &lvcc->rx.buf.start[endptr * 4]; int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr); if (n < 0) n += lanai_buf_size(&lvcc->rx.buf); APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15), "vcc_rx_aal5: n out of range (%d/%d)\n", n, lanai_buf_size(&lvcc->rx.buf)); /* Recover the second-to-last word to get true pdu length */ if ((x = &end[-2]) < lvcc->rx.buf.start) x = &lvcc->rx.buf.end[-2]; size = be32_to_cpup(x) & 0xffff; if (n != aal5_size(size)) { /* Make sure size matches padding */ printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length " "on vci=%d - size=%d n=%d\n", lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n); lvcc->stats.x.aal5.rx_badlen++; goto out; } skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC); if (skb == NULL) { lvcc->stats.rx_nomem++; goto out; } skb_put(skb, size); ATM_SKB(skb)->vcc = lvcc->rx.atmvcc; skb->stamp = xtime; vcc_rx_memcpy(skb->data, lvcc, size); lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb); atomic_inc(&lvcc->rx.atmvcc->stats->rx); out: lvcc->rx.buf.ptr = end; cardvcc_write(lvcc, endptr, vcc_rxreadptr); } static void vcc_rx_aal0(struct lanai_dev *lanai) { printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n"); /* Remember to get vcclist_read_lock while looking up VC */ /* Remember to increment lvcc->rx.atmvcc->stats->rx */ } /* -------------------- MANAGING HOST-BASED VCC TABLE: */ /* Decide whether to use vmalloc or get_free_page for VCC table */ #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE #define VCCTABLE_GETFREEPAGE #else #include #endif static int __init vcc_table_allocate(struct lanai_dev *lanai) { #ifdef VCCTABLE_GETFREEPAGE APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE, "vcc table > PAGE_SIZE!"); lanai->vccs = (struct lanai_vcc **) get_free_page(GFP_KERNEL); return (lanai->vccs == NULL) ? -ENOMEM : 0; #else int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *); lanai->vccs = (struct lanai_vcc **) vmalloc(bytes); if (lanai->vccs == NULL) return -ENOMEM; memset(lanai->vccs, 0, bytes); return 0; #endif } static inline void vcc_table_deallocate(const struct lanai_dev *lanai) { #ifdef VCCTABLE_GETFREEPAGE free_page((unsigned long) lanai->vccs); #else vfree(lanai->vccs); #endif } /* Allocate a fresh lanai_vcc, with the appropriate things cleared */ static inline struct lanai_vcc *new_lanai_vcc(void) { struct lanai_vcc *lvcc; lvcc = (struct lanai_vcc *) kmalloc(sizeof(*lvcc), GFP_KERNEL); if (lvcc != NULL) { lvcc->vbase = 0; lvcc->rx.atmvcc = lvcc->tx.atmvcc = NULL; lvcc->nref = 0; memset(&lvcc->stats, 0, sizeof lvcc->stats); lvcc->rx.buf.start = lvcc->tx.buf.start = NULL; skb_queue_head_init(&lvcc->tx.backlog); lvcc->tx.inprogress = NULL; #ifdef DEBUG lvcc->tx.unqueue = NULL; lvcc->vci = -1; #endif } return lvcc; } static int lanai_get_sized_buffer(int number, struct lanai_buffer *buf, int max_sdu, int multiplier, int min, const char *name) { int size; if (max_sdu < 1) max_sdu = 1; max_sdu = aal5_size(max_sdu); size = (max_sdu + 16) * multiplier + 16; lanai_buf_allocate(buf, size, min); if (buf->order < 0) return -ENOMEM; if (lanai_buf_size(buf) < size) printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes " "for %s buffer, got only %d\n", number, size, name, lanai_buf_size(buf)); DPRINTK("Allocated %d byte %s buffer\n", lanai_buf_size(buf), name); return 0; } /* Setup a RX buffer for a currently unbound AAL5 vci */ static inline int lanai_setup_rx_vci_aal5(int number, struct lanai_vcc *lvcc, const struct atm_qos *qos) { return lanai_get_sized_buffer(number, &lvcc->rx.buf, qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, qos->rxtp.max_sdu + 32, "RX"); } /* Setup a TX buffer for a currently unbound AAL5 vci */ static int lanai_setup_tx_vci(int number, struct lanai_vcc *lvcc, const struct atm_qos *qos) { int max_sdu, multiplier; if (qos->aal == ATM_AAL0) { lvcc->tx.unqueue = vcc_tx_unqueue_aal0; max_sdu = ATM_CELL_SIZE - 1; multiplier = AAL0_TX_MULTIPLIER; } else { lvcc->tx.unqueue = vcc_tx_unqueue_aal5; max_sdu = qos->txtp.max_sdu; multiplier = AAL5_TX_MULTIPLIER; } return lanai_get_sized_buffer(number, &lvcc->tx.buf, max_sdu, multiplier, 80, "TX"); } static inline void host_vcc_bind(struct lanai_dev *lanai, struct lanai_vcc *lvcc, vci_t vci) { if (lvcc->vbase != 0) return; /* We already were bound in the other direction */ DPRINTK("Binding vci %d\n", vci); #ifdef USE_POWERDOWN if (lanai->nbound++ == 0) { DPRINTK("Coming out of powerdown\n"); lanai->conf1 &= ~CONFIG1_POWERDOWN; conf1_write(lanai); conf2_write(lanai); } #endif lvcc->vbase = cardvcc_addr(lanai, vci); lanai->vccs[lvcc->vci = vci] = lvcc; } static inline void host_vcc_unbind(struct lanai_dev *lanai, struct lanai_vcc *lvcc) { if (lvcc->vbase == 0) return; /* This vcc was never bound */ DPRINTK("Unbinding vci %d\n", lvcc->vci); lvcc->vbase = 0; lanai->vccs[lvcc->vci] = NULL; #ifdef USE_POWERDOWN if (--lanai->nbound == 0) { DPRINTK("Going into powerdown\n"); lanai->conf1 |= CONFIG1_POWERDOWN; conf1_write(lanai); } #endif } /* -------------------- RESET CARD: */ static void lanai_reset(struct lanai_dev *lanai) { printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* reseting - not " "implemented\n", lanai->number); /* TODO */ /* The following is just a hack until we write the real * resetter - at least ack whatever interrupt sent us * here */ reg_write(lanai, INT_ALL, IntAck_Reg); lanai->stats.card_reset++; } /* -------------------- SERVICE LIST UTILITIES: */ /* * Allocate service buffer and tell card about it */ static int __init service_buffer_allocate(struct lanai_dev *lanai) { lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 0); if (lanai->service.order < 0) return -ENOMEM; DPRINTK("allocated service buffer at 0x%08lX, size %d(%d)\n", (unsigned long) lanai->service.start, lanai_buf_size(&lanai->service), lanai_buf_size_cardorder(&lanai->service)); /* Clear ServWrite register to be safe */ reg_write(lanai, 0, ServWrite_Reg); /* ServiceStuff register contains size and address of buffer */ reg_write(lanai, SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) | SSTUFF_SET_ADDR(lanai_buf_dmaaddr(&lanai->service)), ServiceStuff_Reg); return 0; } static inline void service_buffer_deallocate(struct lanai_dev *lanai) { lanai_buf_deallocate(&lanai->service); } /* Bitfields in service list */ #define SERVICE_TX (0x80000000) /* Was from transmission */ #define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */ #define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */ #define SERVICE_CI (0x10000000) /* RXed PDU had CI set */ #define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */ #define SERVICE_STREAM (0x04000000) /* RX Stream mode */ #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF) #define SERVICE_GET_END(x) ((x)&0x1FFF) /* Handle one thing from the service list - returns true if it marked a * VCC ready for xmit */ static int handle_service(struct lanai_dev *lanai, u32 s) { vci_t vci = SERVICE_GET_VCI(s); struct lanai_vcc *lvcc; vcclist_read_lock(); lvcc = lanai->vccs[vci]; if (lvcc == NULL) { vcclist_read_unlock(); DPRINTK("(itf %d) got service entry 0x%X for nonexistent " "vcc %d\n", lanai->number, s, vci); if (s & SERVICE_TX) lanai->stats.service_novcc_tx++; else lanai->stats.service_novcc_rx++; return 0; } if (s & SERVICE_TX) { /* segmentation interrupt */ if (lvcc->tx.atmvcc == NULL) { vcclist_read_unlock(); DPRINTK("(itf %d) got service entry 0x%X for non-TX " "vcc %d\n", lanai->number, s, vci); lanai->stats.service_notx++; return 0; } vci_bitfield_set(&lanai->transmit_ready, vci); lvcc->tx.endptr = SERVICE_GET_END(s); vcclist_read_unlock(); return 1; } if (lvcc->rx.atmvcc == NULL) { vcclist_read_unlock(); DPRINTK("(itf %d) got service entry 0x%X for non-RX " "vcc %d\n", lanai->number, s, vci); lanai->stats.service_norx++; return 0; } if (lvcc->rx.atmvcc->qos.aal != ATM_AAL5) { vcclist_read_unlock(); DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 " "vcc %d\n", lanai->number, s, vci); lanai->stats.service_rxnotaal5++; atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); return 0; } if ((s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)) == 0) { vcc_rx_aal5(lvcc, SERVICE_GET_END(s)); vcclist_read_unlock(); return 0; } if (s & SERVICE_TRASH) { int bytes; vcclist_read_unlock(); DPRINTK("got trashed rx pdu on vci %d\n", vci); atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); lvcc->stats.x.aal5.service_trash++; bytes = (SERVICE_GET_END(s) * 16) - (((unsigned long) lvcc->rx.buf.ptr) - ((unsigned long) lvcc->rx.buf.start)) + 47; if (bytes < 0) bytes += lanai_buf_size(&lvcc->rx.buf); lanai->stats.ovfl_trash += (bytes / 48); return 0; } if (s & SERVICE_STREAM) { vcclist_read_unlock(); atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); lvcc->stats.x.aal5.service_stream++; printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream " "PDU on VCI %d!\n", lanai->number, vci); lanai_reset(lanai); return 0; } DPRINTK("got rx crc error on vci %d\n", vci); atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); lvcc->stats.x.aal5.service_rxcrc++; lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4]; cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr); vcclist_read_unlock(); return 0; } /* Try transmitting on all VCIs that we marked ready to serve */ static void iter_transmit(struct lanai_dev *lanai, vci_t vci) { struct lanai_vcc *lvcc = lanai->vccs[vci]; if (!vcc_is_backlogged(lvcc)) return; lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr); } /* Run service queue -- called from interrupt context or with * interrupts otherwise disabled and with the lanai->servicelock * lock held */ static void run_service(struct lanai_dev *lanai) { int ntx = 0; u32 wreg = reg_read(lanai, ServWrite_Reg); const u32 *end = lanai->service.start + wreg; while (lanai->service.ptr != end) { ntx += handle_service(lanai, le32_to_cpup(lanai->service.ptr++)); if (lanai->service.ptr >= lanai->service.end) lanai->service.ptr = lanai->service.start; } reg_write(lanai, wreg, ServRead_Reg); if (ntx != 0) { spin_lock(&lanai->txlock); vcclist_read_lock(); vci_bitfield_iterate(lanai, &lanai->transmit_ready, iter_transmit); vci_bitfield_init(&lanai->transmit_ready); vcclist_read_unlock(); spin_unlock(&lanai->txlock); } } /* -------------------- GATHER STATISTICS: */ static void get_statistics(struct lanai_dev *lanai) { u32 statreg = reg_read(lanai, Statistics_Reg); lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg); lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg); lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg); lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg); } /* -------------------- POLLING TIMER: */ static void lanai_timed_poll(unsigned long arg) { #ifndef DEBUG_RW struct lanai_dev *lanai = (struct lanai_dev *) arg; unsigned long flags; #ifdef USE_POWERDOWN if (lanai->conf1 & CONFIG1_POWERDOWN) return; #endif spin_lock_irqsave(&lanai->servicelock, flags); run_service(lanai); spin_unlock_irqrestore(&lanai->servicelock, flags); vcc_tx_dequeue_all(lanai); get_statistics(lanai); mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD); #endif /* DEBUG_RW */ } static inline void lanai_timed_poll_start(struct lanai_dev *lanai) { init_timer(&lanai->timer); lanai->timer.expires = jiffies + LANAI_POLL_PERIOD; lanai->timer.data = (unsigned long) lanai; lanai->timer.function = lanai_timed_poll; add_timer(&lanai->timer); } static inline void lanai_timed_poll_stop(struct lanai_dev *lanai) { del_timer(&lanai->timer); } /* -------------------- INTERRUPT SERVICE: */ static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason) { u32 ack = 0; if (reason & INT_SERVICE) { ack = INT_SERVICE; spin_lock(&lanai->servicelock); run_service(lanai); spin_unlock(&lanai->servicelock); } if (reason & (INT_AAL0_STR | INT_AAL0)) { ack |= reason & (INT_AAL0_STR | INT_AAL0); vcc_rx_aal0(lanai); } if (reason & INT_STATS) { reason &= ~INT_STATS; /* No need to ack */ get_statistics(lanai); } if (reason & INT_STATUS) { ack |= reason & INT_STATUS; lanai_check_status(lanai); } if (reason & INT_DMASHUT) { printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA " "shutdown, reason=0x%08X, address=0x%08X\n", lanai->number, reason & INT_DMASHUT, reg_read(lanai, DMA_Addr_Reg)); if (reason & INT_TABORTBM) { lanai_reset(lanai); return; } ack |= (reason & INT_DMASHUT); printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n", lanai->number); conf1_write(lanai); lanai->stats.dma_reenable++; pcistatus_check(lanai, 0); } if (reason & INT_TABORTSENT) { ack |= (reason & INT_TABORTSENT); printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n", lanai->number); pcistatus_check(lanai, 0); } if (reason & INT_SEGSHUT) { printk(KERN_ERR DEV_LABEL "(itf %d): driver error - " "segmentation shutdown, reason=0x%08X\n", lanai->number, reason & INT_SEGSHUT); lanai_reset(lanai); return; } if (reason & (INT_PING | INT_WAKE)) { printk(KERN_ERR DEV_LABEL "(itf %d): driver error - " "unexpected interrupt 0x%08X, resetting\n", lanai->number, reason & (INT_PING | INT_WAKE)); lanai_reset(lanai); return; } #ifdef DEBUG if (ack != reason) { DPRINTK("unacked ints: 0x%08X\n", reason & ~ack); ack = reason; } #endif if (ack != 0) reg_write(lanai, ack, IntAck_Reg); } static void lanai_int(int irq, void *devid, struct pt_regs *regs) { struct lanai_dev *lanai = (struct lanai_dev *) devid; u32 reason; (void) irq; (void) regs; /* unused variables */ #ifdef USE_POWERDOWN if (lanai->conf1 & CONFIG1_POWERDOWN) { lanai->conf1 &= ~CONFIG1_POWERDOWN; conf1_write(lanai); printk(KERN_WARNING DEV_LABEL "(itf %d): Got interrupt " "0x%08X while in POWERDOWN, powering up\n", lanai->conf1, intr_pending(lanai)); conf2_write(lanai); } #endif while ((reason = intr_pending(lanai)) != 0) lanai_int_1(lanai, reason); } /* TODO - it would be nice if we could use the "delayed interrupt" system * to some advantage */ /* -------------------- CHECK BOARD ID/REV: */ /* * The board id and revision are stored both in the reset register and * in the PCI configuration space - the documentation says to check * each of them. If revp!=NULL we store the revision there */ static int check_board_id_and_rev(const char *name, u32 val, int *revp) { DPRINTK("%s says board_id=%d, board_rev=%d\n", name, RESET_GET_BOARD_ID(val), RESET_GET_BOARD_REV(val)); if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) { printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a " "Lanai 25.6\n", name, RESET_GET_BOARD_ID(val)); return -ENODEV; } if (revp != NULL) *revp = RESET_GET_BOARD_REV(val); return 0; } /* -------------------- PCI INITIALIZATION/SHUTDOWN: */ static inline int __init lanai_pci_start(struct lanai_dev *lanai) { struct pci_dev *pci = lanai->pci; int result; u16 w; /* Get the pci revision byte */ result = pci_read_config_byte(pci, PCI_REVISION_ID, &lanai->pci_revision); if (result != PCIBIOS_SUCCESSFUL) { printk(KERN_ERR DEV_LABEL "(itf %d): can't read " "PCI_REVISION_ID: %d\n", lanai->number, result); return -EINVAL; } result = pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &w); if (result != PCIBIOS_SUCCESSFUL) { printk(KERN_ERR DEV_LABEL "(itf %d): can't read " "PCI_SUBSYSTEM_ID: %d\n", lanai->number, result); return -EINVAL; } if ((result = check_board_id_and_rev("PCI", w, NULL)) != 0) return result; /* Set latency timer to zero as per lanai docs */ result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0); if (result != PCIBIOS_SUCCESSFUL) { printk(KERN_ERR DEV_LABEL "(itf %d): can't write " "PCI_LATENCY_TIMER: %d\n", lanai->number, result); return -EINVAL; } result = pci_read_config_word(pci, PCI_COMMAND, &w); if (result != PCIBIOS_SUCCESSFUL) { printk(KERN_ERR DEV_LABEL "(itf %d): can't read " "PCI_COMMAND: %d\n", lanai->number, result); return -EINVAL; } w |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); result = pci_write_config_word(pci, PCI_COMMAND, w); if (result != PCIBIOS_SUCCESSFUL) { printk(KERN_ERR DEV_LABEL "(itf %d): can't " "write PCI_COMMAND: %d\n", lanai->number, result); return -EINVAL; } pcistatus_check(lanai, 1); pcistatus_check(lanai, 0); return 0; } static void lanai_pci_stop(struct lanai_dev *lanai) { struct pci_dev *pci = lanai->pci; int result; u16 pci_command; result = pci_read_config_word(pci, PCI_COMMAND, &pci_command); if (result != PCIBIOS_SUCCESSFUL) { printk(KERN_ERR DEV_LABEL "(itf %d): can't " "read PCI_COMMAND: %d\n", lanai->number, result); return; } pci_command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); result = pci_write_config_word(pci, PCI_COMMAND, pci_command); if (result != PCIBIOS_SUCCESSFUL) printk(KERN_ERR DEV_LABEL "(itf %d): can't " "write PCI_COMMAND: %d\n", lanai->number, result); } /* -------------------- VPI/VCI ALLOCATION: */ /* * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll * get a CBRZERO interrupt), and we can use it only if noone is receiving * AAL0 traffic (since they will use the same queue) - according to the * docs we shouldn't even use it for AAL0 traffic */ static inline int vci0_is_ok(struct lanai_dev *lanai, const struct atm_qos *qos) { if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0) return 0; if (qos->rxtp.traffic_class != ATM_NONE) { if (lanai->naal0 != 0) return 0; lanai->conf2 |= CONFIG2_VCI0_NORMAL; #ifdef USE_POWERDOWN if ((lanai->conf1 & CONFIG1_POWERDOWN) == 0) #endif conf2_write(lanai); } return 1; } /* return true if vci is currently unused, or if requested qos is * compatible */ static int vci_is_ok(struct lanai_dev *lanai, vci_t vci, const struct atm_vcc *atmvcc) { const struct atm_qos *qos = &atmvcc->qos; const struct lanai_vcc *lvcc = lanai->vccs[vci]; if (vci == 0 && !vci0_is_ok(lanai, qos)) return 0; if (lvcc != NULL) { if (qos->rxtp.traffic_class != ATM_NONE && lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc) return 0; if (qos->txtp.traffic_class != ATM_NONE && lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc) return 0; if (qos->txtp.traffic_class == ATM_CBR && lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc) return 0; } if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 && qos->rxtp.traffic_class != ATM_NONE) { const struct lanai_vcc *vci0 = lanai->vccs[0]; if (vci0 != NULL && vci0->rx.atmvcc != NULL) return 0; lanai->conf2 &= ~CONFIG2_VCI0_NORMAL; #ifdef USE_POWERDOWN if ((lanai->conf1 & CONFIG1_POWERDOWN) == 0) #endif conf2_write(lanai); } return 1; } static int lanai_normalize_ci(struct lanai_dev *lanai, const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip) { switch (*vpip) { case ATM_VPI_ANY: *vpip = 0; /* FALLTHROUGH */ case 0: break; default: return -EADDRINUSE; } switch (*vcip) { case ATM_VCI_ANY: for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci; (*vcip)++) if (vci_is_ok(lanai, *vcip, atmvcc)) return 0; return -EADDRINUSE; default: if (*vcip >= lanai->num_vci || *vcip < 0 || !vci_is_ok(lanai, *vcip, atmvcc)) return -EADDRINUSE; } return 0; } /* -------------------- MANAGE CBR: */ /* * CBR ICG is stored as a fixed-point number with 4 fractional bits. * Note that storing a number greater than 2046.0 will result in * incorrect shaping */ #define CBRICG_FRAC_BITS (4) #define CBRICG_MAX (2046 << CBRICG_FRAC_BITS) /* * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1) * where MAXPCR is (according to the docs) 25600000/(54*8), * which is equal to (3125<<9)/27. * * Solving for ICG, we get: * ICG = MAXPCR/PCR - 1 * ICG = (3125<<9)/(27*PCR) - 1 * ICG = ((3125<<9) - (27*PCR)) / (27*PCR) * * The end result is supposed to be a fixed-point number with FRAC_BITS * bits of a fractional part, so we keep everything in the numerator * shifted by that much as we compute * */ static int pcr_to_cbricg(/*const*/ struct atm_qos *qos) { int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */ int x, icg, pcr = atm_pcr_goal(&qos->txtp); if (pcr == 0) /* Use maximum bandwidth */ return 0; if (pcr < 0) { rounddown = 1; pcr = -pcr; } x = pcr * 27; icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS); if (rounddown) icg += x - 1; icg /= x; if (icg > CBRICG_MAX) icg = CBRICG_MAX; DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n", pcr, rounddown ? 'Y' : 'N', icg); return icg; } static inline void lanai_cbr_setup(struct lanai_dev *lanai) { reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg); reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg); lanai->conf2 |= CONFIG2_CBR_ENABLE; conf2_write(lanai); } static inline void lanai_cbr_shutdown(struct lanai_dev *lanai) { lanai->conf2 &= ~CONFIG2_CBR_ENABLE; conf2_write(lanai); } /* -------------------- OPERATIONS: */ /* setup a newly detected device */ static int __init lanai_dev_open(struct atm_dev *atmdev) { struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; unsigned long raw_base; int result; DPRINTK("In lanai_dev_open()\n"); /* Basic device fields */ lanai->number = atmdev->number; lanai->num_vci = NUM_VCI; vci_bitfield_init(&lanai->backlog_vccs); vci_bitfield_init(&lanai->transmit_ready); lanai->naal0 = 0; #ifdef USE_POWERDOWN lanai->nbound = 0; #endif lanai->cbrvcc = NULL; memset(&lanai->stats, 0, sizeof lanai->stats); spin_lock_init(&lanai->txlock); spin_lock_init(&lanai->servicelock); atmdev->ci_range.vpi_bits = 0; atmdev->ci_range.vci_bits = 0; while (1 << atmdev->ci_range.vci_bits < lanai->num_vci) atmdev->ci_range.vci_bits++; atmdev->link_rate = ((25600000 / 8 - 8000) / 54); /* 3.2: PCI initialization */ if ((result = lanai_pci_start(lanai)) != 0) goto error; raw_base = (bus_addr_t) lanai->pci->resource[0].start; lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE); if (lanai->base == 0) { printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n"); goto error_pci; } /* 3.3: Reset lanai and PHY */ reset_board(lanai); lanai->conf1 = reg_read(lanai, Config1_Reg); lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN | CONFIG1_MASK_LEDMODE); lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL); reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg); udelay(1000); conf1_write(lanai); /* * 3.4: Turn on endian mode for big-endian hardware * We don't actually want to do this - the actual bit fields * in the endian register are not documented anywhere. * Instead we do the bit-flipping ourselves on big-endian * hardware. * * 3.5: get the board ID/rev by reading the reset register */ result = check_board_id_and_rev("register", reg_read(lanai, Reset_Reg), &lanai->board_rev); if (result != 0) goto error_unmap; /* 3.6: read EEPROM */ if ((result = eeprom_read(lanai)) != 0) goto error_unmap; if ((result = eeprom_validate(lanai)) != 0) goto error_unmap; /* 3.7: re-reset PHY, do loopback tests, setup PHY */ reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg); udelay(1000); conf1_write(lanai); /* TODO - loopback tests */ lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE); conf1_write(lanai); /* 3.8/3.9: test and initialize card SRAM */ if ((result = sram_test_and_clear(lanai)) != 0) goto error_unmap; /* 3.10: initialize lanai registers */ lanai->conf1 |= CONFIG1_DMA_ENABLE; conf1_write(lanai); if ((result = service_buffer_allocate(lanai)) != 0) goto error_unmap; if ((result = vcc_table_allocate(lanai)) != 0) goto error_service; lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) | CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE; conf2_write(lanai); reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg); reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */ if ((result = request_irq(lanai->pci->irq, lanai_int, SA_SHIRQ, "lanai", lanai)) != 0) { printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n"); goto error_vcctable; } MOD_INC_USE_COUNT; /* At this point we can't fail */ intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE)); /* 3.11: initialize loop mode (i.e. turn looping off) */ lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) | CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) | CONFIG1_GPOUT2 | CONFIG1_GPOUT3; conf1_write(lanai); lanai->status = reg_read(lanai, Status_Reg); /* We're now done initializing this card */ #ifdef USE_POWERDOWN lanai->conf1 |= CONFIG1_POWERDOWN; conf1_write(lanai); #endif memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN); lanai_timed_poll_start(lanai); printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%d " "(%02X-%02X-%02X-%02X-%02X-%02X)\n", lanai->number, lanai->pci_revision, (long) lanai->base, lanai->pci->irq, atmdev->esi[0], atmdev->esi[1], atmdev->esi[2], atmdev->esi[3], atmdev->esi[4], atmdev->esi[5]); printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%d(0x%X), " "board_rev=%d\n", lanai->number, lanai->type==lanai2 ? "2" : "HB", lanai->serialno, lanai->serialno, lanai->board_rev); return 0; error_vcctable: vcc_table_deallocate(lanai); error_service: service_buffer_deallocate(lanai); error_unmap: reset_board(lanai); #ifdef USE_POWERDOWN lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN; conf1_write(lanai); #endif iounmap((void *) lanai->base); error_pci: lanai_pci_stop(lanai); error: return result; } /* called when device is being shutdown, and all vcc's are gone - higher * levels will deallocate the atm device for us */ static void lanai_dev_close(struct atm_dev *atmdev) { struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n", lanai->number); lanai_timed_poll_stop(lanai); #ifdef USE_POWERDOWN lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN; conf1_write(lanai); #endif intr_disable(lanai, INT_ALL); free_irq(lanai->pci->irq, lanai); reset_board(lanai); #ifdef USE_POWERDOWN lanai->conf1 |= CONFIG1_POWERDOWN; conf1_write(lanai); #endif lanai_pci_stop(lanai); vcc_table_deallocate(lanai); service_buffer_deallocate(lanai); iounmap((void *) lanai->base); kfree(lanai); MOD_DEC_USE_COUNT; } /* close a vcc */ static void lanai_close(struct atm_vcc *atmvcc) { struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data; struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data; if (lvcc == NULL) return; clear_bit(ATM_VF_READY, &atmvcc->flags); clear_bit(ATM_VF_PARTIAL, &atmvcc->flags); if (lvcc->rx.atmvcc == atmvcc) { lanai_shutdown_rx_vci(lvcc); if (atmvcc->qos.aal == ATM_AAL0) { if (--lanai->naal0 <= 0) aal0_buffer_free(lanai); } else lanai_buf_deallocate(&lvcc->rx.buf); lvcc->rx.atmvcc = NULL; } if (lvcc->tx.atmvcc == atmvcc) { if (atmvcc == lanai->cbrvcc) { if (lvcc->vbase != 0) lanai_cbr_shutdown(lanai); lanai->cbrvcc = NULL; } lanai_shutdown_tx_vci(lanai, lvcc); lanai_buf_deallocate(&lvcc->tx.buf); lvcc->tx.atmvcc = NULL; } if (--lvcc->nref == 0) { host_vcc_unbind(lanai, lvcc); kfree(lvcc); } atmvcc->dev_data = NULL; clear_bit(ATM_VF_ADDR, &atmvcc->flags); } /* open a vcc on the card to vpi/vci */ static int lanai_open(struct atm_vcc *atmvcc, short vpi, int vci) { struct lanai_dev *lanai; struct lanai_vcc *lvcc; int result = 0; /* we don't support partial open - it's not really useful anyway */ if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) || (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC)) return -EINVAL; lanai = (struct lanai_dev *) atmvcc->dev->dev_data; if ((result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci)) != 0) goto out; atmvcc->vpi = vpi; atmvcc->vci = vci; set_bit(ATM_VF_ADDR, &atmvcc->flags); lvcc = lanai->vccs[vci]; if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5) return -EINVAL; #if 0 DPRINTK(DEV_LABEL "(itf %d): open %d.%d flags=0x%X\n", lanai->number, vpi, vci, (unsigned long) atmvcc->flags); #else DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number, vpi, vci); #endif if (lvcc == NULL && (lvcc = new_lanai_vcc()) == NULL) return -ENOMEM; atmvcc->dev_data = lvcc; lvcc->nref++; if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) { APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n", vci); if (atmvcc->qos.aal == ATM_AAL0) { if (lanai->naal0 == 0) result = aal0_buffer_allocate(lanai); } else result = lanai_setup_rx_vci_aal5( lanai->number, lvcc, &atmvcc->qos); if (result != 0) goto out_free; lvcc->rx.atmvcc = atmvcc; lvcc->stats.rx_nomem = 0; lvcc->stats.x.aal5.rx_badlen = 0; lvcc->stats.x.aal5.service_trash = 0; lvcc->stats.x.aal5.service_stream = 0; lvcc->stats.x.aal5.service_rxcrc = 0; if (atmvcc->qos.aal == ATM_AAL0) lanai->naal0++; } if (atmvcc->qos.txtp.traffic_class != ATM_NONE) { APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n", vci); result = lanai_setup_tx_vci(lanai->number, lvcc, &atmvcc->qos); if (result != 0) goto out_free; lvcc->tx.atmvcc = atmvcc; if (atmvcc->qos.txtp.traffic_class == ATM_CBR) { APRINTK(lanai->cbrvcc == NULL, "cbrvcc!=NULL, vci=%d\n", vci); lanai->cbrvcc = atmvcc; } } host_vcc_bind(lanai, lvcc, vci); if (atmvcc == lvcc->rx.atmvcc) host_vcc_start_rx(lvcc); if (atmvcc == lvcc->tx.atmvcc) { host_vcc_start_tx(lvcc); if (lanai->cbrvcc == atmvcc) lanai_cbr_setup(lanai); } set_bit(ATM_VF_READY, &atmvcc->flags); return 0; out_free: lanai_close(atmvcc); out: return result; } /* ioctl operations for card */ /* NOTE: these are all DEBUGGING ONLY currently */ static int lanai_ioctl(struct atm_dev *atmdev, unsigned int cmd, void *arg) { int result = 0; struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; switch(cmd) { case 2106275: shutdown_atm_dev(atmdev); return 0; case 2200000: { unsigned long flags; spin_lock_irqsave(&lanai->servicelock, flags); run_service(lanai); spin_unlock_irqrestore(&lanai->servicelock, flags); return 0; } case 2200001: vcc_tx_dequeue_all(lanai); return 0; case 2200002: get_statistics(lanai); return 0; case 2200003: { int i; for (i = 0; i <= 0x5C ; i += 4) { if (i==0x48) /* Write-only butt reg */ continue; printk(KERN_CRIT DEV_LABEL " 0x%02X: " "0x%08X\n", i, (u32) readl(lanai->base + i)); barrier(); mb(); pcistatus_check(lanai, 0); barrier(); mb(); } return 0; } case 2200004: { u8 b; u16 w; u32 dw; struct pci_dev *pci = lanai->pci; (void) pci_read_config_word(pci, PCI_VENDOR_ID, &w); DPRINTK("vendor = 0x%X\n", w); (void) pci_read_config_word(pci, PCI_DEVICE_ID, &w); DPRINTK("device = 0x%X\n", w); (void) pci_read_config_word(pci, PCI_COMMAND, &w); DPRINTK("command = 0x%X\n", w); (void) pci_read_config_word(pci, PCI_STATUS, &w); DPRINTK("status = 0x%X\n", w); (void) pci_read_config_dword(pci, PCI_CLASS_REVISION, &dw); DPRINTK("class/revision = 0x%X\n", dw); (void) pci_read_config_byte(pci, PCI_CACHE_LINE_SIZE, &b); DPRINTK("cache line size = 0x%X\n", b); (void) pci_read_config_byte(pci, PCI_LATENCY_TIMER, &b); DPRINTK("latency = %d (0x%X)\n", b, b); (void) pci_read_config_byte(pci, PCI_HEADER_TYPE, &b); DPRINTK("header type = 0x%X\n", b); (void) pci_read_config_byte(pci, PCI_BIST, &b); DPRINTK("bist = 0x%X\n", b); /* skipping a few here */ (void) pci_read_config_byte(pci, PCI_INTERRUPT_LINE, &b); DPRINTK("pci_int_line = 0x%X\n", b); (void) pci_read_config_byte(pci, PCI_INTERRUPT_PIN, &b); DPRINTK("pci_int_pin = 0x%X\n", b); (void) pci_read_config_byte(pci, PCI_MIN_GNT, &b); DPRINTK("min_gnt = 0x%X\n", b); (void) pci_read_config_byte(pci, PCI_MAX_LAT, &b); DPRINTK("max_lat = 0x%X\n", b); } return 0; #ifdef USE_POWERDOWN case 2200005: DPRINTK("Coming out of powerdown\n"); lanai->conf1 &= ~CONFIG1_POWERDOWN; conf1_write(lanai); return 0; #endif default: result = -EINVAL; } return result; } static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb) { struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data; struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data; unsigned long flags; if (lvcc == NULL || lvcc->vbase == 0 || lvcc->tx.atmvcc != atmvcc) goto einval; #ifdef DEBUG if (skb == NULL) { DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci); goto einval; } if (lanai == NULL) { DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci); goto einval; } #endif ATM_SKB(skb)->vcc = atmvcc; switch (atmvcc->qos.aal) { case ATM_AAL5: spin_lock_irqsave(&lanai->txlock, flags); vcc_tx_aal5(lanai, lvcc, skb); spin_unlock_irqrestore(&lanai->txlock, flags); return 0; case ATM_AAL0: if (skb->len != ATM_CELL_SIZE-1) goto einval; /* NOTE - this next line is technically invalid - we haven't unshared skb */ cpu_to_be32s((u32 *) skb->data); spin_lock_irqsave(&lanai->txlock, flags); vcc_tx_aal0(lanai, lvcc, skb); spin_unlock_irqrestore(&lanai->txlock, flags); return 0; } DPRINTK("lanai_send: bad aal=%d on vci=%d\n", atmvcc->qos.aal, atmvcc->vci); einval: lanai_free_skb(atmvcc, skb); return -EINVAL; } static int lanai_change_qos(struct atm_vcc *atmvcc, /*const*/ struct atm_qos *qos, int flags) { return -EBUSY; /* TODO: need to write this */ } #ifndef CONFIG_PROC_FS #define lanai_proc_read NULL #else static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page) { struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; loff_t left = *pos; struct lanai_vcc *lvcc; if (left-- == 0) return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, " "serial=%d, magic=0x%08X, num_vci=%d\n", atmdev->number, lanai->type==lanai2 ? "2" : "HB", lanai->serialno, lanai->magicno, lanai->num_vci); if (left-- == 0) return sprintf(page, "revision: board=%d, pci_if=%d\n", lanai->board_rev, lanai->pci_revision); if (left-- == 0) return sprintf(page, "EEPROM ESI: " "%02X:%02X:%02X:%02X:%02X:%02X\n", lanai->eeprom[EEPROM_MAC + 0], lanai->eeprom[EEPROM_MAC + 1], lanai->eeprom[EEPROM_MAC + 2], lanai->eeprom[EEPROM_MAC + 3], lanai->eeprom[EEPROM_MAC + 4], lanai->eeprom[EEPROM_MAC + 5]); if (left-- == 0) return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, " "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0, (lanai->status & STATUS_LOCD) ? 1 : 0, (lanai->status & STATUS_LED) ? 1 : 0, (lanai->status & STATUS_GPIN) ? 1 : 0); if (left-- == 0) return sprintf(page, "global buffer sizes: service=%d, " "aal0_rx=%d\n", lanai_buf_size(&lanai->service), lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0); if (left-- == 0) { get_statistics(lanai); return sprintf(page, "cells in error: overflow=%d, " "closed_vci=%d, bad_HEC=%d, rx_fifo=%d\n", lanai->stats.ovfl_trash, lanai->stats.vci_trash, lanai->stats.hec_err, lanai->stats.atm_ovfl); } if (left-- == 0) return sprintf(page, "PCI errors: parity_detect=%d, " "master_abort=%d, master_target_abort=%d,\n", lanai->stats.pcierr_parity_detect, lanai->stats.pcierr_serr_set, lanai->stats.pcierr_m_target_abort); if (left-- == 0) return sprintf(page, " slave_target_abort=%d, " "master_parity=%d\n", lanai->stats.pcierr_s_target_abort, lanai->stats.pcierr_master_parity); if (left-- == 0) return sprintf(page, "service list errors: no_vcc_rx=%d, " "no_vcc_tx=%d,\n", lanai->stats.service_novcc_rx, lanai->stats.service_novcc_tx); if (left-- == 0) return sprintf(page, " no_tx=%d, " "no_rx=%d, bad_rx_aal=%d\n", lanai->stats.service_norx, lanai->stats.service_notx, lanai->stats.service_rxnotaal5); if (left-- == 0) return sprintf(page, "resets: dma=%d, card=%d\n", lanai->stats.dma_reenable, lanai->stats.card_reset); /* At this point, "left" should be the VCI we're looking for */ vcclist_read_lock(); for (; ; left++) { if (left >= NUM_VCI) { left = 0; goto out; } if ((lvcc = lanai->vccs[left]) != NULL) break; (*pos)++; } /* Note that we re-use "left" here since we're done with it */ left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%d", (vci_t) left, lvcc->nref, lvcc->stats.rx_nomem); if (lvcc->rx.atmvcc != NULL) { left += sprintf(&page[left], ",\n rx_AAL=%d", lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0); if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) left += sprintf(&page[left], ", rx_buf_size=%d, " "rx_bad_len=%d,\n rx_service_trash=%d, " "rx_service_stream=%d, rx_bad_crc=%d", lanai_buf_size(&lvcc->rx.buf), lvcc->stats.x.aal5.rx_badlen, lvcc->stats.x.aal5.service_trash, lvcc->stats.x.aal5.service_stream, lvcc->stats.x.aal5.service_rxcrc); } if (lvcc->tx.atmvcc != NULL) left += sprintf(&page[left], ",\n tx_AAL=%d, " "tx_buf_size=%d, tx_qos=%cBR, tx_backlogged=%c", lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0, lanai_buf_size(&lvcc->tx.buf), lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U', vcc_is_backlogged(lvcc) ? 'Y' : 'N'); page[left++] = '\n'; page[left] = '\0'; out: vcclist_read_unlock(); return left; } #endif /* CONFIG_PROC_FS */ /* -------------------- HOOKS: */ static const struct atmdev_ops ops = { dev_close: lanai_dev_close, open: lanai_open, close: lanai_close, ioctl: lanai_ioctl, getsockopt: NULL, setsockopt: NULL, send: lanai_send, sg_send: NULL, /* no scatter-gather on card */ send_oam: NULL, /* OAM support not in linux yet */ phy_put: NULL, phy_get: NULL, feedback: NULL, change_qos: lanai_change_qos, proc_read: lanai_proc_read }; /* detect one type of card LANAI2 or LANAIHB */ static int __init lanai_detect_1(unsigned int vendor, unsigned int device) { struct pci_dev *pci = NULL; struct lanai_dev *lanai; struct atm_dev *atmdev; int count = 0, result; while ((pci = pci_find_device(vendor, device, pci)) != NULL) { lanai = (struct lanai_dev *) kmalloc(sizeof *lanai, GFP_KERNEL); if (lanai == NULL) { printk(KERN_ERR DEV_LABEL ": couldn't allocate " "dev_data structure!\n"); break; } atmdev = atm_dev_register(DEV_LABEL, &ops, -1, 0); if (atmdev == NULL) { printk(KERN_ERR DEV_LABEL ": couldn't register " "atm device!\n"); kfree(lanai); break; } atmdev->dev_data = lanai; lanai->pci = pci; lanai->type = (enum lanai_type) device; if ((result = lanai_dev_open(atmdev)) != 0) { DPRINTK("lanai_start() failed, err=%d\n", -result); atm_dev_deregister(atmdev); kfree(lanai); continue; } count++; } return count; } #ifdef MODULE static #endif int __init lanai_detect(void) { return lanai_detect_1(PCI_VENDOR_ID_EF, PCI_VENDOR_ID_EF_ATM_LANAI2) + lanai_detect_1(PCI_VENDOR_ID_EF, PCI_VENDOR_ID_EF_ATM_LANAIHB); } #ifdef MODULE int init_module(void) { if (lanai_detect() == 0) { printk(KERN_ERR DEV_LABEL ": no adaptor found\n"); return -ENODEV; } return 0; } void cleanup_module(void) { /* We'll only get called when all the interfaces are already * gone, so there isn't much to do */ DPRINTK("cleanup_module()\n"); } MODULE_AUTHOR("Mitchell Blank Jr "); MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver"); MODULE_LICENSE("GPL"); #endif /* MODULE */