/* $Id: pci_common.c,v 1.27.2.5 2002/03/10 05:21:26 davem Exp $ * pci_common.c: PCI controller common support. * * Copyright (C) 1999 David S. Miller (davem@redhat.com) */ #include #include #include #include /* Fix self device of BUS and hook it into BUS->self. * The pci_scan_bus does not do this for the host bridge. */ void __init pci_fixup_host_bridge_self(struct pci_bus *pbus) { struct list_head *walk = &pbus->devices; walk = walk->next; while (walk != &pbus->devices) { struct pci_dev *pdev = pci_dev_b(walk); if (pdev->class >> 8 == PCI_CLASS_BRIDGE_HOST) { pbus->self = pdev; return; } walk = walk->next; } prom_printf("PCI: Critical error, cannot find host bridge PDEV.\n"); prom_halt(); } /* Find the OBP PROM device tree node for a PCI device. * Return zero if not found. */ static int __init find_device_prom_node(struct pci_pbm_info *pbm, struct pci_dev *pdev, int bus_prom_node, struct linux_prom_pci_registers *pregs, int *nregs) { int node; /* * Return the PBM's PROM node in case we are it's PCI device, * as the PBM's reg property is different to standard PCI reg * properties. We would delete this device entry otherwise, * which confuses XFree86's device probing... */ if ((pdev->bus->number == pbm->pci_bus->number) && (pdev->devfn == 0) && (pdev->vendor == PCI_VENDOR_ID_SUN) && (pdev->device == PCI_DEVICE_ID_SUN_PBM || pdev->device == PCI_DEVICE_ID_SUN_SCHIZO || pdev->device == PCI_DEVICE_ID_SUN_TOMATILLO || pdev->device == PCI_DEVICE_ID_SUN_SABRE || pdev->device == PCI_DEVICE_ID_SUN_HUMMINGBIRD)) { *nregs = 0; return bus_prom_node; } node = prom_getchild(bus_prom_node); while (node != 0) { int err = prom_getproperty(node, "reg", (char *)pregs, sizeof(*pregs) * PROMREG_MAX); if (err == 0 || err == -1) goto do_next_sibling; if (((pregs[0].phys_hi >> 8) & 0xff) == pdev->devfn) { *nregs = err / sizeof(*pregs); return node; } do_next_sibling: node = prom_getsibling(node); } return 0; } /* Remove a PCI device from the device trees, then * free it up. Note that this must run before * the device's resources are registered because we * do not handle unregistering them here. */ static void pci_device_delete(struct pci_dev *pdev) { list_del(&pdev->global_list); list_del(&pdev->bus_list); /* Ok, all references are gone, free it up. */ kfree(pdev); } /* Older versions of OBP on PCI systems encode 64-bit MEM * space assignments incorrectly, this fixes them up. We also * take the opportunity here to hide other kinds of bogus * assignments. */ static void __init fixup_obp_assignments(struct pci_dev *pdev, struct pcidev_cookie *pcp) { int i; if (pdev->vendor == PCI_VENDOR_ID_AL && (pdev->device == PCI_DEVICE_ID_AL_M7101 || pdev->device == PCI_DEVICE_ID_AL_M1533)) { int i; /* Zap all of the normal resources, they are * meaningless and generate bogus resource collision * messages. This is OpenBoot's ill-fated attempt to * represent the implicit resources that these devices * have. */ pcp->num_prom_assignments = 0; for (i = 0; i < 6; i++) { pdev->resource[i].start = pdev->resource[i].end = pdev->resource[i].flags = 0; } pdev->resource[PCI_ROM_RESOURCE].start = pdev->resource[PCI_ROM_RESOURCE].end = pdev->resource[PCI_ROM_RESOURCE].flags = 0; return; } for (i = 0; i < pcp->num_prom_assignments; i++) { struct linux_prom_pci_registers *ap; int space; ap = &pcp->prom_assignments[i]; space = ap->phys_hi >> 24; if ((space & 0x3) == 2 && (space & 0x4) != 0) { ap->phys_hi &= ~(0x7 << 24); ap->phys_hi |= 0x3 << 24; } } } /* Fill in the PCI device cookie sysdata for the given * PCI device. This cookie is the means by which one * can get to OBP and PCI controller specific information * for a PCI device. */ static void __init pdev_cookie_fillin(struct pci_pbm_info *pbm, struct pci_dev *pdev, int bus_prom_node) { struct linux_prom_pci_registers pregs[PROMREG_MAX]; struct pcidev_cookie *pcp; int device_prom_node, nregs, err; device_prom_node = find_device_prom_node(pbm, pdev, bus_prom_node, pregs, &nregs); if (device_prom_node == 0) { /* If it is not in the OBP device tree then * there must be a damn good reason for it. * * So what we do is delete the device from the * PCI device tree completely. This scenerio * is seen, for example, on CP1500 for the * second EBUS/HappyMeal pair if the external * connector for it is not present. */ pci_device_delete(pdev); return; } pcp = kmalloc(sizeof(*pcp), GFP_ATOMIC); if (pcp == NULL) { prom_printf("PCI_COOKIE: Fatal malloc error, aborting...\n"); prom_halt(); } pcp->pbm = pbm; pcp->prom_node = device_prom_node; memcpy(pcp->prom_regs, pregs, sizeof(pcp->prom_regs)); pcp->num_prom_regs = nregs; err = prom_getproperty(device_prom_node, "name", pcp->prom_name, sizeof(pcp->prom_name)); if (err > 0) pcp->prom_name[err] = 0; else pcp->prom_name[0] = 0; err = prom_getproperty(device_prom_node, "assigned-addresses", (char *)pcp->prom_assignments, sizeof(pcp->prom_assignments)); if (err == 0 || err == -1) pcp->num_prom_assignments = 0; else pcp->num_prom_assignments = (err / sizeof(pcp->prom_assignments[0])); if (strcmp(pcp->prom_name, "ebus") == 0) { struct linux_prom_ebus_ranges erng[PROM_PCIRNG_MAX]; int iter; /* EBUS is special... */ err = prom_getproperty(device_prom_node, "ranges", (char *)&erng[0], sizeof(erng)); if (err == 0 || err == -1) { prom_printf("EBUS: Fatal error, no range property\n"); prom_halt(); } err = (err / sizeof(erng[0])); for(iter = 0; iter < err; iter++) { struct linux_prom_ebus_ranges *ep = &erng[iter]; struct linux_prom_pci_registers *ap; ap = &pcp->prom_assignments[iter]; ap->phys_hi = ep->parent_phys_hi; ap->phys_mid = ep->parent_phys_mid; ap->phys_lo = ep->parent_phys_lo; ap->size_hi = 0; ap->size_lo = ep->size; } pcp->num_prom_assignments = err; } fixup_obp_assignments(pdev, pcp); pdev->sysdata = pcp; } void __init pci_fill_in_pbm_cookies(struct pci_bus *pbus, struct pci_pbm_info *pbm, int prom_node) { struct list_head *walk = &pbus->devices; /* This loop is coded like this because the cookie * fillin routine can delete devices from the tree. */ walk = walk->next; while (walk != &pbus->devices) { struct pci_dev *pdev = pci_dev_b(walk); struct list_head *walk_next = walk->next; pdev_cookie_fillin(pbm, pdev, prom_node); walk = walk_next; } walk = &pbus->children; walk = walk->next; while (walk != &pbus->children) { struct pci_bus *this_pbus = pci_bus_b(walk); struct pcidev_cookie *pcp = this_pbus->self->sysdata; struct list_head *walk_next = walk->next; pci_fill_in_pbm_cookies(this_pbus, pbm, pcp->prom_node); walk = walk_next; } } static void __init bad_assignment(struct pci_dev *pdev, struct linux_prom_pci_registers *ap, struct resource *res, int do_prom_halt) { prom_printf("PCI: Bogus PROM assignment. BUS[%02x] DEVFN[%x]\n", pdev->bus->number, pdev->devfn); if (ap) prom_printf("PCI: phys[%08x:%08x:%08x] size[%08x:%08x]\n", ap->phys_hi, ap->phys_mid, ap->phys_lo, ap->size_hi, ap->size_lo); if (res) prom_printf("PCI: RES[%016lx-->%016lx:(%lx)]\n", res->start, res->end, res->flags); prom_printf("Please email this information to davem@redhat.com\n"); if (do_prom_halt) prom_halt(); } static struct resource * __init get_root_resource(struct linux_prom_pci_registers *ap, struct pci_pbm_info *pbm) { int space = (ap->phys_hi >> 24) & 3; switch (space) { case 0: /* Configuration space, silently ignore it. */ return NULL; case 1: /* 16-bit IO space */ return &pbm->io_space; case 2: /* 32-bit MEM space */ return &pbm->mem_space; case 3: /* 64-bit MEM space, these are allocated out of * the 32-bit mem_space range for the PBM, ie. * we just zero out the upper 32-bits. */ return &pbm->mem_space; default: printk("PCI: What is resource space %x? " "Tell davem@redhat.com about it!\n", space); return NULL; }; } static struct resource * __init get_device_resource(struct linux_prom_pci_registers *ap, struct pci_dev *pdev) { struct resource *res; int breg = (ap->phys_hi & 0xff); switch (breg) { case PCI_ROM_ADDRESS: /* Unfortunately I have seen several cases where * buggy FCODE uses a space value of '1' (I/O space) * in the register property for the ROM address * so disable this sanity check for now. */ #if 0 { int space = (ap->phys_hi >> 24) & 3; /* It had better be MEM space. */ if (space != 2) bad_assignment(pdev, ap, NULL, 0); } #endif res = &pdev->resource[PCI_ROM_RESOURCE]; break; case PCI_BASE_ADDRESS_0: case PCI_BASE_ADDRESS_1: case PCI_BASE_ADDRESS_2: case PCI_BASE_ADDRESS_3: case PCI_BASE_ADDRESS_4: case PCI_BASE_ADDRESS_5: res = &pdev->resource[(breg - PCI_BASE_ADDRESS_0) / 4]; break; default: bad_assignment(pdev, ap, NULL, 0); res = NULL; break; }; return res; } static int __init pdev_resource_collisions_expected(struct pci_dev *pdev) { if (pdev->vendor != PCI_VENDOR_ID_SUN) return 0; if (pdev->device == PCI_DEVICE_ID_SUN_RIO_EBUS || pdev->device == PCI_DEVICE_ID_SUN_RIO_1394 || pdev->device == PCI_DEVICE_ID_SUN_RIO_USB) return 1; return 0; } static void __init pdev_record_assignments(struct pci_pbm_info *pbm, struct pci_dev *pdev) { struct pcidev_cookie *pcp = pdev->sysdata; int i; for (i = 0; i < pcp->num_prom_assignments; i++) { struct linux_prom_pci_registers *ap; struct resource *root, *res; /* The format of this property is specified in * the PCI Bus Binding to IEEE1275-1994. */ ap = &pcp->prom_assignments[i]; root = get_root_resource(ap, pbm); res = get_device_resource(ap, pdev); if (root == NULL || res == NULL || res->flags == 0) continue; /* Ok we know which resource this PROM assignment is * for, sanity check it. */ if ((res->start & 0xffffffffUL) != ap->phys_lo) bad_assignment(pdev, ap, res, 1); /* If it is a 64-bit MEM space assignment, verify that * the resource is too and that the upper 32-bits match. */ if (((ap->phys_hi >> 24) & 3) == 3) { if (((res->flags & IORESOURCE_MEM) == 0) || ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK) != PCI_BASE_ADDRESS_MEM_TYPE_64)) bad_assignment(pdev, ap, res, 1); if ((res->start >> 32) != ap->phys_mid) bad_assignment(pdev, ap, res, 1); /* PBM cannot generate cpu initiated PIOs * to the full 64-bit space. Therefore the * upper 32-bits better be zero. If it is * not, just skip it and we will assign it * properly ourselves. */ if ((res->start >> 32) != 0UL) { printk(KERN_ERR "PCI: OBP assigns out of range MEM address " "%016lx for region %ld on device %s\n", res->start, (res - &pdev->resource[0]), pdev->name); continue; } } /* Adjust the resource into the physical address space * of this PBM. */ pbm->parent->resource_adjust(pdev, res, root); if (request_resource(root, res) < 0) { /* OK, there is some conflict. But this is fine * since we'll reassign it in the fixup pass. * * We notify the user that OBP made an error if it * is a case we don't expect. */ if (!pdev_resource_collisions_expected(pdev)) { printk(KERN_ERR "PCI: Address space collision on region %ld " "[%016lx:%016lx] of device %s\n", (res - &pdev->resource[0]), res->start, res->end, pdev->name); } } } } void __init pci_record_assignments(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices; for (walk = walk->next; walk != &pbus->devices; walk = walk->next) pdev_record_assignments(pbm, pci_dev_b(walk)); walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_record_assignments(pbm, pci_bus_b(walk)); } /* Return non-zero if PDEV has implicit I/O resources even * though it may not have an I/O base address register * active. */ static int __init has_implicit_io(struct pci_dev *pdev) { int class = pdev->class >> 8; if (class == PCI_CLASS_NOT_DEFINED || class == PCI_CLASS_NOT_DEFINED_VGA || class == PCI_CLASS_STORAGE_IDE || (pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) return 1; return 0; } static void __init pdev_assign_unassigned(struct pci_pbm_info *pbm, struct pci_dev *pdev) { u32 reg; u16 cmd; int i, io_seen, mem_seen; io_seen = mem_seen = 0; for (i = 0; i < PCI_NUM_RESOURCES; i++) { struct resource *root, *res; unsigned long size, min, max, align; res = &pdev->resource[i]; if (res->flags & IORESOURCE_IO) io_seen++; else if (res->flags & IORESOURCE_MEM) mem_seen++; /* If it is already assigned or the resource does * not exist, there is nothing to do. */ if (res->parent != NULL || res->flags == 0UL) continue; /* Determine the root we allocate from. */ if (res->flags & IORESOURCE_IO) { root = &pbm->io_space; min = root->start + 0x400UL; max = root->end; } else { root = &pbm->mem_space; min = root->start; max = min + 0x80000000UL; } size = res->end - res->start; align = size + 1; if (allocate_resource(root, res, size + 1, min, max, align, NULL, NULL) < 0) { /* uh oh */ prom_printf("PCI: Failed to allocate resource %d for %s\n", i, pdev->name); prom_halt(); } /* Update PCI config space. */ pbm->parent->base_address_update(pdev, i); } /* Special case, disable the ROM. Several devices * act funny (ie. do not respond to memory space writes) * when it is left enabled. A good example are Qlogic,ISP * adapters. */ pci_read_config_dword(pdev, PCI_ROM_ADDRESS, ®); reg &= ~PCI_ROM_ADDRESS_ENABLE; pci_write_config_dword(pdev, PCI_ROM_ADDRESS, reg); /* If we saw I/O or MEM resources, enable appropriate * bits in PCI command register. */ if (io_seen || mem_seen) { pci_read_config_word(pdev, PCI_COMMAND, &cmd); if (io_seen || has_implicit_io(pdev)) cmd |= PCI_COMMAND_IO; if (mem_seen) cmd |= PCI_COMMAND_MEMORY; pci_write_config_word(pdev, PCI_COMMAND, cmd); } /* If this is a PCI bridge or an IDE controller, * enable bus mastering. In the former case also * set the cache line size correctly. */ if (((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) || (((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) && ((pdev->class & 0x80) != 0))) { pci_read_config_word(pdev, PCI_COMMAND, &cmd); cmd |= PCI_COMMAND_MASTER; pci_write_config_word(pdev, PCI_COMMAND, cmd); if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, (64 / sizeof(u32))); } } void __init pci_assign_unassigned(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices; for (walk = walk->next; walk != &pbus->devices; walk = walk->next) pdev_assign_unassigned(pbm, pci_dev_b(walk)); walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_assign_unassigned(pbm, pci_bus_b(walk)); } static int __init pci_intmap_match(struct pci_dev *pdev, unsigned int *interrupt) { struct linux_prom_pci_intmap bridge_local_intmap[PROM_PCIIMAP_MAX], *intmap; struct linux_prom_pci_intmask bridge_local_intmask, *intmask; struct pcidev_cookie *dev_pcp = pdev->sysdata; struct pci_pbm_info *pbm = dev_pcp->pbm; struct linux_prom_pci_registers *pregs = dev_pcp->prom_regs; unsigned int hi, mid, lo, irq; int i, num_intmap, map_slot; intmap = &pbm->pbm_intmap[0]; intmask = &pbm->pbm_intmask; num_intmap = pbm->num_pbm_intmap; map_slot = 0; /* If we are underneath a PCI bridge, use PROM register * property of the parent bridge which is closest to * the PBM. * * However if that parent bridge has interrupt map/mask * properties of it's own we use the PROM register property * of the next child device on the path to PDEV. * * In detail the two cases are (note that the 'X' below is the * 'next child on the path to PDEV' mentioned above): * * 1) PBM --> PCI bus lacking int{map,mask} --> X ... PDEV * * Here we use regs of 'PCI bus' device. * * 2) PBM --> PCI bus with int{map,mask} --> X ... PDEV * * Here we use regs of 'X'. Note that X can be PDEV. */ if (pdev->bus->number != pbm->pci_first_busno) { struct pcidev_cookie *bus_pcp, *regs_pcp; struct pci_dev *bus_dev, *regs_dev; int plen; bus_dev = pdev->bus->self; regs_dev = pdev; while (bus_dev->bus && bus_dev->bus->number != pbm->pci_first_busno) { regs_dev = bus_dev; bus_dev = bus_dev->bus->self; } regs_pcp = regs_dev->sysdata; pregs = regs_pcp->prom_regs; bus_pcp = bus_dev->sysdata; /* But if the PCI bridge has it's own interrupt map * and mask properties, use that and the regs of the * PCI entity at the next level down on the path to the * device. */ plen = prom_getproperty(bus_pcp->prom_node, "interrupt-map", (char *) &bridge_local_intmap[0], sizeof(bridge_local_intmap)); if (plen != -1) { intmap = &bridge_local_intmap[0]; num_intmap = plen / sizeof(struct linux_prom_pci_intmap); plen = prom_getproperty(bus_pcp->prom_node, "interrupt-map-mask", (char *) &bridge_local_intmask, sizeof(bridge_local_intmask)); if (plen == -1) { printk("pci_intmap_match: Warning! Bridge has intmap " "but no intmask.\n"); printk("pci_intmap_match: Trying to recover.\n"); return 0; } if (pdev->bus->self != bus_dev) map_slot = 1; } else { pregs = bus_pcp->prom_regs; map_slot = 1; } } if (map_slot) { *interrupt = ((*interrupt - 1 + PCI_SLOT(pdev->devfn)) & 0x3) + 1; } hi = pregs->phys_hi & intmask->phys_hi; mid = pregs->phys_mid & intmask->phys_mid; lo = pregs->phys_lo & intmask->phys_lo; irq = *interrupt & intmask->interrupt; for (i = 0; i < num_intmap; i++) { if (intmap[i].phys_hi == hi && intmap[i].phys_mid == mid && intmap[i].phys_lo == lo && intmap[i].interrupt == irq) { *interrupt = intmap[i].cinterrupt; printk("PCI-IRQ: Routing bus[%2x] slot[%2x] map[%d] to INO[%02x]\n", pdev->bus->number, PCI_SLOT(pdev->devfn), map_slot, *interrupt); return 1; } } /* We will run this code even if pbm->num_pbm_intmap is zero, just so * we can apply the slot mapping to the PROM interrupt property value. * So do not spit out these warnings in that case. */ if (num_intmap != 0) { /* Print it both to OBP console and kernel one so that if bootup * hangs here the user has the information to report. */ prom_printf("pci_intmap_match: bus %02x, devfn %02x: ", pdev->bus->number, pdev->devfn); prom_printf("IRQ [%08x.%08x.%08x.%08x] not found in interrupt-map\n", pregs->phys_hi, pregs->phys_mid, pregs->phys_lo, *interrupt); prom_printf("Please email this information to davem@redhat.com\n"); printk("pci_intmap_match: bus %02x, devfn %02x: ", pdev->bus->number, pdev->devfn); printk("IRQ [%08x.%08x.%08x.%08x] not found in interrupt-map\n", pregs->phys_hi, pregs->phys_mid, pregs->phys_lo, *interrupt); printk("Please email this information to davem@redhat.com\n"); } return 0; } static void __init pdev_fixup_irq(struct pci_dev *pdev) { struct pcidev_cookie *pcp = pdev->sysdata; struct pci_pbm_info *pbm = pcp->pbm; struct pci_controller_info *p = pbm->parent; unsigned int portid = pbm->portid; unsigned int prom_irq; int prom_node = pcp->prom_node; int err; /* If this is an empty EBUS device, sometimes OBP fails to * give it a valid fully specified interrupts property. * The EBUS hooked up to SunHME on PCI I/O boards of * Ex000 systems is one such case. * * The interrupt is not important so just ignore it. */ if (pdev->vendor == PCI_VENDOR_ID_SUN && pdev->device == PCI_DEVICE_ID_SUN_EBUS && !prom_getchild(prom_node)) { pdev->irq = 0; return; } err = prom_getproperty(prom_node, "interrupts", (char *)&prom_irq, sizeof(prom_irq)); if (err == 0 || err == -1) { pdev->irq = 0; return; } /* Fully specified already? */ if (((prom_irq & PCI_IRQ_IGN) >> 6) == portid) { pdev->irq = p->irq_build(pbm, pdev, prom_irq); goto have_irq; } /* An onboard device? (bit 5 set) */ if ((prom_irq & PCI_IRQ_INO) & 0x20) { pdev->irq = p->irq_build(pbm, pdev, (portid << 6 | prom_irq)); goto have_irq; } /* Can we find a matching entry in the interrupt-map? */ if (pci_intmap_match(pdev, &prom_irq)) { pdev->irq = p->irq_build(pbm, pdev, (portid << 6) | prom_irq); goto have_irq; } /* Ok, we have to do it the hard way. */ { unsigned int bus, slot, line; bus = (pbm == &pbm->parent->pbm_B) ? (1 << 4) : 0; /* If we have a legal interrupt property, use it as * the IRQ line. */ if (prom_irq > 0 && prom_irq < 5) { line = ((prom_irq - 1) & 3); } else { u8 pci_irq_line; /* Else just directly consult PCI config space. */ pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pci_irq_line); line = ((pci_irq_line - 1) & 3); } /* Now figure out the slot. * * Basically, device number zero on the top-level bus is * always the PCI host controller. Slot 0 is then device 1. * PBM A supports two external slots (0 and 1), and PBM B * supports 4 external slots (0, 1, 2, and 3). On-board PCI * devices are wired to device numbers outside of these * ranges. -DaveM */ if (pdev->bus->number == pbm->pci_first_busno) { slot = PCI_SLOT(pdev->devfn) - pbm->pci_first_slot; } else { struct pci_dev *bus_dev; /* Underneath a bridge, use slot number of parent * bridge which is closest to the PBM. */ bus_dev = pdev->bus->self; while (bus_dev->bus && bus_dev->bus->number != pbm->pci_first_busno) bus_dev = bus_dev->bus->self; slot = PCI_SLOT(bus_dev->devfn) - pbm->pci_first_slot; } slot = slot << 2; pdev->irq = p->irq_build(pbm, pdev, ((portid << 6) & PCI_IRQ_IGN) | (bus | slot | line)); } have_irq: pci_write_config_byte(pdev, PCI_INTERRUPT_LINE, pdev->irq & PCI_IRQ_INO); } void __init pci_fixup_irq(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices; for (walk = walk->next; walk != &pbus->devices; walk = walk->next) pdev_fixup_irq(pci_dev_b(walk)); walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_fixup_irq(pbm, pci_bus_b(walk)); } static void pdev_setup_busmastering(struct pci_dev *pdev, int is_66mhz) { u16 cmd; u8 hdr_type, min_gnt, ltimer; pci_read_config_word(pdev, PCI_COMMAND, &cmd); cmd |= PCI_COMMAND_MASTER; pci_write_config_word(pdev, PCI_COMMAND, cmd); /* Read it back, if the mastering bit did not * get set, the device does not support bus * mastering so we have nothing to do here. */ pci_read_config_word(pdev, PCI_COMMAND, &cmd); if ((cmd & PCI_COMMAND_MASTER) == 0) return; /* Set correct cache line size, 64-byte on all * Sparc64 PCI systems. Note that the value is * measured in 32-bit words. */ pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 64 / sizeof(u32)); pci_read_config_byte(pdev, PCI_HEADER_TYPE, &hdr_type); hdr_type &= ~0x80; if (hdr_type != PCI_HEADER_TYPE_NORMAL) return; /* If the latency timer is already programmed with a non-zero * value, assume whoever set it (OBP or whoever) knows what * they are doing. */ pci_read_config_byte(pdev, PCI_LATENCY_TIMER, <imer); if (ltimer != 0) return; /* XXX Since I'm tipping off the min grant value to * XXX choose a suitable latency timer value, I also * XXX considered making use of the max latency value * XXX as well. Unfortunately I've seen too many bogusly * XXX low settings for it to the point where it lacks * XXX any usefulness. In one case, an ethernet card * XXX claimed a min grant of 10 and a max latency of 5. * XXX Now, if I had two such cards on the same bus I * XXX could not set the desired burst period (calculated * XXX from min grant) without violating the max latency * XXX bound. Duh... * XXX * XXX I blame dumb PC bios implementors for stuff like * XXX this, most of them don't even try to do something * XXX sensible with latency timer values and just set some * XXX default value (usually 32) into every device. */ pci_read_config_byte(pdev, PCI_MIN_GNT, &min_gnt); if (min_gnt == 0) { /* If no min_gnt setting then use a default * value. */ if (is_66mhz) ltimer = 16; else ltimer = 32; } else { int shift_factor; if (is_66mhz) shift_factor = 2; else shift_factor = 3; /* Use a default value when the min_gnt value * is erroneously high. */ if (((unsigned int) min_gnt << shift_factor) > 512 || ((min_gnt << shift_factor) & 0xff) == 0) { ltimer = 8 << shift_factor; } else { ltimer = min_gnt << shift_factor; } } pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ltimer); } void pci_determine_66mhz_disposition(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk; int all_are_66mhz; u16 status; if (pbm->is_66mhz_capable == 0) { all_are_66mhz = 0; goto out; } walk = &pbus->devices; all_are_66mhz = 1; for (walk = walk->next; walk != &pbus->devices; walk = walk->next) { struct pci_dev *pdev = pci_dev_b(walk); pci_read_config_word(pdev, PCI_STATUS, &status); if (!(status & PCI_STATUS_66MHZ)) { all_are_66mhz = 0; break; } } out: pbm->all_devs_66mhz = all_are_66mhz; printk("PCI%d(PBM%c): Bus running at %dMHz\n", pbm->parent->index, (pbm == &pbm->parent->pbm_A) ? 'A' : 'B', (all_are_66mhz ? 66 : 33)); } void pci_setup_busmastering(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices; int is_66mhz; is_66mhz = pbm->is_66mhz_capable && pbm->all_devs_66mhz; for (walk = walk->next; walk != &pbus->devices; walk = walk->next) pdev_setup_busmastering(pci_dev_b(walk), is_66mhz); walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_setup_busmastering(pbm, pci_bus_b(walk)); } void pci_register_legacy_regions(struct resource *io_res, struct resource *mem_res) { struct resource *p; /* VGA Video RAM. */ p = kmalloc(sizeof(*p), GFP_KERNEL); if (!p) return; memset(p, 0, sizeof(*p)); p->name = "Video RAM area"; p->start = mem_res->start + 0xa0000UL; p->end = p->start + 0x1ffffUL; p->flags = IORESOURCE_BUSY; request_resource(mem_res, p); p = kmalloc(sizeof(*p), GFP_KERNEL); if (!p) return; memset(p, 0, sizeof(*p)); p->name = "System ROM"; p->start = mem_res->start + 0xf0000UL; p->end = p->start + 0xffffUL; p->flags = IORESOURCE_BUSY; request_resource(mem_res, p); p = kmalloc(sizeof(*p), GFP_KERNEL); if (!p) return; memset(p, 0, sizeof(*p)); p->name = "Video ROM"; p->start = mem_res->start + 0xc0000UL; p->end = p->start + 0x7fffUL; p->flags = IORESOURCE_BUSY; request_resource(mem_res, p); } /* Generic helper routines for PCI error reporting. */ void pci_scan_for_target_abort(struct pci_controller_info *p, struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices; for (walk = walk->next; walk != &pbus->devices; walk = walk->next) { struct pci_dev *pdev = pci_dev_b(walk); u16 status, error_bits; pci_read_config_word(pdev, PCI_STATUS, &status); error_bits = (status & (PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_REC_TARGET_ABORT)); if (error_bits) { pci_write_config_word(pdev, PCI_STATUS, error_bits); printk("PCI%d(PBM%c): Device [%s] saw Target Abort [%016x]\n", p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'), pdev->name, status); } } walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_scan_for_target_abort(p, pbm, pci_bus_b(walk)); } void pci_scan_for_master_abort(struct pci_controller_info *p, struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices; for (walk = walk->next; walk != &pbus->devices; walk = walk->next) { struct pci_dev *pdev = pci_dev_b(walk); u16 status, error_bits; pci_read_config_word(pdev, PCI_STATUS, &status); error_bits = (status & (PCI_STATUS_REC_MASTER_ABORT)); if (error_bits) { pci_write_config_word(pdev, PCI_STATUS, error_bits); printk("PCI%d(PBM%c): Device [%s] received Master Abort [%016x]\n", p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'), pdev->name, status); } } walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_scan_for_master_abort(p, pbm, pci_bus_b(walk)); } void pci_scan_for_parity_error(struct pci_controller_info *p, struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices; for (walk = walk->next; walk != &pbus->devices; walk = walk->next) { struct pci_dev *pdev = pci_dev_b(walk); u16 status, error_bits; pci_read_config_word(pdev, PCI_STATUS, &status); error_bits = (status & (PCI_STATUS_PARITY | PCI_STATUS_DETECTED_PARITY)); if (error_bits) { pci_write_config_word(pdev, PCI_STATUS, error_bits); printk("PCI%d(PBM%c): Device [%s] saw Parity Error [%016x]\n", p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'), pdev->name, status); } } walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_scan_for_parity_error(p, pbm, pci_bus_b(walk)); }