/* $Id: process.c,v 1.158 2001/11/26 23:45:00 davem Exp $ * linux/arch/sparc/kernel/process.c * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) */ /* * This file handles the architecture-dependent parts of process handling.. */ #define __KERNEL_SYSCALLS__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Power management idle function * Set in pm platform drivers */ void (*pm_idle)(void); /* * Power-off handler instantiation for pm.h compliance * This is done via auxio, but could be used as a fallback * handler when auxio is not present-- unused for now... */ void (*pm_power_off)(void); /* * sysctl - toggle power-off restriction for serial console * systems in machine_power_off() */ int scons_pwroff = 1; extern void fpsave(unsigned long *, unsigned long *, void *, unsigned long *); struct task_struct *last_task_used_math = NULL; struct task_struct *current_set[NR_CPUS] = {&init_task, }; #ifndef CONFIG_SMP #define SUN4C_FAULT_HIGH 100 /* * the idle loop on a Sparc... ;) */ int cpu_idle(void) { int ret = -EPERM; if (current->pid != 0) goto out; /* endless idle loop with no priority at all */ current->nice = 20; current->counter = -100; init_idle(); for (;;) { if (ARCH_SUN4C_SUN4) { static int count = HZ; static unsigned long last_jiffies; static unsigned long last_faults; static unsigned long fps; unsigned long now; unsigned long faults; unsigned long flags; extern unsigned long sun4c_kernel_faults; extern void sun4c_grow_kernel_ring(void); save_and_cli(flags); now = jiffies; count -= (now - last_jiffies); last_jiffies = now; if (count < 0) { count += HZ; faults = sun4c_kernel_faults; fps = (fps + (faults - last_faults)) >> 1; last_faults = faults; #if 0 printk("kernel faults / second = %ld\n", fps); #endif if (fps >= SUN4C_FAULT_HIGH) { sun4c_grow_kernel_ring(); } } restore_flags(flags); } while((!current->need_resched) && pm_idle) { (*pm_idle)(); } schedule(); check_pgt_cache(); } ret = 0; out: return ret; } #else /* This is being executed in task 0 'user space'. */ int cpu_idle(void) { /* endless idle loop with no priority at all */ current->nice = 20; current->counter = -100; init_idle(); while(1) { if(current->need_resched) { schedule(); check_pgt_cache(); } barrier(); /* or else gcc optimizes... */ } } #endif extern char reboot_command []; extern int serial_console; #ifdef CONFIG_SUN_CONSOLE extern void (*prom_palette)(int); #endif void machine_halt(void) { sti(); mdelay(8); cli(); #ifdef CONFIG_SUN_CONSOLE if (!serial_console && prom_palette) prom_palette (1); #endif prom_halt(); panic("Halt failed!"); } void machine_restart(char * cmd) { char *p; sti(); mdelay(8); cli(); p = strchr (reboot_command, '\n'); if (p) *p = 0; #ifdef CONFIG_SUN_CONSOLE if (!serial_console && prom_palette) prom_palette (1); #endif if (cmd) prom_reboot(cmd); if (*reboot_command) prom_reboot(reboot_command); prom_feval ("reset"); panic("Reboot failed!"); } void machine_power_off(void) { #ifdef CONFIG_SUN_AUXIO if (auxio_power_register && (!serial_console || scons_pwroff)) *auxio_power_register |= AUXIO_POWER_OFF; #endif machine_halt(); } void show_regwindow(struct reg_window *rw) { printk("l0: %08lx l1: %08lx l2: %08lx l3: %08lx " "l4: %08lx l5: %08lx l6: %08lx l7: %08lx\n", rw->locals[0], rw->locals[1], rw->locals[2], rw->locals[3], rw->locals[4], rw->locals[5], rw->locals[6], rw->locals[7]); printk("i0: %08lx i1: %08lx i2: %08lx i3: %08lx " "i4: %08lx i5: %08lx fp: %08lx i7: %08lx\n", rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3], rw->ins[4], rw->ins[5], rw->ins[6], rw->ins[7]); } static spinlock_t sparc_backtrace_lock = SPIN_LOCK_UNLOCKED; void __show_backtrace(unsigned long fp) { struct reg_window *rw; unsigned long flags; int cpu = smp_processor_id(); spin_lock_irqsave(&sparc_backtrace_lock, flags); rw = (struct reg_window *)fp; while(rw && (((unsigned long) rw) >= PAGE_OFFSET) && !(((unsigned long) rw) & 0x7)) { printk("CPU[%d]: ARGS[%08lx,%08lx,%08lx,%08lx,%08lx,%08lx] " "FP[%08lx] CALLER[%08lx]\n", cpu, rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3], rw->ins[4], rw->ins[5], rw->ins[6], rw->ins[7]); rw = (struct reg_window *) rw->ins[6]; } spin_unlock_irqrestore(&sparc_backtrace_lock, flags); } #define __SAVE __asm__ __volatile__("save %sp, -0x40, %sp\n\t") #define __RESTORE __asm__ __volatile__("restore %g0, %g0, %g0\n\t") #define __GET_FP(fp) __asm__ __volatile__("mov %%i6, %0" : "=r" (fp)) void show_backtrace(void) { unsigned long fp; __SAVE; __SAVE; __SAVE; __SAVE; __SAVE; __SAVE; __SAVE; __SAVE; __RESTORE; __RESTORE; __RESTORE; __RESTORE; __RESTORE; __RESTORE; __RESTORE; __RESTORE; __GET_FP(fp); __show_backtrace(fp); } #ifdef CONFIG_SMP void smp_show_backtrace_all_cpus(void) { xc0((smpfunc_t) show_backtrace); show_backtrace(); } #endif void show_stackframe(struct sparc_stackf *sf) { unsigned long size; unsigned long *stk; int i; printk("l0: %08lx l1: %08lx l2: %08lx l3: %08lx " "l4: %08lx l5: %08lx l6: %08lx l7: %08lx\n", sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3], sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]); printk("i0: %08lx i1: %08lx i2: %08lx i3: %08lx " "i4: %08lx i5: %08lx fp: %08lx i7: %08lx\n", sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3], sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc); printk("sp: %08lx x0: %08lx x1: %08lx x2: %08lx " "x3: %08lx x4: %08lx x5: %08lx xx: %08lx\n", (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1], sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5], sf->xxargs[0]); size = ((unsigned long)sf->fp) - ((unsigned long)sf); size -= STACKFRAME_SZ; stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ); i = 0; do { printk("s%d: %08lx\n", i++, *stk++); } while ((size -= sizeof(unsigned long))); } void show_regs(struct pt_regs * regs) { printk("PSR: %08lx PC: %08lx NPC: %08lx Y: %08lx %s\n", regs->psr, regs->pc, regs->npc, regs->y, print_tainted()); printk("g0: %08lx g1: %08lx g2: %08lx g3: %08lx ", regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], regs->u_regs[3]); printk("g4: %08lx g5: %08lx g6: %08lx g7: %08lx\n", regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], regs->u_regs[7]); printk("o0: %08lx o1: %08lx o2: %08lx o3: %08lx ", regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], regs->u_regs[11]); printk("o4: %08lx o5: %08lx sp: %08lx o7: %08lx\n", regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], regs->u_regs[15]); show_regwindow((struct reg_window *)regs->u_regs[14]); } void show_trace_task(struct task_struct *tsk) { unsigned long pc, fp; unsigned long task_base = (unsigned long) tsk; struct reg_window *rw; int count = 0; if (!tsk) return; fp = tsk->thread.ksp; do { /* Bogus frame pointer? */ if (fp < (task_base + sizeof(struct task_struct)) || fp >= (task_base + (PAGE_SIZE << 1))) break; rw = (struct reg_window *) fp; pc = rw->ins[7]; printk("[%08lx] ", pc); fp = rw->ins[6]; } while (++count < 16); printk("\n"); } /* * Free current thread data structures etc.. */ void exit_thread(void) { #ifndef CONFIG_SMP if(last_task_used_math == current) { #else if(current->flags & PF_USEDFPU) { #endif /* Keep process from leaving FPU in a bogon state. */ put_psr(get_psr() | PSR_EF); fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); #ifndef CONFIG_SMP last_task_used_math = NULL; #else current->flags &= ~PF_USEDFPU; #endif } } void flush_thread(void) { current->thread.w_saved = 0; /* No new signal delivery by default */ current->thread.new_signal = 0; #ifndef CONFIG_SMP if(last_task_used_math == current) { #else if(current->flags & PF_USEDFPU) { #endif /* Clean the fpu. */ put_psr(get_psr() | PSR_EF); fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); #ifndef CONFIG_SMP last_task_used_math = NULL; #else current->flags &= ~PF_USEDFPU; #endif } /* Now, this task is no longer a kernel thread. */ current->thread.current_ds = USER_DS; if (current->thread.flags & SPARC_FLAG_KTHREAD) { current->thread.flags &= ~SPARC_FLAG_KTHREAD; /* We must fixup kregs as well. */ current->thread.kregs = (struct pt_regs *) (((unsigned long)current) + (TASK_UNION_SIZE - TRACEREG_SZ)); } } static __inline__ struct sparc_stackf * clone_stackframe(struct sparc_stackf *dst, struct sparc_stackf *src) { unsigned long size; struct sparc_stackf *sp; size = ((unsigned long)src->fp) - ((unsigned long)src); sp = (struct sparc_stackf *)(((unsigned long)dst) - size); /* do_fork() grabs the parent semaphore, we must release it * temporarily so we can build the child clone stack frame * without deadlocking. */ if (copy_to_user(sp, src, size)) sp = (struct sparc_stackf *) 0; else if (put_user(dst, &sp->fp)) sp = (struct sparc_stackf *) 0; return sp; } /* Copy a Sparc thread. The fork() return value conventions * under SunOS are nothing short of bletcherous: * Parent --> %o0 == childs pid, %o1 == 0 * Child --> %o0 == parents pid, %o1 == 1 * * NOTE: We have a separate fork kpsr/kwim because * the parent could change these values between * sys_fork invocation and when we reach here * if the parent should sleep while trying to * allocate the task_struct and kernel stack in * do_fork(). */ extern void ret_from_fork(void); int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs; char *new_stack; #ifndef CONFIG_SMP if(last_task_used_math == current) { #else if(current->flags & PF_USEDFPU) { #endif put_psr(get_psr() | PSR_EF); fpsave(&p->thread.float_regs[0], &p->thread.fsr, &p->thread.fpqueue[0], &p->thread.fpqdepth); #ifdef CONFIG_SMP current->flags &= ~PF_USEDFPU; #endif } /* * p new_stack childregs * ! ! ! {if(PSR_PS) } * V V (stk.fr.) V (pt_regs) { (stk.fr.) } * +----- - - - - - ------+===========+============={+==========}+ */ new_stack = (char*)p + TASK_UNION_SIZE; if (regs->psr & PSR_PS) new_stack -= STACKFRAME_SZ; new_stack -= STACKFRAME_SZ + TRACEREG_SZ; memcpy(new_stack, (char *)regs - STACKFRAME_SZ, STACKFRAME_SZ + TRACEREG_SZ); childregs = (struct pt_regs *) (new_stack + STACKFRAME_SZ); p->thread.ksp = (unsigned long) new_stack; p->thread.kpc = (((unsigned long) ret_from_fork) - 0x8); p->thread.kpsr = current->thread.fork_kpsr; p->thread.kwim = current->thread.fork_kwim; /* This is used for sun4c only */ atomic_set(&p->thread.refcount, 1); if(regs->psr & PSR_PS) { extern struct pt_regs fake_swapper_regs; p->thread.kregs = &fake_swapper_regs; new_stack += STACKFRAME_SZ + TRACEREG_SZ; childregs->u_regs[UREG_FP] = (unsigned long) new_stack; p->thread.flags |= SPARC_FLAG_KTHREAD; p->thread.current_ds = KERNEL_DS; memcpy(new_stack, (void *)regs->u_regs[UREG_FP], STACKFRAME_SZ); childregs->u_regs[UREG_G6] = (unsigned long) p; } else { p->thread.kregs = childregs; childregs->u_regs[UREG_FP] = sp; p->thread.flags &= ~SPARC_FLAG_KTHREAD; p->thread.current_ds = USER_DS; if (sp != regs->u_regs[UREG_FP]) { struct sparc_stackf *childstack; struct sparc_stackf *parentstack; /* * This is a clone() call with supplied user stack. * Set some valid stack frames to give to the child. */ childstack = (struct sparc_stackf *) (sp & ~0x7UL); parentstack = (struct sparc_stackf *) regs->u_regs[UREG_FP]; #if 0 printk("clone: parent stack:\n"); show_stackframe(parentstack); #endif childstack = clone_stackframe(childstack, parentstack); if (!childstack) return -EFAULT; #if 0 printk("clone: child stack:\n"); show_stackframe(childstack); #endif childregs->u_regs[UREG_FP] = (unsigned long)childstack; } } #ifdef CONFIG_SMP /* FPU must be disabled on SMP. */ childregs->psr &= ~PSR_EF; #endif /* Set the return value for the child. */ childregs->u_regs[UREG_I0] = current->pid; childregs->u_regs[UREG_I1] = 1; /* Set the return value for the parent. */ regs->u_regs[UREG_I1] = 0; return 0; } /* * fill in the user structure for a core dump.. */ void dump_thread(struct pt_regs * regs, struct user * dump) { unsigned long first_stack_page; dump->magic = SUNOS_CORE_MAGIC; dump->len = sizeof(struct user); dump->regs.psr = regs->psr; dump->regs.pc = regs->pc; dump->regs.npc = regs->npc; dump->regs.y = regs->y; /* fuck me plenty */ memcpy(&dump->regs.regs[0], ®s->u_regs[1], (sizeof(unsigned long) * 15)); dump->uexec = current->thread.core_exec; dump->u_tsize = (((unsigned long) current->mm->end_code) - ((unsigned long) current->mm->start_code)) & ~(PAGE_SIZE - 1); dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))); dump->u_dsize -= dump->u_tsize; dump->u_dsize &= ~(PAGE_SIZE - 1); first_stack_page = (regs->u_regs[UREG_FP] & ~(PAGE_SIZE - 1)); dump->u_ssize = (TASK_SIZE - first_stack_page) & ~(PAGE_SIZE - 1); memcpy(&dump->fpu.fpstatus.fregs.regs[0], ¤t->thread.float_regs[0], (sizeof(unsigned long) * 32)); dump->fpu.fpstatus.fsr = current->thread.fsr; dump->fpu.fpstatus.flags = dump->fpu.fpstatus.extra = 0; dump->fpu.fpstatus.fpq_count = current->thread.fpqdepth; memcpy(&dump->fpu.fpstatus.fpq[0], ¤t->thread.fpqueue[0], ((sizeof(unsigned long) * 2) * 16)); dump->sigcode = 0; } /* * fill in the fpu structure for a core dump. */ int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) { if (current->used_math == 0) { memset(fpregs, 0, sizeof(*fpregs)); fpregs->pr_q_entrysize = 8; return 1; } #ifdef CONFIG_SMP if (current->flags & PF_USEDFPU) { put_psr(get_psr() | PSR_EF); fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); regs->psr &= ~(PSR_EF); current->flags &= ~(PF_USEDFPU); } #else if (current == last_task_used_math) { put_psr(get_psr() | PSR_EF); fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); last_task_used_math = 0; regs->psr &= ~(PSR_EF); } #endif memcpy(&fpregs->pr_fr.pr_regs[0], ¤t->thread.float_regs[0], (sizeof(unsigned long) * 32)); fpregs->pr_fsr = current->thread.fsr; fpregs->pr_qcnt = current->thread.fpqdepth; fpregs->pr_q_entrysize = 8; fpregs->pr_en = 1; if(fpregs->pr_qcnt != 0) { memcpy(&fpregs->pr_q[0], ¤t->thread.fpqueue[0], sizeof(struct fpq) * fpregs->pr_qcnt); } /* Zero out the rest. */ memset(&fpregs->pr_q[fpregs->pr_qcnt], 0, sizeof(struct fpq) * (32 - fpregs->pr_qcnt)); return 1; } /* * sparc_execve() executes a new program after the asm stub has set * things up for us. This should basically do what I want it to. */ asmlinkage int sparc_execve(struct pt_regs *regs) { int error, base = 0; char *filename; /* Check for indirect call. */ if(regs->u_regs[UREG_G1] == 0) base = 1; filename = getname((char *)regs->u_regs[base + UREG_I0]); error = PTR_ERR(filename); if(IS_ERR(filename)) goto out; error = do_execve(filename, (char **) regs->u_regs[base + UREG_I1], (char **) regs->u_regs[base + UREG_I2], regs); putname(filename); out: return error; } /* * This is the mechanism for creating a new kernel thread. * * NOTE! Only a kernel-only process(ie the swapper or direct descendants * who haven't done an "execve()") should use this: it will work within * a system call from a "real" process, but the process memory space will * not be free'd until both the parent and the child have exited. */ pid_t arch_kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { long retval; __asm__ __volatile("mov %4, %%g2\n\t" /* Set aside fn ptr... */ "mov %5, %%g3\n\t" /* and arg. */ "mov %1, %%g1\n\t" "mov %2, %%o0\n\t" /* Clone flags. */ "mov 0, %%o1\n\t" /* usp arg == 0 */ "t 0x10\n\t" /* Linux/Sparc clone(). */ "cmp %%o1, 0\n\t" "be 1f\n\t" /* The parent, just return. */ " nop\n\t" /* Delay slot. */ "jmpl %%g2, %%o7\n\t" /* Call the function. */ " mov %%g3, %%o0\n\t" /* Get back the arg in delay. */ "mov %3, %%g1\n\t" "t 0x10\n\t" /* Linux/Sparc exit(). */ /* Notreached by child. */ "1: mov %%o0, %0\n\t" : "=r" (retval) : "i" (__NR_clone), "r" (flags | CLONE_VM), "i" (__NR_exit), "r" (fn), "r" (arg) : "g1", "g2", "g3", "o0", "o1", "memory", "cc"); return retval; }