/* * arch/s390x/kernel/linux32.c * * S390 version * Copyright (C) 2000 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), * Gerhard Tonn (ton@de.ibm.com) * * Conversion between 31bit and 64bit native syscalls. * * Heavily inspired by the 32-bit Sparc compat code which is * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "linux32.h" extern asmlinkage long sys_chown(const char *, uid_t,gid_t); extern asmlinkage long sys_lchown(const char *, uid_t,gid_t); extern asmlinkage long sys_fchown(unsigned int, uid_t,gid_t); extern asmlinkage long sys_setregid(gid_t, gid_t); extern asmlinkage long sys_setgid(gid_t); extern asmlinkage long sys_setreuid(uid_t, uid_t); extern asmlinkage long sys_setuid(uid_t); extern asmlinkage long sys_setresuid(uid_t, uid_t, uid_t); extern asmlinkage long sys_setresgid(gid_t, gid_t, gid_t); extern asmlinkage long sys_setfsuid(uid_t); extern asmlinkage long sys_setfsgid(gid_t); /* For this source file, we want overflow handling. */ #undef high2lowuid #undef high2lowgid #undef low2highuid #undef low2highgid #undef SET_UID16 #undef SET_GID16 #undef NEW_TO_OLD_UID #undef NEW_TO_OLD_GID #undef SET_OLDSTAT_UID #undef SET_OLDSTAT_GID #undef SET_STAT_UID #undef SET_STAT_GID #define high2lowuid(uid) ((uid) > 65535) ? (u16)overflowuid : (u16)(uid) #define high2lowgid(gid) ((gid) > 65535) ? (u16)overflowgid : (u16)(gid) #define low2highuid(uid) ((uid) == (u16)-1) ? (uid_t)-1 : (uid_t)(uid) #define low2highgid(gid) ((gid) == (u16)-1) ? (gid_t)-1 : (gid_t)(gid) #define SET_UID16(var, uid) var = high2lowuid(uid) #define SET_GID16(var, gid) var = high2lowgid(gid) #define NEW_TO_OLD_UID(uid) high2lowuid(uid) #define NEW_TO_OLD_GID(gid) high2lowgid(gid) #define SET_OLDSTAT_UID(stat, uid) (stat).st_uid = high2lowuid(uid) #define SET_OLDSTAT_GID(stat, gid) (stat).st_gid = high2lowgid(gid) #define SET_STAT_UID(stat, uid) (stat).st_uid = high2lowuid(uid) #define SET_STAT_GID(stat, gid) (stat).st_gid = high2lowgid(gid) asmlinkage long sys32_chown16(const char * filename, u16 user, u16 group) { return sys_chown(filename, low2highuid(user), low2highgid(group)); } asmlinkage long sys32_lchown16(const char * filename, u16 user, u16 group) { return sys_lchown(filename, low2highuid(user), low2highgid(group)); } asmlinkage long sys32_fchown16(unsigned int fd, u16 user, u16 group) { return sys_fchown(fd, low2highuid(user), low2highgid(group)); } asmlinkage long sys32_setregid16(u16 rgid, u16 egid) { return sys_setregid(low2highgid(rgid), low2highgid(egid)); } asmlinkage long sys32_setgid16(u16 gid) { return sys_setgid((gid_t)gid); } asmlinkage long sys32_setreuid16(u16 ruid, u16 euid) { return sys_setreuid(low2highuid(ruid), low2highuid(euid)); } asmlinkage long sys32_setuid16(u16 uid) { return sys_setuid((uid_t)uid); } asmlinkage long sys32_setresuid16(u16 ruid, u16 euid, u16 suid) { return sys_setresuid(low2highuid(ruid), low2highuid(euid), low2highuid(suid)); } asmlinkage long sys32_getresuid16(u16 *ruid, u16 *euid, u16 *suid) { int retval; if (!(retval = put_user(high2lowuid(current->uid), ruid)) && !(retval = put_user(high2lowuid(current->euid), euid))) retval = put_user(high2lowuid(current->suid), suid); return retval; } asmlinkage long sys32_setresgid16(u16 rgid, u16 egid, u16 sgid) { return sys_setresgid(low2highgid(rgid), low2highgid(egid), low2highgid(sgid)); } asmlinkage long sys32_getresgid16(u16 *rgid, u16 *egid, u16 *sgid) { int retval; if (!(retval = put_user(high2lowgid(current->gid), rgid)) && !(retval = put_user(high2lowgid(current->egid), egid))) retval = put_user(high2lowgid(current->sgid), sgid); return retval; } asmlinkage long sys32_setfsuid16(u16 uid) { return sys_setfsuid((uid_t)uid); } asmlinkage long sys32_setfsgid16(u16 gid) { return sys_setfsgid((gid_t)gid); } asmlinkage long sys32_getgroups16(int gidsetsize, u16 *grouplist) { u16 groups[NGROUPS]; int i,j; if (gidsetsize < 0) return -EINVAL; i = current->ngroups; if (gidsetsize) { if (i > gidsetsize) return -EINVAL; for(j=0;jgroups[j]; if (copy_to_user(grouplist, groups, sizeof(u16)*i)) return -EFAULT; } return i; } asmlinkage long sys32_setgroups16(int gidsetsize, u16 *grouplist) { u16 groups[NGROUPS]; int i; if (!capable(CAP_SETGID)) return -EPERM; if ((unsigned) gidsetsize > NGROUPS) return -EINVAL; if (copy_from_user(groups, grouplist, gidsetsize * sizeof(u16))) return -EFAULT; for (i = 0 ; i < gidsetsize ; i++) current->groups[i] = (gid_t)groups[i]; current->ngroups = gidsetsize; return 0; } asmlinkage long sys32_getuid16(void) { return high2lowuid(current->uid); } asmlinkage long sys32_geteuid16(void) { return high2lowuid(current->euid); } asmlinkage long sys32_getgid16(void) { return high2lowgid(current->gid); } asmlinkage long sys32_getegid16(void) { return high2lowgid(current->egid); } /* 32-bit timeval and related flotsam. */ struct timeval32 { int tv_sec, tv_usec; }; struct itimerval32 { struct timeval32 it_interval; struct timeval32 it_value; }; static inline long get_tv32(struct timeval *o, struct timeval32 *i) { return (!access_ok(VERIFY_READ, tv32, sizeof(*tv32)) || (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec))); } static inline long put_tv32(struct timeval32 *o, struct timeval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec))); } static inline long get_it32(struct itimerval *o, struct itimerval32 *i) { return (!access_ok(VERIFY_READ, i32, sizeof(*i32)) || (__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) | __get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) | __get_user(o->it_value.tv_sec, &i->it_value.tv_sec) | __get_user(o->it_value.tv_usec, &i->it_value.tv_usec))); } static inline long put_it32(struct itimerval32 *o, struct itimerval *i) { return (!access_ok(VERIFY_WRITE, i32, sizeof(*i32)) || (__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) | __put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) | __put_user(i->it_value.tv_sec, &o->it_value.tv_sec) | __put_user(i->it_value.tv_usec, &o->it_value.tv_usec))); } struct msgbuf32 { s32 mtype; char mtext[1]; }; struct ipc64_perm_ds32 { __kernel_key_t key; __kernel_uid32_t uid; __kernel_gid32_t gid; __kernel_uid32_t cuid; __kernel_gid32_t cgid; __kernel_mode_t32 mode; unsigned short __pad1; unsigned short seq; unsigned short __pad2; unsigned int __unused1; unsigned int __unused2; }; struct ipc_perm32 { key_t key; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_uid_t32 cuid; __kernel_gid_t32 cgid; __kernel_mode_t32 mode; unsigned short seq; }; struct semid_ds32 { struct ipc_perm32 sem_perm; /* permissions .. see ipc.h */ __kernel_time_t32 sem_otime; /* last semop time */ __kernel_time_t32 sem_ctime; /* last change time */ u32 sem_base; /* ptr to first semaphore in array */ u32 sem_pending; /* pending operations to be processed */ u32 sem_pending_last; /* last pending operation */ u32 undo; /* undo requests on this array */ unsigned short sem_nsems; /* no. of semaphores in array */ }; struct semid64_ds32 { struct ipc64_perm_ds32 sem_perm; unsigned int __pad1; __kernel_time_t32 sem_otime; unsigned int __pad2; __kernel_time_t32 sem_ctime; u32 sem_nsems; u32 __unused1; u32 __unused2; }; struct msqid_ds32 { struct ipc_perm32 msg_perm; u32 msg_first; u32 msg_last; __kernel_time_t32 msg_stime; __kernel_time_t32 msg_rtime; __kernel_time_t32 msg_ctime; u32 wwait; u32 rwait; unsigned short msg_cbytes; unsigned short msg_qnum; unsigned short msg_qbytes; __kernel_ipc_pid_t32 msg_lspid; __kernel_ipc_pid_t32 msg_lrpid; }; struct msqid64_ds32 { struct ipc64_perm_ds32 msg_perm; unsigned int __pad1; __kernel_time_t32 msg_stime; unsigned int __pad2; __kernel_time_t32 msg_rtime; unsigned int __pad3; __kernel_time_t32 msg_ctime; unsigned int msg_cbytes; unsigned int msg_qnum; unsigned int msg_qbytes; __kernel_pid_t32 msg_lspid; __kernel_pid_t32 msg_lrpid; unsigned int __unused1; unsigned int __unused2; }; struct shmid_ds32 { struct ipc_perm32 shm_perm; int shm_segsz; __kernel_time_t32 shm_atime; __kernel_time_t32 shm_dtime; __kernel_time_t32 shm_ctime; __kernel_ipc_pid_t32 shm_cpid; __kernel_ipc_pid_t32 shm_lpid; unsigned short shm_nattch; }; struct shmid64_ds32 { struct ipc64_perm_ds32 shm_perm; __kernel_size_t32 shm_segsz; __kernel_time_t32 shm_atime; unsigned int __unused1; __kernel_time_t32 shm_dtime; unsigned int __unused2; __kernel_time_t32 shm_ctime; unsigned int __unused3; __kernel_pid_t32 shm_cpid; __kernel_pid_t32 shm_lpid; unsigned int shm_nattch; unsigned int __unused4; unsigned int __unused5; }; /* * sys32_ipc() is the de-multiplexer for the SysV IPC calls in 32bit emulation.. * * This is really horribly ugly. */ #define IPCOP_MASK(__x) (1UL << (__x)) static int do_sys32_semctl(int first, int second, int third, void *uptr) { union semun fourth; u32 pad; int err = -EINVAL; if (!uptr) goto out; err = -EFAULT; if (get_user (pad, (u32 *)uptr)) goto out; if(third == SETVAL) fourth.val = (int)pad; else fourth.__pad = (void *)A(pad); if (IPCOP_MASK (third) & (IPCOP_MASK (IPC_INFO) | IPCOP_MASK (SEM_INFO) | IPCOP_MASK (GETVAL) | IPCOP_MASK (GETPID) | IPCOP_MASK (GETNCNT) | IPCOP_MASK (GETZCNT) | IPCOP_MASK (GETALL) | IPCOP_MASK (SETALL) | IPCOP_MASK (IPC_RMID))) { err = sys_semctl (first, second, third, fourth); } else if (third & IPC_64) { struct semid64_ds s; struct semid64_ds32 *usp = (struct semid64_ds32 *)A(pad); mm_segment_t old_fs; int need_back_translation; if (third == (IPC_SET|IPC_64)) { err = get_user (s.sem_perm.uid, &usp->sem_perm.uid); err |= __get_user (s.sem_perm.gid, &usp->sem_perm.gid); err |= __get_user (s.sem_perm.mode, &usp->sem_perm.mode); if (err) goto out; fourth.__pad = &s; } need_back_translation = (IPCOP_MASK (third) & (IPCOP_MASK (SEM_STAT) | IPCOP_MASK (IPC_STAT))) != 0; if (need_back_translation) fourth.__pad = &s; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_semctl (first, second, third, fourth); set_fs (old_fs); if (need_back_translation) { int err2 = put_user (s.sem_perm.key, &usp->sem_perm.key); err2 |= __put_user (high2lowuid(s.sem_perm.uid), &usp->sem_perm.uid); err2 |= __put_user (high2lowgid(s.sem_perm.gid), &usp->sem_perm.gid); err2 |= __put_user (high2lowuid(s.sem_perm.cuid), &usp->sem_perm.cuid); err2 |= __put_user (high2lowgid(s.sem_perm.cgid), &usp->sem_perm.cgid); err2 |= __put_user (s.sem_perm.mode, &usp->sem_perm.mode); err2 |= __put_user (s.sem_perm.seq, &usp->sem_perm.seq); err2 |= __put_user (s.sem_otime, &usp->sem_otime); err2 |= __put_user (s.sem_ctime, &usp->sem_ctime); err2 |= __put_user (s.sem_nsems, &usp->sem_nsems); if (err2) err = -EFAULT; } } else { struct semid_ds s; struct semid_ds32 *usp = (struct semid_ds32 *)A(pad); mm_segment_t old_fs; int need_back_translation; if (third == IPC_SET) { err = get_user (s.sem_perm.uid, &usp->sem_perm.uid); err |= __get_user (s.sem_perm.gid, &usp->sem_perm.gid); err |= __get_user (s.sem_perm.mode, &usp->sem_perm.mode); if (err) goto out; fourth.__pad = &s; } need_back_translation = (IPCOP_MASK (third) & (IPCOP_MASK (SEM_STAT) | IPCOP_MASK (IPC_STAT))) != 0; if (need_back_translation) fourth.__pad = &s; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_semctl (first, second, third, fourth); set_fs (old_fs); if (need_back_translation) { int err2 = put_user (s.sem_perm.key, &usp->sem_perm.key); err2 |= __put_user (high2lowuid(s.sem_perm.uid), &usp->sem_perm.uid); err2 |= __put_user (high2lowgid(s.sem_perm.gid), &usp->sem_perm.gid); err2 |= __put_user (high2lowuid(s.sem_perm.cuid), &usp->sem_perm.cuid); err2 |= __put_user (high2lowgid(s.sem_perm.cgid), &usp->sem_perm.cgid); err2 |= __put_user (s.sem_perm.mode, &usp->sem_perm.mode); err2 |= __put_user (s.sem_perm.seq, &usp->sem_perm.seq); err2 |= __put_user (s.sem_otime, &usp->sem_otime); err2 |= __put_user (s.sem_ctime, &usp->sem_ctime); err2 |= __put_user (s.sem_nsems, &usp->sem_nsems); if (err2) err = -EFAULT; } } out: return err; } static int do_sys32_msgsnd (int first, int second, int third, void *uptr) { struct msgbuf *p = kmalloc (second + sizeof (struct msgbuf), GFP_USER); struct msgbuf32 *up = (struct msgbuf32 *)uptr; mm_segment_t old_fs; int err; if (!p) return -ENOMEM; err = -EINVAL; if (second > MSGMAX || first < 0 || second < 0) goto out; err = -EFAULT; if (!uptr) goto out; if (get_user (p->mtype, &up->mtype) || __copy_from_user (p->mtext, &up->mtext, second)) goto out; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgsnd (first, p, second, third); set_fs (old_fs); out: kfree (p); return err; } static int do_sys32_msgrcv (int first, int second, int msgtyp, int third, int version, void *uptr) { struct msgbuf32 *up; struct msgbuf *p; mm_segment_t old_fs; int err; if (first < 0 || second < 0) return -EINVAL; if (!version) { struct ipc_kludge_32 *uipck = (struct ipc_kludge_32 *)uptr; struct ipc_kludge_32 ipck; err = -EINVAL; if (!uptr) goto out; err = -EFAULT; if (copy_from_user (&ipck, uipck, sizeof (struct ipc_kludge_32))) goto out; uptr = (void *)A(ipck.msgp); msgtyp = ipck.msgtyp; } err = -ENOMEM; p = kmalloc (second + sizeof (struct msgbuf), GFP_USER); if (!p) goto out; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgrcv (first, p, second, msgtyp, third); set_fs (old_fs); if (err < 0) goto free_then_out; up = (struct msgbuf32 *)uptr; if (put_user (p->mtype, &up->mtype) || __copy_to_user (&up->mtext, p->mtext, err)) err = -EFAULT; free_then_out: kfree (p); out: return err; } static int do_sys32_msgctl (int first, int second, void *uptr) { int err; if (IPCOP_MASK (second) & (IPCOP_MASK (IPC_INFO) | IPCOP_MASK (MSG_INFO) | IPCOP_MASK (IPC_RMID))) { err = sys_msgctl (first, second, (struct msqid_ds *)uptr); } else if (second & IPC_64) { struct msqid64_ds m; struct msqid64_ds32 *up = (struct msqid64_ds32 *)uptr; mm_segment_t old_fs; if (second == (IPC_SET|IPC_64)) { err = get_user (m.msg_perm.uid, &up->msg_perm.uid); err |= __get_user (m.msg_perm.gid, &up->msg_perm.gid); err |= __get_user (m.msg_perm.mode, &up->msg_perm.mode); err |= __get_user (m.msg_qbytes, &up->msg_qbytes); if (err) goto out; } old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgctl (first, second, (struct msqid_ds *)&m); set_fs (old_fs); if (IPCOP_MASK (second) & (IPCOP_MASK (MSG_STAT) | IPCOP_MASK (IPC_STAT))) { int err2 = put_user (m.msg_perm.key, &up->msg_perm.key); err2 |= __put_user (high2lowuid(m.msg_perm.uid), &up->msg_perm.uid); err2 |= __put_user (high2lowgid(m.msg_perm.gid), &up->msg_perm.gid); err2 |= __put_user (high2lowuid(m.msg_perm.cuid), &up->msg_perm.cuid); err2 |= __put_user (high2lowgid(m.msg_perm.cgid), &up->msg_perm.cgid); err2 |= __put_user (m.msg_perm.mode, &up->msg_perm.mode); err2 |= __put_user (m.msg_perm.seq, &up->msg_perm.seq); err2 |= __put_user (m.msg_stime, &up->msg_stime); err2 |= __put_user (m.msg_rtime, &up->msg_rtime); err2 |= __put_user (m.msg_ctime, &up->msg_ctime); err2 |= __put_user (m.msg_cbytes, &up->msg_cbytes); err2 |= __put_user (m.msg_qnum, &up->msg_qnum); err2 |= __put_user (m.msg_qbytes, &up->msg_qbytes); err2 |= __put_user (m.msg_lspid, &up->msg_lspid); err2 |= __put_user (m.msg_lrpid, &up->msg_lrpid); if (err2) err = -EFAULT; } } else { struct msqid_ds m; struct msqid_ds32 *up = (struct msqid_ds32 *)uptr; mm_segment_t old_fs; if (second == IPC_SET) { err = get_user (m.msg_perm.uid, &up->msg_perm.uid); err |= __get_user (m.msg_perm.gid, &up->msg_perm.gid); err |= __get_user (m.msg_perm.mode, &up->msg_perm.mode); err |= __get_user (m.msg_qbytes, &up->msg_qbytes); if (err) goto out; } old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgctl (first, second, &m); set_fs (old_fs); if (IPCOP_MASK (second) & (IPCOP_MASK (MSG_STAT) | IPCOP_MASK (IPC_STAT))) { int err2 = put_user (m.msg_perm.key, &up->msg_perm.key); err2 |= __put_user (high2lowuid(m.msg_perm.uid), &up->msg_perm.uid); err2 |= __put_user (high2lowgid(m.msg_perm.gid), &up->msg_perm.gid); err2 |= __put_user (high2lowuid(m.msg_perm.cuid), &up->msg_perm.cuid); err2 |= __put_user (high2lowgid(m.msg_perm.cgid), &up->msg_perm.cgid); err2 |= __put_user (m.msg_perm.mode, &up->msg_perm.mode); err2 |= __put_user (m.msg_perm.seq, &up->msg_perm.seq); err2 |= __put_user (m.msg_stime, &up->msg_stime); err2 |= __put_user (m.msg_rtime, &up->msg_rtime); err2 |= __put_user (m.msg_ctime, &up->msg_ctime); err2 |= __put_user (m.msg_cbytes, &up->msg_cbytes); err2 |= __put_user (m.msg_qnum, &up->msg_qnum); err2 |= __put_user (m.msg_qbytes, &up->msg_qbytes); err2 |= __put_user (m.msg_lspid, &up->msg_lspid); err2 |= __put_user (m.msg_lrpid, &up->msg_lrpid); if (err2) err = -EFAULT; } } out: return err; } static int do_sys32_shmat (int first, int second, int third, int version, void *uptr) { unsigned long raddr; u32 *uaddr = (u32 *)A((u32)third); int err = -EINVAL; if (version == 1) goto out; err = sys_shmat (first, uptr, second, &raddr); if (err) goto out; err = put_user (raddr, uaddr); out: return err; } static int do_sys32_shmctl (int first, int second, void *uptr) { int err; if (IPCOP_MASK (second) & (IPCOP_MASK (IPC_INFO) | IPCOP_MASK (SHM_LOCK) | IPCOP_MASK (SHM_UNLOCK) | IPCOP_MASK (IPC_RMID))) { if (second == (IPC_INFO|IPC_64)) second = IPC_INFO; /* So that we don't have to translate it */ err = sys_shmctl (first, second, (struct shmid_ds *)uptr); } else if ((second & IPC_64) && second != (SHM_INFO|IPC_64)) { struct shmid64_ds s; struct shmid64_ds32 *up = (struct shmid64_ds32 *)uptr; mm_segment_t old_fs; if (second == (IPC_SET|IPC_64)) { err = get_user (s.shm_perm.uid, &up->shm_perm.uid); err |= __get_user (s.shm_perm.gid, &up->shm_perm.gid); err |= __get_user (s.shm_perm.mode, &up->shm_perm.mode); if (err) goto out; } old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_shmctl (first, second, (struct shmid_ds *)&s); set_fs (old_fs); if (err < 0) goto out; /* Mask it even in this case so it becomes a CSE. */ if (IPCOP_MASK (second) & (IPCOP_MASK (SHM_STAT) | IPCOP_MASK (IPC_STAT))) { int err2 = put_user (s.shm_perm.key, &up->shm_perm.key); err2 |= __put_user (high2lowuid(s.shm_perm.uid), &up->shm_perm.uid); err2 |= __put_user (high2lowgid(s.shm_perm.gid), &up->shm_perm.gid); err2 |= __put_user (high2lowuid(s.shm_perm.cuid), &up->shm_perm.cuid); err2 |= __put_user (high2lowgid(s.shm_perm.cgid), &up->shm_perm.cgid); err2 |= __put_user (s.shm_perm.mode, &up->shm_perm.mode); err2 |= __put_user (s.shm_perm.seq, &up->shm_perm.seq); err2 |= __put_user (s.shm_atime, &up->shm_atime); err2 |= __put_user (s.shm_dtime, &up->shm_dtime); err2 |= __put_user (s.shm_ctime, &up->shm_ctime); err2 |= __put_user (s.shm_segsz, &up->shm_segsz); err2 |= __put_user (s.shm_nattch, &up->shm_nattch); err2 |= __put_user (s.shm_cpid, &up->shm_cpid); err2 |= __put_user (s.shm_lpid, &up->shm_lpid); if (err2) err = -EFAULT; } } else { struct shmid_ds s; struct shmid_ds32 *up = (struct shmid_ds32 *)uptr; mm_segment_t old_fs; second &= ~IPC_64; if (second == IPC_SET) { err = get_user (s.shm_perm.uid, &up->shm_perm.uid); err |= __get_user (s.shm_perm.gid, &up->shm_perm.gid); err |= __get_user (s.shm_perm.mode, &up->shm_perm.mode); if (err) goto out; } old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_shmctl (first, second, &s); set_fs (old_fs); if (err < 0) goto out; /* Mask it even in this case so it becomes a CSE. */ if (second == SHM_INFO) { struct shm_info32 { int used_ids; u32 shm_tot, shm_rss, shm_swp; u32 swap_attempts, swap_successes; } *uip = (struct shm_info32 *)uptr; struct shm_info *kp = (struct shm_info *)&s; int err2 = put_user (kp->used_ids, &uip->used_ids); err2 |= __put_user (kp->shm_tot, &uip->shm_tot); err2 |= __put_user (kp->shm_rss, &uip->shm_rss); err2 |= __put_user (kp->shm_swp, &uip->shm_swp); err2 |= __put_user (kp->swap_attempts, &uip->swap_attempts); err2 |= __put_user (kp->swap_successes, &uip->swap_successes); if (err2) err = -EFAULT; } else if (IPCOP_MASK (second) & (IPCOP_MASK (SHM_STAT) | IPCOP_MASK (IPC_STAT))) { int err2 = put_user (s.shm_perm.key, &up->shm_perm.key); err2 |= __put_user (high2lowuid(s.shm_perm.uid), &up->shm_perm.uid); err2 |= __put_user (high2lowgid(s.shm_perm.gid), &up->shm_perm.gid); err2 |= __put_user (high2lowuid(s.shm_perm.cuid), &up->shm_perm.cuid); err2 |= __put_user (high2lowgid(s.shm_perm.cgid), &up->shm_perm.cgid); err2 |= __put_user (s.shm_perm.mode, &up->shm_perm.mode); err2 |= __put_user (s.shm_perm.seq, &up->shm_perm.seq); err2 |= __put_user (s.shm_atime, &up->shm_atime); err2 |= __put_user (s.shm_dtime, &up->shm_dtime); err2 |= __put_user (s.shm_ctime, &up->shm_ctime); err2 |= __put_user (s.shm_segsz, &up->shm_segsz); err2 |= __put_user (s.shm_nattch, &up->shm_nattch); err2 |= __put_user (s.shm_cpid, &up->shm_cpid); err2 |= __put_user (s.shm_lpid, &up->shm_lpid); if (err2) err = -EFAULT; } } out: return err; } asmlinkage int sys32_ipc (u32 call, int first, int second, int third, u32 ptr, u32 fifth) { int version, err; version = call >> 16; /* hack for backward compatibility */ call &= 0xffff; if(version) return -EINVAL; if (call <= SEMCTL) switch (call) { case SEMOP: /* struct sembuf is the same on 32 and 64bit :)) */ err = sys_semop (first, (struct sembuf *)AA(ptr), second); goto out; case SEMGET: err = sys_semget (first, second, third); goto out; case SEMCTL: err = do_sys32_semctl (first, second, third, (void *)AA(ptr)); goto out; default: err = -EINVAL; goto out; }; if (call <= MSGCTL) switch (call) { case MSGSND: err = do_sys32_msgsnd (first, second, third, (void *)AA(ptr)); goto out; case MSGRCV: err = do_sys32_msgrcv (first, second, 0, third, version, (void *)AA(ptr)); goto out; case MSGGET: err = sys_msgget ((key_t) first, second); goto out; case MSGCTL: err = do_sys32_msgctl (first, second, (void *)AA(ptr)); goto out; default: err = -EINVAL; goto out; } if (call <= SHMCTL) switch (call) { case SHMAT: err = do_sys32_shmat (first, second, third, version, (void *)AA(ptr)); goto out; case SHMDT: err = sys_shmdt ((char *)AA(ptr)); goto out; case SHMGET: err = sys_shmget (first, second, third); goto out; case SHMCTL: err = do_sys32_shmctl (first, second, (void *)AA(ptr)); goto out; default: err = -EINVAL; goto out; } err = -EINVAL; out: return err; } static inline int get_flock(struct flock *kfl, struct flock32 *ufl) { int err; err = get_user(kfl->l_type, &ufl->l_type); err |= __get_user(kfl->l_whence, &ufl->l_whence); err |= __get_user(kfl->l_start, &ufl->l_start); err |= __get_user(kfl->l_len, &ufl->l_len); err |= __get_user(kfl->l_pid, &ufl->l_pid); return err; } static inline int put_flock(struct flock *kfl, struct flock32 *ufl) { int err; err = __put_user(kfl->l_type, &ufl->l_type); err |= __put_user(kfl->l_whence, &ufl->l_whence); err |= __put_user(kfl->l_start, &ufl->l_start); err |= __put_user(kfl->l_len, &ufl->l_len); err |= __put_user(kfl->l_pid, &ufl->l_pid); return err; } extern asmlinkage long sys_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg); asmlinkage long sys32_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg) { switch (cmd) { case F_GETLK: { struct flock f; mm_segment_t old_fs; long ret; if(get_flock(&f, (struct flock32 *)A(arg))) return -EFAULT; old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_fcntl(fd, cmd, (unsigned long)&f); set_fs (old_fs); if (ret) return ret; if (f.l_start >= 0x7fffffffUL || f.l_start + f.l_len >= 0x7fffffffUL) return -EOVERFLOW; if(put_flock(&f, (struct flock32 *)A(arg))) return -EFAULT; return 0; } case F_SETLK: case F_SETLKW: { struct flock f; mm_segment_t old_fs; long ret; if(get_flock(&f, (struct flock32 *)A(arg))) return -EFAULT; old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_fcntl(fd, cmd, (unsigned long)&f); set_fs (old_fs); if (ret) return ret; return 0; } default: return sys_fcntl(fd, cmd, (unsigned long)arg); } } asmlinkage long sys32_fcntl64(unsigned int fd, unsigned int cmd, unsigned long arg) { if (cmd >= F_GETLK64 && cmd <= F_SETLKW64) return sys_fcntl(fd, cmd + F_GETLK - F_GETLK64, arg); return sys32_fcntl(fd, cmd, arg); } struct user_dqblk32 { __u32 dqb_bhardlimit; __u32 dqb_bsoftlimit; __u32 dqb_curblocks; __u32 dqb_ihardlimit; __u32 dqb_isoftlimit; __u32 dqb_curinodes; __kernel_time_t32 dqb_btime; __kernel_time_t32 dqb_itime; }; extern asmlinkage int sys_quotactl(int cmd, const char *special, int id, caddr_t addr); asmlinkage int sys32_quotactl(int cmd, const char *special, int id, caddr_t addr) { int cmds = cmd >> SUBCMDSHIFT; int err; struct v1c_mem_dqblk d; mm_segment_t old_fs; char *spec; switch (cmds) { case Q_V1_GETQUOTA: break; case Q_V1_SETQUOTA: case Q_V1_SETUSE: case Q_V1_SETQLIM: if (copy_from_user(&d, addr, sizeof (struct user_dqblk32))) return -EFAULT; d.dqb_itime = ((struct user_dqblk32 *)&d)->dqb_itime; d.dqb_btime = ((struct user_dqblk32 *)&d)->dqb_btime; break; default: return sys_quotactl(cmd, special, id, addr); } spec = getname(special); err = PTR_ERR(spec); if (IS_ERR(spec)) return err; old_fs = get_fs(); set_fs (KERNEL_DS); err = sys_quotactl(cmd, (const char *)spec, id, (caddr_t)&d); set_fs(old_fs); putname(spec); if (err) return err; if (cmds == Q_V1_GETQUOTA) { __kernel_time_t b = d.dqb_btime, i = d.dqb_itime; ((struct user_dqblk32 *)&d)->dqb_itime = i; ((struct user_dqblk32 *)&d)->dqb_btime = b; if (copy_to_user(addr, &d, sizeof (struct user_dqblk32))) return -EFAULT; } return 0; } static inline int put_statfs (struct statfs32 *ubuf, struct statfs *kbuf) { int err; err = put_user (kbuf->f_type, &ubuf->f_type); err |= __put_user (kbuf->f_bsize, &ubuf->f_bsize); err |= __put_user (kbuf->f_blocks, &ubuf->f_blocks); err |= __put_user (kbuf->f_bfree, &ubuf->f_bfree); err |= __put_user (kbuf->f_bavail, &ubuf->f_bavail); err |= __put_user (kbuf->f_files, &ubuf->f_files); err |= __put_user (kbuf->f_ffree, &ubuf->f_ffree); err |= __put_user (kbuf->f_namelen, &ubuf->f_namelen); err |= __put_user (kbuf->f_fsid.val[0], &ubuf->f_fsid.val[0]); err |= __put_user (kbuf->f_fsid.val[1], &ubuf->f_fsid.val[1]); return err; } extern asmlinkage int sys_statfs(const char * path, struct statfs * buf); asmlinkage int sys32_statfs(const char * path, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); char *pth; pth = getname (path); ret = PTR_ERR(pth); if (!IS_ERR(pth)) { set_fs (KERNEL_DS); ret = sys_statfs((const char *)pth, &s); set_fs (old_fs); putname (pth); if (put_statfs(buf, &s)) return -EFAULT; } return ret; } extern asmlinkage int sys_fstatfs(unsigned int fd, struct statfs * buf); asmlinkage int sys32_fstatfs(unsigned int fd, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_fstatfs(fd, &s); set_fs (old_fs); if (put_statfs(buf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_truncate(const char * path, unsigned long length); extern asmlinkage long sys_ftruncate(unsigned int fd, unsigned long length); asmlinkage int sys32_truncate64(const char * path, unsigned long high, unsigned long low) { if ((int)high < 0) return -EINVAL; else return sys_truncate(path, (high << 32) | low); } asmlinkage int sys32_ftruncate64(unsigned int fd, unsigned long high, unsigned long low) { if ((int)high < 0) return -EINVAL; else return sys_ftruncate(fd, (high << 32) | low); } extern asmlinkage int sys_utime(char * filename, struct utimbuf * times); struct utimbuf32 { __kernel_time_t32 actime, modtime; }; asmlinkage int sys32_utime(char * filename, struct utimbuf32 *times) { struct utimbuf t; mm_segment_t old_fs; int ret; char *filenam; if (!times) return sys_utime(filename, NULL); if (get_user (t.actime, ×->actime) || __get_user (t.modtime, ×->modtime)) return -EFAULT; filenam = getname (filename); ret = PTR_ERR(filenam); if (!IS_ERR(filenam)) { old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_utime(filenam, &t); set_fs (old_fs); putname (filenam); } return ret; } struct iovec32 { u32 iov_base; __kernel_size_t32 iov_len; }; typedef ssize_t (*io_fn_t)(struct file *, char *, size_t, loff_t *); typedef ssize_t (*iov_fn_t)(struct file *, const struct iovec *, unsigned long, loff_t *); static long do_readv_writev32(int type, struct file *file, const struct iovec32 *vector, u32 count) { unsigned long tot_len; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov=iovstack, *ivp; long retval, i; io_fn_t fn; iov_fn_t fnv; /* First get the "struct iovec" from user memory and * verify all the pointers */ if (!count) return 0; if (verify_area(VERIFY_READ, vector, sizeof(struct iovec32)*count)) return -EFAULT; if (count > UIO_MAXIOV) return -EINVAL; if (count > UIO_FASTIOV) { iov = kmalloc(count*sizeof(struct iovec), GFP_KERNEL); if (!iov) return -ENOMEM; } tot_len = 0; i = count; ivp = iov; while(i > 0) { u32 len; u32 buf; __get_user(len, &vector->iov_len); __get_user(buf, &vector->iov_base); tot_len += len; ivp->iov_base = (void *)A(buf); ivp->iov_len = (__kernel_size_t) len; vector++; ivp++; i--; } /* VERIFY_WRITE actually means a read, as we write to user space */ retval = rw_verify_area((type == VERIFY_WRITE ? READ : WRITE), file, &file->f_pos, tot_len); if (retval) goto out; /* VERIFY_WRITE actually means a read, as we write to user space */ fnv = (type == VERIFY_WRITE ? file->f_op->readv : file->f_op->writev); if (fnv) { retval = fnv(file, iov, count, &file->f_pos); goto out; } fn = (type == VERIFY_WRITE ? file->f_op->read : (io_fn_t) file->f_op->write); ivp = iov; while (count > 0) { void * base; int len, nr; base = ivp->iov_base; len = ivp->iov_len; ivp++; count--; nr = fn(file, base, len, &file->f_pos); if (nr < 0) { if (!retval) retval = nr; break; } retval += nr; if (nr != len) break; } out: if (iov != iovstack) kfree(iov); return retval; } asmlinkage long sys32_readv(int fd, struct iovec32 *vector, u32 count) { struct file *file; long ret = -EBADF; file = fget(fd); if(!file) goto bad_file; if (file->f_op && (file->f_mode & FMODE_READ) && (file->f_op->readv || file->f_op->read)) ret = do_readv_writev32(VERIFY_WRITE, file, vector, count); fput(file); bad_file: return ret; } asmlinkage long sys32_writev(int fd, struct iovec32 *vector, u32 count) { struct file *file; int ret = -EBADF; file = fget(fd); if(!file) goto bad_file; if (file->f_op && (file->f_mode & FMODE_WRITE) && (file->f_op->writev || file->f_op->write)) ret = do_readv_writev32(VERIFY_READ, file, vector, count); fput(file); bad_file: return ret; } /* readdir & getdents */ #define NAME_OFFSET(de) ((int) ((de)->d_name - (char *) (de))) #define ROUND_UP(x) (((x)+sizeof(u32)-1) & ~(sizeof(u32)-1)) struct old_linux_dirent32 { u32 d_ino; u32 d_offset; unsigned short d_namlen; char d_name[1]; }; struct readdir_callback32 { struct old_linux_dirent32 * dirent; int count; }; static int fillonedir(void * __buf, const char * name, int namlen, loff_t offset, ino_t ino, unsigned int d_type) { struct readdir_callback32 * buf = (struct readdir_callback32 *) __buf; struct old_linux_dirent32 * dirent; if (buf->count) return -EINVAL; buf->count++; dirent = buf->dirent; put_user(ino, &dirent->d_ino); put_user(offset, &dirent->d_offset); put_user(namlen, &dirent->d_namlen); copy_to_user(dirent->d_name, name, namlen); put_user(0, dirent->d_name + namlen); return 0; } asmlinkage int old32_readdir(unsigned int fd, struct old_linux_dirent32 *dirent, unsigned int count) { int error = -EBADF; struct file * file; struct readdir_callback32 buf; file = fget(fd); if (!file) goto out; buf.count = 0; buf.dirent = dirent; error = vfs_readdir(file, fillonedir, &buf); if (error < 0) goto out_putf; error = buf.count; out_putf: fput(file); out: return error; } struct linux_dirent32 { u32 d_ino; u32 d_off; unsigned short d_reclen; char d_name[1]; }; struct getdents_callback32 { struct linux_dirent32 * current_dir; struct linux_dirent32 * previous; int count; int error; }; static int filldir(void * __buf, const char * name, int namlen, loff_t offset, ino_t ino, unsigned int d_type) { struct linux_dirent32 * dirent; struct getdents_callback32 * buf = (struct getdents_callback32 *) __buf; int reclen = ROUND_UP(NAME_OFFSET(dirent) + namlen + 1); buf->error = -EINVAL; /* only used if we fail.. */ if (reclen > buf->count) return -EINVAL; dirent = buf->previous; if (dirent) put_user(offset, &dirent->d_off); dirent = buf->current_dir; buf->previous = dirent; put_user(ino, &dirent->d_ino); put_user(reclen, &dirent->d_reclen); copy_to_user(dirent->d_name, name, namlen); put_user(0, dirent->d_name + namlen); ((char *) dirent) += reclen; buf->current_dir = dirent; buf->count -= reclen; return 0; } asmlinkage int sys32_getdents(unsigned int fd, struct linux_dirent32 *dirent, unsigned int count) { struct file * file; struct linux_dirent32 * lastdirent; struct getdents_callback32 buf; int error = -EBADF; file = fget(fd); if (!file) goto out; buf.current_dir = dirent; buf.previous = NULL; buf.count = count; buf.error = 0; error = vfs_readdir(file, filldir, &buf); if (error < 0) goto out_putf; lastdirent = buf.previous; error = buf.error; if(lastdirent) { put_user(file->f_pos, &lastdirent->d_off); error = count - buf.count; } out_putf: fput(file); out: return error; } /* end of readdir & getdents */ /* * Ooo, nasty. We need here to frob 32-bit unsigned longs to * 64-bit unsigned longs. */ static inline int get_fd_set32(unsigned long n, unsigned long *fdset, u32 *ufdset) { if (ufdset) { unsigned long odd; if (verify_area(VERIFY_WRITE, ufdset, n*sizeof(u32))) return -EFAULT; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; __get_user(l, ufdset); __get_user(h, ufdset+1); ufdset += 2; *fdset++ = h << 32 | l; n -= 2; } if (odd) __get_user(*fdset, ufdset); } else { /* Tricky, must clear full unsigned long in the * kernel fdset at the end, this makes sure that * actually happens. */ memset(fdset, 0, ((n + 1) & ~1)*sizeof(u32)); } return 0; } static inline void set_fd_set32(unsigned long n, u32 *ufdset, unsigned long *fdset) { unsigned long odd; if (!ufdset) return; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; l = *fdset++; h = l >> 32; __put_user(l, ufdset); __put_user(h, ufdset+1); ufdset += 2; n -= 2; } if (odd) __put_user(*fdset, ufdset); } #define MAX_SELECT_SECONDS \ ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1) asmlinkage int sys32_select(int n, u32 *inp, u32 *outp, u32 *exp, u32 tvp_x) { fd_set_bits fds; struct timeval32 *tvp = (struct timeval32 *)AA(tvp_x); char *bits; unsigned long nn; long timeout; int ret, size; timeout = MAX_SCHEDULE_TIMEOUT; if (tvp) { int sec, usec; if ((ret = verify_area(VERIFY_READ, tvp, sizeof(*tvp))) || (ret = __get_user(sec, &tvp->tv_sec)) || (ret = __get_user(usec, &tvp->tv_usec))) goto out_nofds; ret = -EINVAL; if(sec < 0 || usec < 0) goto out_nofds; if ((unsigned long) sec < MAX_SELECT_SECONDS) { timeout = (usec + 1000000/HZ - 1) / (1000000/HZ); timeout += sec * (unsigned long) HZ; } } ret = -EINVAL; if (n < 0) goto out_nofds; if (n > current->files->max_fdset) n = current->files->max_fdset; /* * We need 6 bitmaps (in/out/ex for both incoming and outgoing), * since we used fdset we need to allocate memory in units of * long-words. */ ret = -ENOMEM; size = FDS_BYTES(n); bits = kmalloc(6 * size, GFP_KERNEL); if (!bits) goto out_nofds; fds.in = (unsigned long *) bits; fds.out = (unsigned long *) (bits + size); fds.ex = (unsigned long *) (bits + 2*size); fds.res_in = (unsigned long *) (bits + 3*size); fds.res_out = (unsigned long *) (bits + 4*size); fds.res_ex = (unsigned long *) (bits + 5*size); nn = (n + 8*sizeof(u32) - 1) / (8*sizeof(u32)); if ((ret = get_fd_set32(nn, fds.in, inp)) || (ret = get_fd_set32(nn, fds.out, outp)) || (ret = get_fd_set32(nn, fds.ex, exp))) goto out; zero_fd_set(n, fds.res_in); zero_fd_set(n, fds.res_out); zero_fd_set(n, fds.res_ex); ret = do_select(n, &fds, &timeout); if (tvp && !(current->personality & STICKY_TIMEOUTS)) { int sec = 0, usec = 0; if (timeout) { sec = timeout / HZ; usec = timeout % HZ; usec *= (1000000/HZ); } put_user(sec, &tvp->tv_sec); put_user(usec, &tvp->tv_usec); } if (ret < 0) goto out; if (!ret) { ret = -ERESTARTNOHAND; if (signal_pending(current)) goto out; ret = 0; } set_fd_set32(nn, inp, fds.res_in); set_fd_set32(nn, outp, fds.res_out); set_fd_set32(nn, exp, fds.res_ex); out: kfree(bits); out_nofds: return ret; } static int cp_new_stat32(struct inode *inode, struct stat32 *statbuf) { unsigned long ino, blksize, blocks; kdev_t dev, rdev; umode_t mode; nlink_t nlink; uid_t uid; gid_t gid; off_t size; time_t atime, mtime, ctime; int err; /* Stream the loads of inode data into the load buffer, * then we push it all into the store buffer below. This * should give optimal cache performance. */ ino = inode->i_ino; dev = inode->i_dev; mode = inode->i_mode; nlink = inode->i_nlink; uid = inode->i_uid; gid = inode->i_gid; rdev = inode->i_rdev; size = inode->i_size; atime = inode->i_atime; mtime = inode->i_mtime; ctime = inode->i_ctime; blksize = inode->i_blksize; blocks = inode->i_blocks; err = put_user(kdev_t_to_nr(dev), &statbuf->st_dev); err |= put_user(ino, &statbuf->st_ino); err |= put_user(mode, &statbuf->st_mode); err |= put_user(nlink, &statbuf->st_nlink); err |= put_user(high2lowuid(uid), &statbuf->st_uid); err |= put_user(high2lowgid(gid), &statbuf->st_gid); err |= put_user(kdev_t_to_nr(rdev), &statbuf->st_rdev); err |= put_user(size, &statbuf->st_size); err |= put_user(atime, &statbuf->st_atime); err |= put_user(0, &statbuf->__unused1); err |= put_user(mtime, &statbuf->st_mtime); err |= put_user(0, &statbuf->__unused2); err |= put_user(ctime, &statbuf->st_ctime); err |= put_user(0, &statbuf->__unused3); if (blksize) { err |= put_user(blksize, &statbuf->st_blksize); err |= put_user(blocks, &statbuf->st_blocks); } else { unsigned int tmp_blocks; #define D_B 7 #define I_B (BLOCK_SIZE / sizeof(unsigned short)) tmp_blocks = (size + BLOCK_SIZE - 1) / BLOCK_SIZE; if (tmp_blocks > D_B) { unsigned int indirect; indirect = (tmp_blocks - D_B + I_B - 1) / I_B; tmp_blocks += indirect; if (indirect > 1) { indirect = (indirect - 1 + I_B - 1) / I_B; tmp_blocks += indirect; if (indirect > 1) tmp_blocks++; } } err |= put_user(BLOCK_SIZE, &statbuf->st_blksize); err |= put_user((BLOCK_SIZE / 512) * tmp_blocks, &statbuf->st_blocks); #undef D_B #undef I_B } /* fixme err |= put_user(0, &statbuf->__unused4[0]); err |= put_user(0, &statbuf->__unused4[1]); */ return err; } /* Perhaps this belongs in fs.h or similar. -DaveM */ static __inline__ int do_revalidate(struct dentry *dentry) { struct inode * inode = dentry->d_inode; if (inode->i_op && inode->i_op->revalidate) return inode->i_op->revalidate(dentry); return 0; } asmlinkage int sys32_newstat(char * filename, struct stat32 *statbuf) { struct nameidata nd; int error; error = user_path_walk(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_new_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } return error; } asmlinkage int sys32_newlstat(char * filename, struct stat32 *statbuf) { struct nameidata nd; int error; error = user_path_walk_link(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_new_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } return error; } asmlinkage int sys32_newfstat(unsigned int fd, struct stat32 *statbuf) { struct file *f; int err = -EBADF; f = fget(fd); if (f) { struct dentry * dentry = f->f_dentry; err = do_revalidate(dentry); if (!err) err = cp_new_stat32(dentry->d_inode, statbuf); fput(f); } return err; } extern asmlinkage int sys_sysfs(int option, unsigned long arg1, unsigned long arg2); asmlinkage int sys32_sysfs(int option, u32 arg1, u32 arg2) { return sys_sysfs(option, arg1, arg2); } struct ncp_mount_data32 { int version; unsigned int ncp_fd; __kernel_uid_t32 mounted_uid; __kernel_pid_t32 wdog_pid; unsigned char mounted_vol[NCP_VOLNAME_LEN + 1]; unsigned int time_out; unsigned int retry_count; unsigned int flags; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_mode_t32 file_mode; __kernel_mode_t32 dir_mode; }; static void *do_ncp_super_data_conv(void *raw_data) { struct ncp_mount_data *n = (struct ncp_mount_data *)raw_data; struct ncp_mount_data32 *n32 = (struct ncp_mount_data32 *)raw_data; n->dir_mode = n32->dir_mode; n->file_mode = n32->file_mode; n->gid = low2highgid(n32->gid); n->uid = low2highuid(n32->uid); memmove (n->mounted_vol, n32->mounted_vol, (sizeof (n32->mounted_vol) + 3 * sizeof (unsigned int))); n->wdog_pid = n32->wdog_pid; n->mounted_uid = low2highuid(n32->mounted_uid); return raw_data; } struct smb_mount_data32 { int version; __kernel_uid_t32 mounted_uid; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_mode_t32 file_mode; __kernel_mode_t32 dir_mode; }; static void *do_smb_super_data_conv(void *raw_data) { struct smb_mount_data *s = (struct smb_mount_data *)raw_data; struct smb_mount_data32 *s32 = (struct smb_mount_data32 *)raw_data; s->version = s32->version; s->mounted_uid = low2highuid(s32->mounted_uid); s->uid = low2highuid(s32->uid); s->gid = low2highgid(s32->gid); s->file_mode = s32->file_mode; s->dir_mode = s32->dir_mode; return raw_data; } static int copy_mount_stuff_to_kernel(const void *user, unsigned long *kernel) { int i; unsigned long page; struct vm_area_struct *vma; *kernel = 0; if(!user) return 0; vma = find_vma(current->mm, (unsigned long)user); if(!vma || (unsigned long)user < vma->vm_start) return -EFAULT; if(!(vma->vm_flags & VM_READ)) return -EFAULT; i = vma->vm_end - (unsigned long) user; if(PAGE_SIZE <= (unsigned long) i) i = PAGE_SIZE - 1; if(!(page = __get_free_page(GFP_KERNEL))) return -ENOMEM; if(copy_from_user((void *) page, user, i)) { free_page(page); return -EFAULT; } *kernel = page; return 0; } #define SMBFS_NAME "smbfs" #define NCPFS_NAME "ncpfs" asmlinkage int sys32_mount(char *dev_name, char *dir_name, char *type, unsigned long new_flags, u32 data) { unsigned long type_page = 0; unsigned long data_page = 0; unsigned long dev_page = 0; unsigned long dir_page = 0; int err, is_smb, is_ncp; is_smb = is_ncp = 0; err = copy_mount_stuff_to_kernel((const void *)type, &type_page); if (err) goto out; if (!type_page) { err = -EINVAL; goto out; } is_smb = !strcmp((char *)type_page, SMBFS_NAME); is_ncp = !strcmp((char *)type_page, NCPFS_NAME); err = copy_mount_stuff_to_kernel((const void *)AA(data), &data_page); if (err) goto type_out; err = copy_mount_stuff_to_kernel(dev_name, &dev_page); if (err) goto data_out; err = copy_mount_stuff_to_kernel(dir_name, &dir_page); if (err) goto dev_out; if (!is_smb && !is_ncp) { lock_kernel(); err = do_mount((char*)dev_page, (char*)dir_page, (char*)type_page, new_flags, (char*)data_page); unlock_kernel(); } else { if (is_ncp) do_ncp_super_data_conv((void *)data_page); else do_smb_super_data_conv((void *)data_page); lock_kernel(); err = do_mount((char*)dev_page, (char*)dir_page, (char*)type_page, new_flags, (char*)data_page); unlock_kernel(); } free_page(dir_page); dev_out: free_page(dev_page); data_out: free_page(data_page); type_out: free_page(type_page); out: return err; } struct rusage32 { struct timeval32 ru_utime; struct timeval32 ru_stime; s32 ru_maxrss; s32 ru_ixrss; s32 ru_idrss; s32 ru_isrss; s32 ru_minflt; s32 ru_majflt; s32 ru_nswap; s32 ru_inblock; s32 ru_oublock; s32 ru_msgsnd; s32 ru_msgrcv; s32 ru_nsignals; s32 ru_nvcsw; s32 ru_nivcsw; }; static int put_rusage (struct rusage32 *ru, struct rusage *r) { int err; err = put_user (r->ru_utime.tv_sec, &ru->ru_utime.tv_sec); err |= __put_user (r->ru_utime.tv_usec, &ru->ru_utime.tv_usec); err |= __put_user (r->ru_stime.tv_sec, &ru->ru_stime.tv_sec); err |= __put_user (r->ru_stime.tv_usec, &ru->ru_stime.tv_usec); err |= __put_user (r->ru_maxrss, &ru->ru_maxrss); err |= __put_user (r->ru_ixrss, &ru->ru_ixrss); err |= __put_user (r->ru_idrss, &ru->ru_idrss); err |= __put_user (r->ru_isrss, &ru->ru_isrss); err |= __put_user (r->ru_minflt, &ru->ru_minflt); err |= __put_user (r->ru_majflt, &ru->ru_majflt); err |= __put_user (r->ru_nswap, &ru->ru_nswap); err |= __put_user (r->ru_inblock, &ru->ru_inblock); err |= __put_user (r->ru_oublock, &ru->ru_oublock); err |= __put_user (r->ru_msgsnd, &ru->ru_msgsnd); err |= __put_user (r->ru_msgrcv, &ru->ru_msgrcv); err |= __put_user (r->ru_nsignals, &ru->ru_nsignals); err |= __put_user (r->ru_nvcsw, &ru->ru_nvcsw); err |= __put_user (r->ru_nivcsw, &ru->ru_nivcsw); return err; } asmlinkage int sys32_wait4(__kernel_pid_t32 pid, unsigned int *stat_addr, int options, struct rusage32 *ru) { if (!ru) return sys_wait4(pid, stat_addr, options, NULL); else { struct rusage r; int ret; unsigned int status; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_wait4(pid, stat_addr ? &status : NULL, options, &r); set_fs (old_fs); if (put_rusage (ru, &r)) return -EFAULT; if (stat_addr && put_user (status, stat_addr)) return -EFAULT; return ret; } } struct sysinfo32 { s32 uptime; u32 loads[3]; u32 totalram; u32 freeram; u32 sharedram; u32 bufferram; u32 totalswap; u32 freeswap; unsigned short procs; unsigned short pad; u32 totalhigh; u32 freehigh; unsigned int mem_unit; char _f[8]; }; extern asmlinkage int sys_sysinfo(struct sysinfo *info); asmlinkage int sys32_sysinfo(struct sysinfo32 *info) { struct sysinfo s; int ret, err; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_sysinfo(&s); set_fs (old_fs); err = put_user (s.uptime, &info->uptime); err |= __put_user (s.loads[0], &info->loads[0]); err |= __put_user (s.loads[1], &info->loads[1]); err |= __put_user (s.loads[2], &info->loads[2]); err |= __put_user (s.totalram, &info->totalram); err |= __put_user (s.freeram, &info->freeram); err |= __put_user (s.sharedram, &info->sharedram); err |= __put_user (s.bufferram, &info->bufferram); err |= __put_user (s.totalswap, &info->totalswap); err |= __put_user (s.freeswap, &info->freeswap); err |= __put_user (s.procs, &info->procs); err |= __put_user (s.totalhigh, &info->totalhigh); err |= __put_user (s.freehigh, &info->freehigh); err |= __put_user (s.mem_unit, &info->mem_unit); if (err) return -EFAULT; return ret; } struct timespec32 { s32 tv_sec; s32 tv_nsec; }; extern asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval); asmlinkage int sys32_sched_rr_get_interval(__kernel_pid_t32 pid, struct timespec32 *interval) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_sched_rr_get_interval(pid, &t); set_fs (old_fs); if (put_user (t.tv_sec, &interval->tv_sec) || __put_user (t.tv_nsec, &interval->tv_nsec)) return -EFAULT; return ret; } extern asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp); asmlinkage int sys32_nanosleep(struct timespec32 *rqtp, struct timespec32 *rmtp) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); if (get_user (t.tv_sec, &rqtp->tv_sec) || __get_user (t.tv_nsec, &rqtp->tv_nsec)) return -EFAULT; set_fs (KERNEL_DS); ret = sys_nanosleep(&t, rmtp ? &t : NULL); set_fs (old_fs); if (rmtp && ret == -EINTR) { if (__put_user (t.tv_sec, &rmtp->tv_sec) || __put_user (t.tv_nsec, &rmtp->tv_nsec)) return -EFAULT; } return ret; } extern asmlinkage int sys_sigprocmask(int how, old_sigset_t *set, old_sigset_t *oset); asmlinkage int sys32_sigprocmask(int how, old_sigset_t32 *set, old_sigset_t32 *oset) { old_sigset_t s; int ret; mm_segment_t old_fs = get_fs(); if (set && get_user (s, set)) return -EFAULT; set_fs (KERNEL_DS); ret = sys_sigprocmask(how, set ? &s : NULL, oset ? &s : NULL); set_fs (old_fs); if (ret) return ret; if (oset && put_user (s, oset)) return -EFAULT; return 0; } extern asmlinkage int sys_rt_sigprocmask(int how, sigset_t *set, sigset_t *oset, size_t sigsetsize); asmlinkage int sys32_rt_sigprocmask(int how, sigset_t32 *set, sigset_t32 *oset, __kernel_size_t32 sigsetsize) { sigset_t s; sigset_t32 s32; int ret; mm_segment_t old_fs = get_fs(); if (set) { if (copy_from_user (&s32, set, sizeof(sigset_t32))) return -EFAULT; switch (_NSIG_WORDS) { case 4: s.sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32); case 3: s.sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32); case 2: s.sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32); case 1: s.sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32); } } set_fs (KERNEL_DS); ret = sys_rt_sigprocmask(how, set ? &s : NULL, oset ? &s : NULL, sigsetsize); set_fs (old_fs); if (ret) return ret; if (oset) { switch (_NSIG_WORDS) { case 4: s32.sig[7] = (s.sig[3] >> 32); s32.sig[6] = s.sig[3]; case 3: s32.sig[5] = (s.sig[2] >> 32); s32.sig[4] = s.sig[2]; case 2: s32.sig[3] = (s.sig[1] >> 32); s32.sig[2] = s.sig[1]; case 1: s32.sig[1] = (s.sig[0] >> 32); s32.sig[0] = s.sig[0]; } if (copy_to_user (oset, &s32, sizeof(sigset_t32))) return -EFAULT; } return 0; } extern asmlinkage int sys_sigpending(old_sigset_t *set); asmlinkage int sys32_sigpending(old_sigset_t32 *set) { old_sigset_t s; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_sigpending(&s); set_fs (old_fs); if (put_user (s, set)) return -EFAULT; return ret; } extern asmlinkage int sys_rt_sigpending(sigset_t *set, size_t sigsetsize); asmlinkage int sys32_rt_sigpending(sigset_t32 *set, __kernel_size_t32 sigsetsize) { sigset_t s; sigset_t32 s32; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_rt_sigpending(&s, sigsetsize); set_fs (old_fs); if (!ret) { switch (_NSIG_WORDS) { case 4: s32.sig[7] = (s.sig[3] >> 32); s32.sig[6] = s.sig[3]; case 3: s32.sig[5] = (s.sig[2] >> 32); s32.sig[4] = s.sig[2]; case 2: s32.sig[3] = (s.sig[1] >> 32); s32.sig[2] = s.sig[1]; case 1: s32.sig[1] = (s.sig[0] >> 32); s32.sig[0] = s.sig[0]; } if (copy_to_user (set, &s32, sizeof(sigset_t32))) return -EFAULT; } return ret; } extern int copy_siginfo_to_user32(siginfo_t32 *to, siginfo_t *from); asmlinkage int sys32_rt_sigtimedwait(sigset_t32 *uthese, siginfo_t32 *uinfo, struct timespec32 *uts, __kernel_size_t32 sigsetsize) { int ret, sig; sigset_t these; sigset_t32 these32; struct timespec ts; siginfo_t info; long timeout = 0; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user (&these32, uthese, sizeof(sigset_t32))) return -EFAULT; switch (_NSIG_WORDS) { case 4: these.sig[3] = these32.sig[6] | (((long)these32.sig[7]) << 32); case 3: these.sig[2] = these32.sig[4] | (((long)these32.sig[5]) << 32); case 2: these.sig[1] = these32.sig[2] | (((long)these32.sig[3]) << 32); case 1: these.sig[0] = these32.sig[0] | (((long)these32.sig[1]) << 32); } /* * Invert the set of allowed signals to get those we * want to block. */ sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); signotset(&these); if (uts) { if (get_user (ts.tv_sec, &uts->tv_sec) || get_user (ts.tv_nsec, &uts->tv_nsec)) return -EINVAL; if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 || ts.tv_sec < 0) return -EINVAL; } spin_lock_irq(¤t->sigmask_lock); sig = dequeue_signal(&these, &info); if (!sig) { /* None ready -- temporarily unblock those we're interested in so that we'll be awakened when they arrive. */ sigset_t oldblocked = current->blocked; sigandsets(¤t->blocked, ¤t->blocked, &these); recalc_sigpending(current); spin_unlock_irq(¤t->sigmask_lock); timeout = MAX_SCHEDULE_TIMEOUT; if (uts) timeout = (timespec_to_jiffies(&ts) + (ts.tv_sec || ts.tv_nsec)); current->state = TASK_INTERRUPTIBLE; timeout = schedule_timeout(timeout); spin_lock_irq(¤t->sigmask_lock); sig = dequeue_signal(&these, &info); current->blocked = oldblocked; recalc_sigpending(current); } spin_unlock_irq(¤t->sigmask_lock); if (sig) { ret = sig; if (uinfo) { if (copy_siginfo_to_user32(uinfo, &info)) ret = -EFAULT; } } else { ret = -EAGAIN; if (timeout) ret = -EINTR; } return ret; } extern asmlinkage int sys_rt_sigqueueinfo(int pid, int sig, siginfo_t *uinfo); asmlinkage int sys32_rt_sigqueueinfo(int pid, int sig, siginfo_t32 *uinfo) { siginfo_t info; int ret; mm_segment_t old_fs = get_fs(); if (copy_from_user (&info, uinfo, 3*sizeof(int)) || copy_from_user (info._sifields._pad, uinfo->_sifields._pad, SI_PAD_SIZE)) return -EFAULT; set_fs (KERNEL_DS); ret = sys_rt_sigqueueinfo(pid, sig, &info); set_fs (old_fs); return ret; } struct tms32 { __kernel_clock_t32 tms_utime; __kernel_clock_t32 tms_stime; __kernel_clock_t32 tms_cutime; __kernel_clock_t32 tms_cstime; }; extern asmlinkage long sys_times(struct tms * tbuf); asmlinkage long sys32_times(struct tms32 *tbuf) { struct tms t; long ret; mm_segment_t old_fs = get_fs (); int err; set_fs (KERNEL_DS); ret = sys_times(tbuf ? &t : NULL); set_fs (old_fs); if (tbuf) { err = put_user (t.tms_utime, &tbuf->tms_utime); err |= __put_user (t.tms_stime, &tbuf->tms_stime); err |= __put_user (t.tms_cutime, &tbuf->tms_cutime); err |= __put_user (t.tms_cstime, &tbuf->tms_cstime); if (err) ret = -EFAULT; } return ret; } #define RLIM_OLD_INFINITY32 0x7fffffff #define RLIM_INFINITY32 0xffffffff #define RESOURCE32_OLD(x) ((x > RLIM_OLD_INFINITY32) ? RLIM_OLD_INFINITY32 : x) #define RESOURCE32(x) ((x > RLIM_INFINITY32) ? RLIM_INFINITY32 : x) struct rlimit32 { u32 rlim_cur; u32 rlim_max; }; extern asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage int sys32_old_getrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_getrlimit(resource, &r); set_fs (old_fs); if (!ret) { ret = put_user (RESOURCE32_OLD(r.rlim_cur), &rlim->rlim_cur); ret |= __put_user (RESOURCE32_OLD(r.rlim_max), &rlim->rlim_max); } return ret; } asmlinkage int sys32_getrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_getrlimit(resource, &r); set_fs (old_fs); if (!ret) { ret = put_user (RESOURCE32(r.rlim_cur), &rlim->rlim_cur); ret |= __put_user (RESOURCE32(r.rlim_max), &rlim->rlim_max); } return ret; } extern asmlinkage int sys_setrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage int sys32_setrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); if (resource >= RLIM_NLIMITS) return -EINVAL; if (get_user (r.rlim_cur, &rlim->rlim_cur) || __get_user (r.rlim_max, &rlim->rlim_max)) return -EFAULT; if (r.rlim_cur == RLIM_INFINITY32) r.rlim_cur = RLIM_INFINITY; if (r.rlim_max == RLIM_INFINITY32) r.rlim_max = RLIM_INFINITY; set_fs (KERNEL_DS); ret = sys_setrlimit(resource, &r); set_fs (old_fs); return ret; } extern asmlinkage int sys_getrusage(int who, struct rusage *ru); asmlinkage int sys32_getrusage(int who, struct rusage32 *ru) { struct rusage r; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_getrusage(who, &r); set_fs (old_fs); if (put_rusage (ru, &r)) return -EFAULT; return ret; } /* XXX This really belongs in some header file... -DaveM */ #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 16 for IP, 16 for IPX, 24 for IPv6, about 80 for AX.25 */ extern struct socket *sockfd_lookup(int fd, int *err); /* XXX This as well... */ extern __inline__ void sockfd_put(struct socket *sock) { fput(sock->file); } struct msghdr32 { u32 msg_name; int msg_namelen; u32 msg_iov; __kernel_size_t32 msg_iovlen; u32 msg_control; __kernel_size_t32 msg_controllen; unsigned msg_flags; }; struct cmsghdr32 { __kernel_size_t32 cmsg_len; int cmsg_level; int cmsg_type; }; /* Bleech... */ #define __CMSG32_NXTHDR(ctl, len, cmsg, cmsglen) __cmsg32_nxthdr((ctl),(len),(cmsg),(cmsglen)) #define CMSG32_NXTHDR(mhdr, cmsg, cmsglen) cmsg32_nxthdr((mhdr), (cmsg), (cmsglen)) #define CMSG32_ALIGN(len) ( ((len)+sizeof(int)-1) & ~(sizeof(int)-1) ) #define CMSG32_DATA(cmsg) ((void *)((char *)(cmsg) + CMSG32_ALIGN(sizeof(struct cmsghdr32)))) #define CMSG32_SPACE(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + CMSG32_ALIGN(len)) #define CMSG32_LEN(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + (len)) #define __CMSG32_FIRSTHDR(ctl,len) ((len) >= sizeof(struct cmsghdr32) ? \ (struct cmsghdr32 *)(ctl) : \ (struct cmsghdr32 *)NULL) #define CMSG32_FIRSTHDR(msg) __CMSG32_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen) #define CMSG32_OK(ucmlen, ucmsg, mhdr) \ ((ucmlen) >= sizeof(struct cmsghdr32) && \ (ucmlen) <= (unsigned long) \ ((mhdr)->msg_controllen - \ ((char *)(ucmsg) - (char *)(mhdr)->msg_control))) __inline__ struct cmsghdr32 *__cmsg32_nxthdr(void *__ctl, __kernel_size_t __size, struct cmsghdr32 *__cmsg, int __cmsg_len) { struct cmsghdr32 * __ptr; __ptr = (struct cmsghdr32 *)(((unsigned char *) __cmsg) + CMSG32_ALIGN(__cmsg_len)); if ((unsigned long)((char*)(__ptr+1) - (char *) __ctl) > __size) return NULL; return __ptr; } __inline__ struct cmsghdr32 *cmsg32_nxthdr (struct msghdr *__msg, struct cmsghdr32 *__cmsg, int __cmsg_len) { return __cmsg32_nxthdr(__msg->msg_control, __msg->msg_controllen, __cmsg, __cmsg_len); } static inline int iov_from_user32_to_kern(struct iovec *kiov, struct iovec32 *uiov32, int niov) { int tot_len = 0; while(niov > 0) { u32 len, buf; if(get_user(len, &uiov32->iov_len) || get_user(buf, &uiov32->iov_base)) { tot_len = -EFAULT; break; } tot_len += len; kiov->iov_base = (void *)A(buf); kiov->iov_len = (__kernel_size_t) len; uiov32++; kiov++; niov--; } return tot_len; } static inline int msghdr_from_user32_to_kern(struct msghdr *kmsg, struct msghdr32 *umsg) { u32 tmp1, tmp2, tmp3; int err; err = get_user(tmp1, &umsg->msg_name); err |= __get_user(tmp2, &umsg->msg_iov); err |= __get_user(tmp3, &umsg->msg_control); if (err) return -EFAULT; kmsg->msg_name = (void *)A(tmp1); kmsg->msg_iov = (struct iovec *)A(tmp2); kmsg->msg_control = (void *)A(tmp3); err = get_user(kmsg->msg_namelen, &umsg->msg_namelen); err |= get_user(kmsg->msg_iovlen, &umsg->msg_iovlen); err |= get_user(kmsg->msg_controllen, &umsg->msg_controllen); err |= get_user(kmsg->msg_flags, &umsg->msg_flags); return err; } /* I've named the args so it is easy to tell whose space the pointers are in. */ static int verify_iovec32(struct msghdr *kern_msg, struct iovec *kern_iov, char *kern_address, int mode) { int tot_len; if(kern_msg->msg_namelen) { if(mode==VERIFY_READ) { int err = move_addr_to_kernel(kern_msg->msg_name, kern_msg->msg_namelen, kern_address); if(err < 0) return err; } kern_msg->msg_name = kern_address; } else kern_msg->msg_name = NULL; if(kern_msg->msg_iovlen > UIO_FASTIOV) { kern_iov = kmalloc(kern_msg->msg_iovlen * sizeof(struct iovec), GFP_KERNEL); if(!kern_iov) return -ENOMEM; } tot_len = iov_from_user32_to_kern(kern_iov, (struct iovec32 *)kern_msg->msg_iov, kern_msg->msg_iovlen); if(tot_len >= 0) kern_msg->msg_iov = kern_iov; else if(kern_msg->msg_iovlen > UIO_FASTIOV) kfree(kern_iov); return tot_len; } /* There is a lot of hair here because the alignment rules (and * thus placement) of cmsg headers and length are different for * 32-bit apps. -DaveM */ static int cmsghdr_from_user32_to_kern(struct msghdr *kmsg, unsigned char *stackbuf, int stackbuf_size) { struct cmsghdr32 *ucmsg; struct cmsghdr *kcmsg, *kcmsg_base; __kernel_size_t32 ucmlen; __kernel_size_t kcmlen, tmp; int err = -EFAULT; kcmlen = 0; kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf; ucmsg = CMSG32_FIRSTHDR(kmsg); while(ucmsg != NULL) { if (get_user(ucmlen, &ucmsg->cmsg_len)) return -EFAULT; /* Catch bogons. */ if (!CMSG32_OK(ucmlen, ucmsg, kmsg)) return -EINVAL; tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); tmp = CMSG_ALIGN(tmp); kcmlen += tmp; ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } if(kcmlen == 0) return -EINVAL; /* The kcmlen holds the 64-bit version of the control length. * It may not be modified as we do not stick it into the kmsg * until we have successfully copied over all of the data * from the user. */ if(kcmlen > stackbuf_size) kcmsg_base = kcmsg = kmalloc(kcmlen, GFP_KERNEL); if(kcmsg == NULL) return -ENOBUFS; /* Now copy them over neatly. */ memset(kcmsg, 0, kcmlen); ucmsg = CMSG32_FIRSTHDR(kmsg); while(ucmsg != NULL) { if (__get_user(ucmlen, &ucmsg->cmsg_len)) goto Efault; tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); if ((char *)kcmsg_base + kcmlen - (char *)kcmsg < CMSG_ALIGN(tmp)) goto Einval; kcmsg->cmsg_len = tmp; tmp = CMSG_ALIGN(tmp); if (__get_user(kcmsg->cmsg_level, &ucmsg->cmsg_level) || __get_user(kcmsg->cmsg_type, &ucmsg->cmsg_type) || copy_from_user(CMSG_DATA(kcmsg), CMSG32_DATA(ucmsg), (ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))))) goto Efault; /* Advance. */ kcmsg = (struct cmsghdr *)((char *)kcmsg + tmp); ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } /* Ok, looks like we made it. Hook it up and return success. */ kmsg->msg_control = kcmsg_base; kmsg->msg_controllen = kcmlen; return 0; Einval: err = -EINVAL; Efault: if (kcmsg_base != (struct cmsghdr *)stackbuf) kfree(kcmsg_base); return err; } static void put_cmsg32(struct msghdr *kmsg, int level, int type, int len, void *data) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; struct cmsghdr32 cmhdr; int cmlen = CMSG32_LEN(len); if(cm == NULL || kmsg->msg_controllen < sizeof(*cm)) { kmsg->msg_flags |= MSG_CTRUNC; return; } if(kmsg->msg_controllen < cmlen) { kmsg->msg_flags |= MSG_CTRUNC; cmlen = kmsg->msg_controllen; } cmhdr.cmsg_level = level; cmhdr.cmsg_type = type; cmhdr.cmsg_len = cmlen; if(copy_to_user(cm, &cmhdr, sizeof cmhdr)) return; if(copy_to_user(CMSG32_DATA(cm), data, cmlen - sizeof(struct cmsghdr32))) return; cmlen = CMSG32_SPACE(len); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } static void scm_detach_fds32(struct msghdr *kmsg, struct scm_cookie *scm) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; int fdmax = (kmsg->msg_controllen - sizeof(struct cmsghdr32)) / sizeof(int); int fdnum = scm->fp->count; struct file **fp = scm->fp->fp; int *cmfptr; int err = 0, i; if (fdnum < fdmax) fdmax = fdnum; for (i = 0, cmfptr = (int *) CMSG32_DATA(cm); i < fdmax; i++, cmfptr++) { int new_fd; err = get_unused_fd(); if (err < 0) break; new_fd = err; err = put_user(new_fd, cmfptr); if (err) { put_unused_fd(new_fd); break; } /* Bump the usage count and install the file. */ get_file(fp[i]); fd_install(new_fd, fp[i]); } if (i > 0) { int cmlen = CMSG32_LEN(i * sizeof(int)); if (!err) err = put_user(SOL_SOCKET, &cm->cmsg_level); if (!err) err = put_user(SCM_RIGHTS, &cm->cmsg_type); if (!err) err = put_user(cmlen, &cm->cmsg_len); if (!err) { cmlen = CMSG32_SPACE(i * sizeof(int)); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } } if (i < fdnum) kmsg->msg_flags |= MSG_CTRUNC; /* * All of the files that fit in the message have had their * usage counts incremented, so we just free the list. */ __scm_destroy(scm); } /* In these cases we (currently) can just copy to data over verbatim * because all CMSGs created by the kernel have well defined types which * have the same layout in both the 32-bit and 64-bit API. One must add * some special cased conversions here if we start sending control messages * with incompatible types. * * SCM_RIGHTS and SCM_CREDENTIALS are done by hand in recvmsg32 right after * we do our work. The remaining cases are: * * SOL_IP IP_PKTINFO struct in_pktinfo 32-bit clean * IP_TTL int 32-bit clean * IP_TOS __u8 32-bit clean * IP_RECVOPTS variable length 32-bit clean * IP_RETOPTS variable length 32-bit clean * (these last two are clean because the types are defined * by the IPv4 protocol) * IP_RECVERR struct sock_extended_err + * struct sockaddr_in 32-bit clean * SOL_IPV6 IPV6_RECVERR struct sock_extended_err + * struct sockaddr_in6 32-bit clean * IPV6_PKTINFO struct in6_pktinfo 32-bit clean * IPV6_HOPLIMIT int 32-bit clean * IPV6_FLOWINFO u32 32-bit clean * IPV6_HOPOPTS ipv6 hop exthdr 32-bit clean * IPV6_DSTOPTS ipv6 dst exthdr(s) 32-bit clean * IPV6_RTHDR ipv6 routing exthdr 32-bit clean * IPV6_AUTHHDR ipv6 auth exthdr 32-bit clean */ static void cmsg32_recvmsg_fixup(struct msghdr *kmsg, unsigned long orig_cmsg_uptr, __kernel_size_t orig_cmsg_len) { unsigned char *workbuf, *wp; unsigned long bufsz, space_avail; struct cmsghdr *ucmsg; bufsz = ((unsigned long)kmsg->msg_control) - orig_cmsg_uptr; space_avail = kmsg->msg_controllen + bufsz; wp = workbuf = kmalloc(bufsz, GFP_KERNEL); if(workbuf == NULL) goto fail; /* To make this more sane we assume the kernel sends back properly * formatted control messages. Because of how the kernel will truncate * the cmsg_len for MSG_TRUNC cases, we need not check that case either. */ ucmsg = (struct cmsghdr *) orig_cmsg_uptr; while(((unsigned long)ucmsg) <= (((unsigned long)kmsg->msg_control) - sizeof(struct cmsghdr))) { struct cmsghdr32 *kcmsg32 = (struct cmsghdr32 *) wp; int clen64, clen32; /* UCMSG is the 64-bit format CMSG entry in user-space. * KCMSG32 is within the kernel space temporary buffer * we use to convert into a 32-bit style CMSG. */ __get_user(kcmsg32->cmsg_len, &ucmsg->cmsg_len); __get_user(kcmsg32->cmsg_level, &ucmsg->cmsg_level); __get_user(kcmsg32->cmsg_type, &ucmsg->cmsg_type); clen64 = kcmsg32->cmsg_len; if ((clen64 < CMSG_ALIGN(sizeof(*ucmsg))) || (clen64 > (orig_cmsg_len + wp - workbuf))) break; copy_from_user(CMSG32_DATA(kcmsg32), CMSG_DATA(ucmsg), clen64 - CMSG_ALIGN(sizeof(*ucmsg))); clen32 = ((clen64 - CMSG_ALIGN(sizeof(*ucmsg))) + CMSG32_ALIGN(sizeof(struct cmsghdr32))); kcmsg32->cmsg_len = clen32; switch (kcmsg32->cmsg_type) { /* * The timestamp type's data needs to be converted * from 64-bit time values to 32-bit time values */ case SO_TIMESTAMP: { __kernel_time_t32* ptr_time32 = CMSG32_DATA(kcmsg32); __kernel_time_t* ptr_time = CMSG_DATA(ucmsg); get_user(*ptr_time32, ptr_time); get_user(*(ptr_time32+1), ptr_time+1); kcmsg32->cmsg_len -= 2*(sizeof(__kernel_time_t) - sizeof(__kernel_time_t32)); } default:; } ucmsg = (struct cmsghdr *) (((char *)ucmsg) + CMSG_ALIGN(clen64)); wp = (((char *)kcmsg32) + CMSG32_ALIGN(kcmsg32->cmsg_len)); } /* Copy back fixed up data, and adjust pointers. */ bufsz = (wp - workbuf); copy_to_user((void *)orig_cmsg_uptr, workbuf, bufsz); kmsg->msg_control = (struct cmsghdr *) (((char *)orig_cmsg_uptr) + bufsz); kmsg->msg_controllen = space_avail - bufsz; kfree(workbuf); return; fail: /* If we leave the 64-bit format CMSG chunks in there, * the application could get confused and crash. So to * ensure greater recovery, we report no CMSGs. */ kmsg->msg_controllen += bufsz; kmsg->msg_control = (void *) orig_cmsg_uptr; } #if 0 asmlinkage int sys32_sendmsg(int fd, struct msghdr32 *user_msg, unsigned user_flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iov[UIO_FASTIOV]; unsigned char ctl[sizeof(struct cmsghdr) + 20]; unsigned char *ctl_buf = ctl; struct msghdr kern_msg; int err, total_len; if(msghdr_from_user32_to_kern(&kern_msg, user_msg)) return -EFAULT; if(kern_msg.msg_iovlen > UIO_MAXIOV) return -EINVAL; err = verify_iovec32(&kern_msg, iov, address, VERIFY_READ); if (err < 0) goto out; total_len = err; if(kern_msg.msg_controllen) { err = cmsghdr_from_user32_to_kern(&kern_msg, ctl, sizeof(ctl)); if(err) goto out_freeiov; ctl_buf = kern_msg.msg_control; } kern_msg.msg_flags = user_flags; sock = sockfd_lookup(fd, &err); if (sock != NULL) { if (sock->file->f_flags & O_NONBLOCK) kern_msg.msg_flags |= MSG_DONTWAIT; err = sock_sendmsg(sock, &kern_msg, total_len); sockfd_put(sock); } /* N.B. Use kfree here, as kern_msg.msg_controllen might change? */ if(ctl_buf != ctl) kfree(ctl_buf); out_freeiov: if(kern_msg.msg_iov != iov) kfree(kern_msg.msg_iov); out: return err; } asmlinkage int sys32_recvmsg(int fd, struct msghdr32 *user_msg, unsigned int user_flags) { struct iovec iovstack[UIO_FASTIOV]; struct msghdr kern_msg; char addr[MAX_SOCK_ADDR]; struct socket *sock; struct iovec *iov = iovstack; struct sockaddr *uaddr; int *uaddr_len; unsigned long cmsg_ptr; int err, total_len, len = 0; if(msghdr_from_user32_to_kern(&kern_msg, user_msg)) return -EFAULT; if(kern_msg.msg_iovlen > UIO_MAXIOV) return -EINVAL; uaddr = kern_msg.msg_name; uaddr_len = &user_msg->msg_namelen; err = verify_iovec32(&kern_msg, iov, addr, VERIFY_WRITE); if (err < 0) goto out; total_len = err; cmsg_ptr = (unsigned long) kern_msg.msg_control; kern_msg.msg_flags = 0; sock = sockfd_lookup(fd, &err); if (sock != NULL) { struct scm_cookie scm; if (sock->file->f_flags & O_NONBLOCK) user_flags |= MSG_DONTWAIT; memset(&scm, 0, sizeof(scm)); err = sock->ops->recvmsg(sock, &kern_msg, total_len, user_flags, &scm); if(err >= 0) { len = err; if(!kern_msg.msg_control) { if(sock->passcred || scm.fp) kern_msg.msg_flags |= MSG_CTRUNC; if(scm.fp) __scm_destroy(&scm); } else { /* If recvmsg processing itself placed some * control messages into user space, it's is * using 64-bit CMSG processing, so we need * to fix it up before we tack on more stuff. */ if((unsigned long) kern_msg.msg_control != cmsg_ptr) cmsg32_recvmsg_fixup(&kern_msg, cmsg_ptr); /* Wheee... */ if(sock->passcred) put_cmsg32(&kern_msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(scm.creds), &scm.creds); if(scm.fp != NULL) scm_detach_fds32(&kern_msg, &scm); } } sockfd_put(sock); } if(uaddr != NULL && err >= 0 && kern_msg.msg_namelen) err = move_addr_to_user(addr, kern_msg.msg_namelen, uaddr, uaddr_len); if(cmsg_ptr != 0 && err >= 0) { unsigned long ucmsg_ptr = ((unsigned long)kern_msg.msg_control); __kernel_size_t32 uclen = (__kernel_size_t32) (ucmsg_ptr - cmsg_ptr); err |= __put_user(uclen, &user_msg->msg_controllen); } if(err >= 0) err = __put_user(kern_msg.msg_flags, &user_msg->msg_flags); if(kern_msg.msg_iov != iov) kfree(kern_msg.msg_iov); out: if(err < 0) return err; return len; } #endif /* * BSD sendmsg interface */ int sys32_sendmsg(int fd, struct msghdr32 *msg, unsigned flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */ unsigned char *ctl_buf = ctl; struct msghdr msg_sys; int err, ctl_len, iov_size, total_len; err = -EFAULT; if (msghdr_from_user32_to_kern(&msg_sys, msg)) goto out; sock = sockfd_lookup(fd, &err); if (!sock) goto out; /* do not move before msg_sys is valid */ err = -EINVAL; if (msg_sys.msg_iovlen > UIO_MAXIOV) goto out_put; /* Check whether to allocate the iovec area*/ err = -ENOMEM; iov_size = msg_sys.msg_iovlen * sizeof(struct iovec32); if (msg_sys.msg_iovlen > UIO_FASTIOV) { iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); if (!iov) goto out_put; } /* This will also move the address data into kernel space */ err = verify_iovec32(&msg_sys, iov, address, VERIFY_READ); if (err < 0) goto out_freeiov; total_len = err; err = -ENOBUFS; if (msg_sys.msg_controllen > INT_MAX) goto out_freeiov; ctl_len = msg_sys.msg_controllen; if (ctl_len) { if (ctl_len > sizeof(ctl)) { ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); if (ctl_buf == NULL) goto out_freeiov; } else if (ctl_len < sizeof(struct cmsghdr)) { /* to get same error message as on 31 bit native */ err = EOPNOTSUPP; goto out_freeiov; } err = -EFAULT; if (cmsghdr_from_user32_to_kern(&msg_sys, ctl_buf, ctl_len)) goto out_freectl; // msg_sys.msg_control = ctl_buf; } msg_sys.msg_flags = flags; if (sock->file->f_flags & O_NONBLOCK) msg_sys.msg_flags |= MSG_DONTWAIT; err = sock_sendmsg(sock, &msg_sys, total_len); out_freectl: if (ctl_buf != ctl) sock_kfree_s(sock->sk, ctl_buf, ctl_len); out_freeiov: if (iov != iovstack) sock_kfree_s(sock->sk, iov, iov_size); out_put: sockfd_put(sock); out: return err; } static __inline__ void scm_recv32(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, int flags, unsigned long cmsg_ptr, __kernel_size_t cmsg_len) { if(!msg->msg_control) { if(sock->passcred || scm->fp) msg->msg_flags |= MSG_CTRUNC; scm_destroy(scm); return; } /* If recvmsg processing itself placed some * control messages into user space, it's is * using 64-bit CMSG processing, so we need * to fix it up before we tack on more stuff. */ if((unsigned long) msg->msg_control != cmsg_ptr) cmsg32_recvmsg_fixup(msg, cmsg_ptr, cmsg_len); /* Wheee... */ if(sock->passcred) put_cmsg32(msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(scm->creds), &scm->creds); if(!scm->fp) return; scm_detach_fds32(msg, scm); } static int sock_recvmsg32(struct socket *sock, struct msghdr *msg, int size, int flags, unsigned long cmsg_ptr, __kernel_size_t cmsg_len) { struct scm_cookie scm; memset(&scm, 0, sizeof(scm)); size = sock->ops->recvmsg(sock, msg, size, flags, &scm); if (size >= 0) scm_recv32(sock, msg, &scm, flags, cmsg_ptr, cmsg_len); return size; } /* * BSD recvmsg interface */ int sys32_recvmsg (int fd, struct msghdr32 *msg, unsigned int flags) { struct socket *sock; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov=iovstack; struct msghdr msg_sys; unsigned long cmsg_ptr; __kernel_size_t cmsg_len; int err, iov_size, total_len, len; /* kernel mode address */ char addr[MAX_SOCK_ADDR]; /* user mode address pointers */ struct sockaddr *uaddr; int *uaddr_len; err=-EFAULT; if (msghdr_from_user32_to_kern(&msg_sys, msg)) goto out; sock = sockfd_lookup(fd, &err); if (!sock) goto out; err = -EINVAL; if (msg_sys.msg_iovlen > UIO_MAXIOV) goto out_put; /* Check whether to allocate the iovec area*/ err = -ENOMEM; iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); if (msg_sys.msg_iovlen > UIO_FASTIOV) { iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); if (!iov) goto out_put; } /* * Save the user-mode address (verify_iovec will change the * kernel msghdr to use the kernel address space) */ uaddr = msg_sys.msg_name; uaddr_len = &msg->msg_namelen; err = verify_iovec32(&msg_sys, iov, addr, VERIFY_WRITE); if (err < 0) goto out_freeiov; total_len=err; cmsg_ptr = (unsigned long)msg_sys.msg_control; cmsg_len = msg_sys.msg_controllen; msg_sys.msg_flags = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err = sock_recvmsg32(sock, &msg_sys, total_len, flags, cmsg_ptr, cmsg_len); if (err < 0) goto out_freeiov; len = err; if (uaddr != NULL && /* in order to get same error message as on native 31 bit */ msg_sys.msg_namelen > 0) { err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); if (err < 0) goto out_freeiov; } err = __put_user(msg_sys.msg_flags, &msg->msg_flags); if (err) goto out_freeiov; err = __put_user((__kernel_size_t32) ((unsigned long)msg_sys.msg_control - cmsg_ptr), &msg->msg_controllen); if (err) goto out_freeiov; err = len; out_freeiov: if (iov != iovstack) sock_kfree_s(sock->sk, iov, iov_size); out_put: sockfd_put(sock); out: return err; } extern asmlinkage int sys_setsockopt(int fd, int level, int optname, char *optval, int optlen); static int do_set_attach_filter(int fd, int level, int optname, char *optval, int optlen) { struct sock_fprog32 { __u16 len; __u32 filter; } *fprog32 = (struct sock_fprog32 *)optval; struct sock_fprog kfprog; struct sock_filter *kfilter; unsigned int fsize; mm_segment_t old_fs; __u32 uptr; int ret; if (get_user(kfprog.len, &fprog32->len) || __get_user(uptr, &fprog32->filter)) return -EFAULT; kfprog.filter = (struct sock_filter *)A(uptr); fsize = kfprog.len * sizeof(struct sock_filter); kfilter = (struct sock_filter *)kmalloc(fsize, GFP_KERNEL); if (kfilter == NULL) return -ENOMEM; if (copy_from_user(kfilter, kfprog.filter, fsize)) { kfree(kfilter); return -EFAULT; } kfprog.filter = kfilter; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_setsockopt(fd, level, optname, (char *)&kfprog, sizeof(kfprog)); set_fs(old_fs); kfree(kfilter); return ret; } static int do_set_icmpv6_filter(int fd, int level, int optname, char *optval, int optlen) { struct icmp6_filter kfilter; mm_segment_t old_fs; int ret, i; if (copy_from_user(&kfilter, optval, sizeof(kfilter))) return -EFAULT; for (i = 0; i < 8; i += 2) { u32 tmp = kfilter.data[i]; kfilter.data[i] = kfilter.data[i + 1]; kfilter.data[i + 1] = tmp; } old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_setsockopt(fd, level, optname, (char *) &kfilter, sizeof(kfilter)); set_fs(old_fs); return ret; } asmlinkage int sys32_setsockopt(int fd, int level, int optname, char *optval, int optlen) { if (optname == SO_ATTACH_FILTER) return do_set_attach_filter(fd, level, optname, optval, optlen); if (level == SOL_ICMPV6 && optname == ICMPV6_FILTER) return do_set_icmpv6_filter(fd, level, optname, optval, optlen); if (level == SOL_SOCKET && (optname == SO_SNDTIMEO || optname == SO_RCVTIMEO)) { long ret; struct timeval tmp; mm_segment_t old_fs; if (get_tv32(&tmp, (struct timeval32 *)optval )) return -EFAULT; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_setsockopt(fd, level, optname, (char *) &tmp, sizeof(struct timeval)); set_fs(old_fs); return ret; } return sys_setsockopt(fd, level, optname, optval, optlen); } extern void check_pending(int signum); /* * count32() counts the number of arguments/envelopes */ static int count32(u32 * argv) { int i = 0; if (argv != NULL) { for (;;) { u32 p; int error; error = get_user(p,argv); if (error) return error; if (!p) break; argv++; i++; } } return i; } /* * 'copy_string32()' copies argument/envelope strings from user * memory to free pages in kernel mem. These are in a format ready * to be put directly into the top of new user memory. */ static int copy_strings32(int argc, u32 * argv, struct linux_binprm *bprm) { while (argc-- > 0) { u32 str; int len; unsigned long pos; if (get_user(str, argv + argc) || !str || !(len = strnlen_user((char *)A(str), bprm->p))) return -EFAULT; if (bprm->p < len) return -E2BIG; bprm->p -= len; pos = bprm->p; while (len) { char *kaddr; struct page *page; int offset, bytes_to_copy, new, err; offset = pos % PAGE_SIZE; page = bprm->page[pos / PAGE_SIZE]; new = 0; if (!page) { page = alloc_page(GFP_USER); bprm->page[pos / PAGE_SIZE] = page; if (!page) return -ENOMEM; new = 1; } kaddr = (char *)kmap(page); if (new && offset) memset(kaddr, 0, offset); bytes_to_copy = PAGE_SIZE - offset; if (bytes_to_copy > len) { bytes_to_copy = len; if (new) memset(kaddr+offset+len, 0, PAGE_SIZE-offset-len); } err = copy_from_user(kaddr + offset, (char *)A(str), bytes_to_copy); flush_page_to_ram(page); kunmap(page); if (err) return -EFAULT; pos += bytes_to_copy; str += bytes_to_copy; len -= bytes_to_copy; } } return 0; } /* * sys32_execve() executes a new program. */ static inline int do_execve32(char * filename, u32 * argv, u32 * envp, struct pt_regs * regs) { struct linux_binprm bprm; struct file * file; int retval; int i; bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); memset(bprm.page, 0, MAX_ARG_PAGES * sizeof(bprm.page[0])); file = open_exec(filename); retval = PTR_ERR(file); if (IS_ERR(file)) return retval; bprm.file = file; bprm.filename = filename; bprm.sh_bang = 0; bprm.loader = 0; bprm.exec = 0; if ((bprm.argc = count32(argv)) < 0) { allow_write_access(file); fput(file); return bprm.argc; } if ((bprm.envc = count32(envp)) < 0) { allow_write_access(file); fput(file); return bprm.envc; } retval = prepare_binprm(&bprm); if (retval < 0) goto out; retval = copy_strings_kernel(1, &bprm.filename, &bprm); if (retval < 0) goto out; bprm.exec = bprm.p; retval = copy_strings32(bprm.envc, envp, &bprm); if (retval < 0) goto out; retval = copy_strings32(bprm.argc, argv, &bprm); if (retval < 0) goto out; retval = search_binary_handler(&bprm, regs); if (retval >= 0) /* execve success */ return retval; out: /* Something went wrong, return the inode and free the argument pages*/ allow_write_access(bprm.file); if (bprm.file) fput(bprm.file); for (i=0 ; iptrace &= ~PT_DTRACE; current->thread.fp_regs.fpc=0; __asm__ __volatile__ ("sr 0,0\n\t" "sfpc 0,0\n\t" : : :"0"); } putname(filename); out: return error; } #ifdef CONFIG_MODULES extern asmlinkage unsigned long sys_create_module(const char *name_user, size_t size); asmlinkage unsigned long sys32_create_module(const char *name_user, __kernel_size_t32 size) { return sys_create_module(name_user, (size_t)size); } extern asmlinkage int sys_init_module(const char *name_user, struct module *mod_user); /* Hey, when you're trying to init module, take time and prepare us a nice 64bit * module structure, even if from 32bit modutils... Why to pollute kernel... :)) */ asmlinkage int sys32_init_module(const char *name_user, struct module *mod_user) { return sys_init_module(name_user, mod_user); } extern asmlinkage int sys_delete_module(const char *name_user); asmlinkage int sys32_delete_module(const char *name_user) { return sys_delete_module(name_user); } struct module_info32 { u32 addr; u32 size; u32 flags; s32 usecount; }; /* Query various bits about modules. */ static inline long get_mod_name(const char *user_name, char **buf) { unsigned long page; long retval; if ((unsigned long)user_name >= TASK_SIZE && !segment_eq(get_fs (), KERNEL_DS)) return -EFAULT; page = __get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; retval = strncpy_from_user((char *)page, user_name, PAGE_SIZE); if (retval > 0) { if (retval < PAGE_SIZE) { *buf = (char *)page; return retval; } retval = -ENAMETOOLONG; } else if (!retval) retval = -EINVAL; free_page(page); return retval; } static inline void put_mod_name(char *buf) { free_page((unsigned long)buf); } static __inline__ struct module *find_module(const char *name) { struct module *mod; for (mod = module_list; mod ; mod = mod->next) { if (mod->flags & MOD_DELETED) continue; if (!strcmp(mod->name, name)) break; } return mod; } static int qm_modules(char *buf, size_t bufsize, __kernel_size_t32 *ret) { struct module *mod; size_t nmod, space, len; nmod = space = 0; for (mod = module_list; mod->next != NULL; mod = mod->next, ++nmod) { len = strlen(mod->name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, mod->name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } if (put_user(nmod, ret)) return -EFAULT; else return 0; calc_space_needed: space += len; while ((mod = mod->next)->next != NULL) space += strlen(mod->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static int qm_deps(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t i, space, len; if (mod->next == NULL) return -EINVAL; if (!MOD_CAN_QUERY(mod)) return put_user(0, ret); space = 0; for (i = 0; i < mod->ndeps; ++i) { const char *dep_name = mod->deps[i].dep->name; len = strlen(dep_name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, dep_name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } return put_user(i, ret); calc_space_needed: space += len; while (++i < mod->ndeps) space += strlen(mod->deps[i].dep->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static int qm_refs(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t nrefs, space, len; struct module_ref *ref; if (mod->next == NULL) return -EINVAL; if (!MOD_CAN_QUERY(mod)) if (put_user(0, ret)) return -EFAULT; else return 0; space = 0; for (nrefs = 0, ref = mod->refs; ref ; ++nrefs, ref = ref->next_ref) { const char *ref_name = ref->ref->name; len = strlen(ref_name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, ref_name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } if (put_user(nrefs, ret)) return -EFAULT; else return 0; calc_space_needed: space += len; while ((ref = ref->next_ref) != NULL) space += strlen(ref->ref->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static inline int qm_symbols(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t i, space, len; struct module_symbol *s; char *strings; unsigned *vals; if (!MOD_CAN_QUERY(mod)) if (put_user(0, ret)) return -EFAULT; else return 0; space = mod->nsyms * 2*sizeof(u32); i = len = 0; s = mod->syms; if (space > bufsize) goto calc_space_needed; if (!access_ok(VERIFY_WRITE, buf, space)) return -EFAULT; bufsize -= space; vals = (unsigned *)buf; strings = buf+space; for (; i < mod->nsyms ; ++i, ++s, vals += 2) { len = strlen(s->name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(strings, s->name, len) || __put_user(s->value, vals+0) || __put_user(space, vals+1)) return -EFAULT; strings += len; bufsize -= len; space += len; } if (put_user(i, ret)) return -EFAULT; else return 0; calc_space_needed: for (; i < mod->nsyms; ++i, ++s) space += strlen(s->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static inline int qm_info(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { int error = 0; if (mod->next == NULL) return -EINVAL; if (sizeof(struct module_info32) <= bufsize) { struct module_info32 info; info.addr = (unsigned long)mod; info.size = mod->size; info.flags = mod->flags; info.usecount = ((mod_member_present(mod, can_unload) && mod->can_unload) ? -1 : atomic_read(&mod->uc.usecount)); if (copy_to_user(buf, &info, sizeof(struct module_info32))) return -EFAULT; } else error = -ENOSPC; if (put_user(sizeof(struct module_info32), ret)) return -EFAULT; return error; } asmlinkage int sys32_query_module(char *name_user, int which, char *buf, __kernel_size_t32 bufsize, u32 ret) { struct module *mod; int err; lock_kernel(); if (name_user == 0) { /* This finds "kernel_module" which is not exported. */ for(mod = module_list; mod->next != NULL; mod = mod->next) ; } else { long namelen; char *name; if ((namelen = get_mod_name(name_user, &name)) < 0) { err = namelen; goto out; } err = -ENOENT; if (namelen == 0) { /* This finds "kernel_module" which is not exported. */ for(mod = module_list; mod->next != NULL; mod = mod->next) ; } else if ((mod = find_module(name)) == NULL) { put_mod_name(name); goto out; } put_mod_name(name); } switch (which) { case 0: err = 0; break; case QM_MODULES: err = qm_modules(buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_DEPS: err = qm_deps(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_REFS: err = qm_refs(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_SYMBOLS: err = qm_symbols(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_INFO: err = qm_info(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; default: err = -EINVAL; break; } out: unlock_kernel(); return err; } struct kernel_sym32 { u32 value; char name[60]; }; extern asmlinkage int sys_get_kernel_syms(struct kernel_sym *table); asmlinkage int sys32_get_kernel_syms(struct kernel_sym32 *table) { int len, i; struct kernel_sym *tbl; mm_segment_t old_fs; len = sys_get_kernel_syms(NULL); if (!table) return len; tbl = kmalloc (len * sizeof (struct kernel_sym), GFP_KERNEL); if (!tbl) return -ENOMEM; old_fs = get_fs(); set_fs (KERNEL_DS); sys_get_kernel_syms(tbl); set_fs (old_fs); for (i = 0; i < len; i++, table += sizeof (struct kernel_sym32)) { if (put_user (tbl[i].value, &table->value) || copy_to_user (table->name, tbl[i].name, 60)) break; } kfree (tbl); return i; } #else /* CONFIG_MODULES */ asmlinkage unsigned long sys32_create_module(const char *name_user, size_t size) { return -ENOSYS; } asmlinkage int sys32_init_module(const char *name_user, struct module *mod_user) { return -ENOSYS; } asmlinkage int sys32_delete_module(const char *name_user) { return -ENOSYS; } asmlinkage int sys32_query_module(const char *name_user, int which, char *buf, size_t bufsize, size_t *ret) { /* Let the program know about the new interface. Not that it'll do them much good. */ if (which == 0) return 0; return -ENOSYS; } asmlinkage int sys32_get_kernel_syms(struct kernel_sym *table) { return -ENOSYS; } #endif /* CONFIG_MODULES */ /* Stuff for NFS server syscalls... */ struct nfsctl_svc32 { u16 svc32_port; s32 svc32_nthreads; }; struct nfsctl_client32 { s8 cl32_ident[NFSCLNT_IDMAX+1]; s32 cl32_naddr; struct in_addr cl32_addrlist[NFSCLNT_ADDRMAX]; s32 cl32_fhkeytype; s32 cl32_fhkeylen; u8 cl32_fhkey[NFSCLNT_KEYMAX]; }; struct nfsctl_export32 { s8 ex32_client[NFSCLNT_IDMAX+1]; s8 ex32_path[NFS_MAXPATHLEN+1]; __kernel_dev_t32 ex32_dev; __kernel_ino_t32 ex32_ino; s32 ex32_flags; __kernel_uid_t32 ex32_anon_uid; __kernel_gid_t32 ex32_anon_gid; }; struct nfsctl_uidmap32 { u32 ug32_ident; /* char * */ __kernel_uid_t32 ug32_uidbase; s32 ug32_uidlen; u32 ug32_udimap; /* uid_t * */ __kernel_uid_t32 ug32_gidbase; s32 ug32_gidlen; u32 ug32_gdimap; /* gid_t * */ }; struct nfsctl_fhparm32 { struct sockaddr gf32_addr; __kernel_dev_t32 gf32_dev; __kernel_ino_t32 gf32_ino; s32 gf32_version; }; struct nfsctl_fdparm32 { struct sockaddr gd32_addr; s8 gd32_path[NFS_MAXPATHLEN+1]; s32 gd32_version; }; struct nfsctl_fsparm32 { struct sockaddr gd32_addr; s8 gd32_path[NFS_MAXPATHLEN+1]; s32 gd32_maxlen; }; struct nfsctl_arg32 { s32 ca32_version; /* safeguard */ union { struct nfsctl_svc32 u32_svc; struct nfsctl_client32 u32_client; struct nfsctl_export32 u32_export; struct nfsctl_uidmap32 u32_umap; struct nfsctl_fhparm32 u32_getfh; struct nfsctl_fdparm32 u32_getfd; struct nfsctl_fsparm32 u32_getfs; } u; #define ca32_svc u.u32_svc #define ca32_client u.u32_client #define ca32_export u.u32_export #define ca32_umap u.u32_umap #define ca32_getfh u.u32_getfh #define ca32_getfd u.u32_getfd #define ca32_getfs u.u32_getfs #define ca32_authd u.u32_authd }; union nfsctl_res32 { __u8 cr32_getfh[NFS_FHSIZE]; struct knfsd_fh cr32_getfs; }; static int nfs_svc32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= __get_user(karg->ca_svc.svc_port, &arg32->ca32_svc.svc32_port); err |= __get_user(karg->ca_svc.svc_nthreads, &arg32->ca32_svc.svc32_nthreads); return err; } static int nfs_clnt32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_client.cl_ident[0], &arg32->ca32_client.cl32_ident[0], NFSCLNT_IDMAX); err |= __get_user(karg->ca_client.cl_naddr, &arg32->ca32_client.cl32_naddr); err |= copy_from_user(&karg->ca_client.cl_addrlist[0], &arg32->ca32_client.cl32_addrlist[0], (sizeof(struct in_addr) * NFSCLNT_ADDRMAX)); err |= __get_user(karg->ca_client.cl_fhkeytype, &arg32->ca32_client.cl32_fhkeytype); err |= __get_user(karg->ca_client.cl_fhkeylen, &arg32->ca32_client.cl32_fhkeylen); err |= copy_from_user(&karg->ca_client.cl_fhkey[0], &arg32->ca32_client.cl32_fhkey[0], NFSCLNT_KEYMAX); return err; } static int nfs_exp32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_export.ex_client[0], &arg32->ca32_export.ex32_client[0], NFSCLNT_IDMAX); err |= copy_from_user(&karg->ca_export.ex_path[0], &arg32->ca32_export.ex32_path[0], NFS_MAXPATHLEN); err |= __get_user(karg->ca_export.ex_dev, &arg32->ca32_export.ex32_dev); err |= __get_user(karg->ca_export.ex_ino, &arg32->ca32_export.ex32_ino); err |= __get_user(karg->ca_export.ex_flags, &arg32->ca32_export.ex32_flags); err |= __get_user(karg->ca_export.ex_anon_uid, &arg32->ca32_export.ex32_anon_uid); err |= __get_user(karg->ca_export.ex_anon_gid, &arg32->ca32_export.ex32_anon_gid); karg->ca_export.ex_anon_uid = high2lowuid(karg->ca_export.ex_anon_uid); karg->ca_export.ex_anon_gid = high2lowgid(karg->ca_export.ex_anon_gid); return err; } static int nfs_uud32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { u32 uaddr; int i; int err; memset(karg, 0, sizeof(*karg)); if(__get_user(karg->ca_version, &arg32->ca32_version)) return -EFAULT; karg->ca_umap.ug_ident = (char *)get_free_page(GFP_USER); if(!karg->ca_umap.ug_ident) return -ENOMEM; err = __get_user(uaddr, &arg32->ca32_umap.ug32_ident); if(strncpy_from_user(karg->ca_umap.ug_ident, (char *)A(uaddr), PAGE_SIZE) <= 0) return -EFAULT; err |= __get_user(karg->ca_umap.ug_uidbase, &arg32->ca32_umap.ug32_uidbase); err |= __get_user(karg->ca_umap.ug_uidlen, &arg32->ca32_umap.ug32_uidlen); err |= __get_user(uaddr, &arg32->ca32_umap.ug32_udimap); if (err) return -EFAULT; karg->ca_umap.ug_udimap = kmalloc((sizeof(uid_t) * karg->ca_umap.ug_uidlen), GFP_USER); if(!karg->ca_umap.ug_udimap) return -ENOMEM; for(i = 0; i < karg->ca_umap.ug_uidlen; i++) err |= __get_user(karg->ca_umap.ug_udimap[i], &(((__kernel_uid_t32 *)A(uaddr))[i])); err |= __get_user(karg->ca_umap.ug_gidbase, &arg32->ca32_umap.ug32_gidbase); err |= __get_user(karg->ca_umap.ug_uidlen, &arg32->ca32_umap.ug32_gidlen); err |= __get_user(uaddr, &arg32->ca32_umap.ug32_gdimap); if (err) return -EFAULT; karg->ca_umap.ug_gdimap = kmalloc((sizeof(gid_t) * karg->ca_umap.ug_uidlen), GFP_USER); if(!karg->ca_umap.ug_gdimap) return -ENOMEM; for(i = 0; i < karg->ca_umap.ug_gidlen; i++) err |= __get_user(karg->ca_umap.ug_gdimap[i], &(((__kernel_gid_t32 *)A(uaddr))[i])); return err; } static int nfs_getfh32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_getfh.gf_addr, &arg32->ca32_getfh.gf32_addr, (sizeof(struct sockaddr))); err |= __get_user(karg->ca_getfh.gf_dev, &arg32->ca32_getfh.gf32_dev); err |= __get_user(karg->ca_getfh.gf_ino, &arg32->ca32_getfh.gf32_ino); err |= __get_user(karg->ca_getfh.gf_version, &arg32->ca32_getfh.gf32_version); return err; } static int nfs_getfd32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_getfd.gd_addr, &arg32->ca32_getfd.gd32_addr, (sizeof(struct sockaddr))); err |= copy_from_user(&karg->ca_getfd.gd_path, &arg32->ca32_getfd.gd32_path, (NFS_MAXPATHLEN+1)); err |= __get_user(karg->ca_getfd.gd_version, &arg32->ca32_getfd.gd32_version); return err; } static int nfs_getfs32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_getfs.gd_addr, &arg32->ca32_getfs.gd32_addr, (sizeof(struct sockaddr))); err |= copy_from_user(&karg->ca_getfs.gd_path, &arg32->ca32_getfs.gd32_path, (NFS_MAXPATHLEN+1)); err |= __get_user(karg->ca_getfs.gd_maxlen, &arg32->ca32_getfs.gd32_maxlen); return err; } /* This really doesn't need translations, we are only passing * back a union which contains opaque nfs file handle data. */ static int nfs_getfh32_res_trans(union nfsctl_res *kres, union nfsctl_res32 *res32) { return copy_to_user(res32, kres, sizeof(*res32)) ? -EFAULT : 0; } /* asmlinkage long sys_ni_syscall(void); */ int asmlinkage sys32_nfsservctl(int cmd, struct nfsctl_arg32 *arg32, union nfsctl_res32 *res32) { struct nfsctl_arg *karg = NULL; union nfsctl_res *kres = NULL; mm_segment_t oldfs; int err; karg = kmalloc(sizeof(*karg), GFP_USER); if(!karg) return -ENOMEM; if(res32) { kres = kmalloc(sizeof(*kres), GFP_USER); if(!kres) { kfree(karg); return -ENOMEM; } } switch(cmd) { case NFSCTL_SVC: err = nfs_svc32_trans(karg, arg32); break; case NFSCTL_ADDCLIENT: err = nfs_clnt32_trans(karg, arg32); break; case NFSCTL_DELCLIENT: err = nfs_clnt32_trans(karg, arg32); break; case NFSCTL_EXPORT: case NFSCTL_UNEXPORT: err = nfs_exp32_trans(karg, arg32); break; /* This one is unimplemented, be we're ready for it. */ case NFSCTL_UGIDUPDATE: err = nfs_uud32_trans(karg, arg32); break; case NFSCTL_GETFH: err = nfs_getfh32_trans(karg, arg32); break; case NFSCTL_GETFD: err = nfs_getfd32_trans(karg, arg32); break; case NFSCTL_GETFS: err = nfs_getfs32_trans(karg, arg32); break; default: err = -EINVAL; break; } if(err) goto done; oldfs = get_fs(); set_fs(KERNEL_DS); err = sys_nfsservctl(cmd, karg, kres); set_fs(oldfs); if (err) goto done; if((cmd == NFSCTL_GETFH) || (cmd == NFSCTL_GETFD) || (cmd == NFSCTL_GETFS)) err = nfs_getfh32_res_trans(kres, res32); done: if(karg) { if(cmd == NFSCTL_UGIDUPDATE) { if(karg->ca_umap.ug_ident) kfree(karg->ca_umap.ug_ident); if(karg->ca_umap.ug_udimap) kfree(karg->ca_umap.ug_udimap); if(karg->ca_umap.ug_gdimap) kfree(karg->ca_umap.ug_gdimap); } kfree(karg); } if(kres) kfree(kres); return err; } /* Translations due to time_t size differences. Which affects all sorts of things, like timeval and itimerval. */ extern struct timezone sys_tz; extern int do_sys_settimeofday(struct timeval *tv, struct timezone *tz); asmlinkage int sys32_gettimeofday(struct timeval32 *tv, struct timezone *tz) { if (tv) { struct timeval ktv; do_gettimeofday(&ktv); if (put_tv32(tv, &ktv)) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } asmlinkage int sys32_settimeofday(struct timeval32 *tv, struct timezone *tz) { struct timeval ktv; struct timezone ktz; if (tv) { if (get_tv32(&ktv, tv)) return -EFAULT; } if (tz) { if (copy_from_user(&ktz, tz, sizeof(ktz))) return -EFAULT; } return do_sys_settimeofday(tv ? &ktv : NULL, tz ? &ktz : NULL); } extern int do_getitimer(int which, struct itimerval *value); asmlinkage int sys32_getitimer(int which, struct itimerval32 *it) { struct itimerval kit; int error; error = do_getitimer(which, &kit); if (!error && put_it32(it, &kit)) error = -EFAULT; return error; } extern int do_setitimer(int which, struct itimerval *, struct itimerval *); asmlinkage int sys32_setitimer(int which, struct itimerval32 *in, struct itimerval32 *out) { struct itimerval kin, kout; int error; if (in) { if (get_it32(&kin, in)) return -EFAULT; } else memset(&kin, 0, sizeof(kin)); error = do_setitimer(which, &kin, out ? &kout : NULL); if (error || !out) return error; if (put_it32(out, &kout)) return -EFAULT; return 0; } asmlinkage int sys_utimes(char *, struct timeval *); asmlinkage int sys32_utimes(char *filename, struct timeval32 *tvs) { char *kfilename; struct timeval ktvs[2]; mm_segment_t old_fs; int ret; kfilename = getname(filename); ret = PTR_ERR(kfilename); if (!IS_ERR(kfilename)) { if (tvs) { if (get_tv32(&ktvs[0], tvs) || get_tv32(&ktvs[1], 1+tvs)) return -EFAULT; } old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_utimes(kfilename, &ktvs[0]); set_fs(old_fs); putname(kfilename); } return ret; } /* These are here just in case some old sparc32 binary calls it. */ asmlinkage int sys32_pause(void) { current->state = TASK_INTERRUPTIBLE; schedule(); return -ERESTARTNOHAND; } extern asmlinkage int sys_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5); asmlinkage int sys32_prctl(int option, u32 arg2, u32 arg3, u32 arg4, u32 arg5) { return sys_prctl(option, (unsigned long) arg2, (unsigned long) arg3, (unsigned long) arg4, (unsigned long) arg5); } extern asmlinkage ssize_t sys_pread(unsigned int fd, char * buf, size_t count, loff_t pos); extern asmlinkage ssize_t sys_pwrite(unsigned int fd, const char * buf, size_t count, loff_t pos); typedef __kernel_ssize_t32 ssize_t32; asmlinkage ssize_t32 sys32_pread(unsigned int fd, char *ubuf, __kernel_size_t32 count, u32 poshi, u32 poslo) { if ((ssize_t32) count < 0) return -EINVAL; return sys_pread(fd, ubuf, count, ((loff_t)AA(poshi) << 32) | AA(poslo)); } asmlinkage ssize_t32 sys32_pwrite(unsigned int fd, char *ubuf, __kernel_size_t32 count, u32 poshi, u32 poslo) { if ((ssize_t32) count < 0) return -EINVAL; return sys_pwrite(fd, ubuf, count, ((loff_t)AA(poshi) << 32) | AA(poslo)); } extern asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count); asmlinkage ssize_t32 sys32_readahead(int fd, u32 offhi, u32 offlo, s32 count) { return sys_readahead(fd, ((loff_t)AA(offhi) << 32) | AA(offlo), count); } extern asmlinkage ssize_t sys_sendfile(int out_fd, int in_fd, off_t *offset, size_t count); asmlinkage int sys32_sendfile(int out_fd, int in_fd, __kernel_off_t32 *offset, s32 count) { mm_segment_t old_fs = get_fs(); int ret; off_t of; if (offset && get_user(of, offset)) return -EFAULT; set_fs(KERNEL_DS); ret = sys_sendfile(out_fd, in_fd, offset ? &of : NULL, count); set_fs(old_fs); if (!ret && offset && put_user(of, offset)) return -EFAULT; return ret; } /* Handle adjtimex compatability. */ struct timex32 { u32 modes; s32 offset, freq, maxerror, esterror; s32 status, constant, precision, tolerance; struct timeval32 time; s32 tick; s32 ppsfreq, jitter, shift, stabil; s32 jitcnt, calcnt, errcnt, stbcnt; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; }; extern int do_adjtimex(struct timex *); asmlinkage int sys32_adjtimex(struct timex32 *utp) { struct timex txc; int ret; memset(&txc, 0, sizeof(struct timex)); if(get_user(txc.modes, &utp->modes) || __get_user(txc.offset, &utp->offset) || __get_user(txc.freq, &utp->freq) || __get_user(txc.maxerror, &utp->maxerror) || __get_user(txc.esterror, &utp->esterror) || __get_user(txc.status, &utp->status) || __get_user(txc.constant, &utp->constant) || __get_user(txc.precision, &utp->precision) || __get_user(txc.tolerance, &utp->tolerance) || __get_user(txc.time.tv_sec, &utp->time.tv_sec) || __get_user(txc.time.tv_usec, &utp->time.tv_usec) || __get_user(txc.tick, &utp->tick) || __get_user(txc.ppsfreq, &utp->ppsfreq) || __get_user(txc.jitter, &utp->jitter) || __get_user(txc.shift, &utp->shift) || __get_user(txc.stabil, &utp->stabil) || __get_user(txc.jitcnt, &utp->jitcnt) || __get_user(txc.calcnt, &utp->calcnt) || __get_user(txc.errcnt, &utp->errcnt) || __get_user(txc.stbcnt, &utp->stbcnt)) return -EFAULT; ret = do_adjtimex(&txc); if(put_user(txc.modes, &utp->modes) || __put_user(txc.offset, &utp->offset) || __put_user(txc.freq, &utp->freq) || __put_user(txc.maxerror, &utp->maxerror) || __put_user(txc.esterror, &utp->esterror) || __put_user(txc.status, &utp->status) || __put_user(txc.constant, &utp->constant) || __put_user(txc.precision, &utp->precision) || __put_user(txc.tolerance, &utp->tolerance) || __put_user(txc.time.tv_sec, &utp->time.tv_sec) || __put_user(txc.time.tv_usec, &utp->time.tv_usec) || __put_user(txc.tick, &utp->tick) || __put_user(txc.ppsfreq, &utp->ppsfreq) || __put_user(txc.jitter, &utp->jitter) || __put_user(txc.shift, &utp->shift) || __put_user(txc.stabil, &utp->stabil) || __put_user(txc.jitcnt, &utp->jitcnt) || __put_user(txc.calcnt, &utp->calcnt) || __put_user(txc.errcnt, &utp->errcnt) || __put_user(txc.stbcnt, &utp->stbcnt)) ret = -EFAULT; return ret; } extern asmlinkage long sys_setpriority(int which, int who, int niceval); asmlinkage int sys_setpriority32(u32 which, u32 who, u32 niceval) { return sys_setpriority((int) which, (int) who, (int) niceval); } struct __sysctl_args32 { u32 name; int nlen; u32 oldval; u32 oldlenp; u32 newval; u32 newlen; u32 __unused[4]; }; extern asmlinkage long sys32_sysctl(struct __sysctl_args32 *args) { struct __sysctl_args32 tmp; int error; size_t oldlen, *oldlenp = NULL; unsigned long addr = (((long)&args->__unused[0]) + 7) & ~7; if (copy_from_user(&tmp, args, sizeof(tmp))) return -EFAULT; if (tmp.oldval && tmp.oldlenp) { /* Duh, this is ugly and might not work if sysctl_args is in read-only memory, but do_sysctl does indirectly a lot of uaccess in both directions and we'd have to basically copy the whole sysctl.c here, and glibc's __sysctl uses rw memory for the structure anyway. */ if (get_user(oldlen, (u32 *)A(tmp.oldlenp)) || put_user(oldlen, (size_t *)addr)) return -EFAULT; oldlenp = (size_t *)addr; } lock_kernel(); error = do_sysctl((int *)A(tmp.name), tmp.nlen, (void *)A(tmp.oldval), oldlenp, (void *)A(tmp.newval), tmp.newlen); unlock_kernel(); if (oldlenp) { if (!error) { if (get_user(oldlen, (size_t *)addr) || put_user(oldlen, (u32 *)A(tmp.oldlenp))) error = -EFAULT; } copy_to_user(args->__unused, tmp.__unused, sizeof(tmp.__unused)); } return error; } struct stat64_emu31 { unsigned char __pad0[6]; unsigned short st_dev; unsigned int __pad1; #define STAT64_HAS_BROKEN_ST_INO 1 u32 __st_ino; unsigned int st_mode; unsigned int st_nlink; u32 st_uid; u32 st_gid; unsigned char __pad2[6]; unsigned short st_rdev; unsigned int __pad3; long st_size; u32 st_blksize; unsigned char __pad4[4]; u32 __pad5; /* future possible st_blocks high bits */ u32 st_blocks; /* Number 512-byte blocks allocated. */ u32 st_atime; u32 __pad6; u32 st_mtime; u32 __pad7; u32 st_ctime; u32 __pad8; /* will be high 32 bits of ctime someday */ unsigned long st_ino; }; static inline int putstat64 (struct stat64_emu31 *ubuf, struct stat *kbuf) { struct stat64_emu31 tmp; memset(&tmp, 0, sizeof(tmp)); tmp.st_dev = (unsigned short)kbuf->st_dev; tmp.st_ino = kbuf->st_ino; tmp.__st_ino = (u32)kbuf->st_ino; tmp.st_mode = kbuf->st_mode; tmp.st_nlink = (unsigned int)kbuf->st_nlink; tmp.st_uid = kbuf->st_uid; tmp.st_gid = kbuf->st_gid; tmp.st_rdev = (unsigned short)kbuf->st_rdev; tmp.st_size = kbuf->st_size; tmp.st_blksize = (u32)kbuf->st_blksize; tmp.st_blocks = (u32)kbuf->st_blocks; tmp.st_atime = (u32)kbuf->st_atime; tmp.st_mtime = (u32)kbuf->st_mtime; tmp.st_ctime = (u32)kbuf->st_ctime; return copy_to_user(ubuf,&tmp,sizeof(tmp)) ? -EFAULT : 0; } extern asmlinkage long sys_newstat(char * filename, struct stat * statbuf); asmlinkage long sys32_stat64(char * filename, struct stat64_emu31 * statbuf, long flags) { int ret; struct stat s; char * tmp; int err; mm_segment_t old_fs = get_fs(); tmp = getname(filename); err = PTR_ERR(tmp); if (IS_ERR(tmp)) return err; set_fs (KERNEL_DS); ret = sys_newstat(tmp, &s); set_fs (old_fs); putname(tmp); if (!ret && putstat64 (statbuf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_newlstat(char * filename, struct stat * statbuf); asmlinkage long sys32_lstat64(char * filename, struct stat64_emu31 * statbuf, long flags) { int ret; struct stat s; char * tmp; int err; mm_segment_t old_fs = get_fs(); tmp = getname(filename); err = PTR_ERR(tmp); if (IS_ERR(tmp)) return err; set_fs (KERNEL_DS); ret = sys_newlstat(tmp, &s); set_fs (old_fs); putname(tmp); if (!ret && putstat64 (statbuf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_newfstat(unsigned int fd, struct stat * statbuf); asmlinkage long sys32_fstat64(unsigned long fd, struct stat64_emu31 * statbuf, long flags) { int ret; struct stat s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_newfstat(fd, &s); set_fs (old_fs); if (!ret && putstat64 (statbuf, &s)) return -EFAULT; return ret; } /* * Linux/i386 didn't use to be able to handle more than * 4 system call parameters, so these system calls used a memory * block for parameter passing.. */ struct mmap_arg_struct_emu31 { u32 addr; u32 len; u32 prot; u32 flags; u32 fd; u32 offset; }; /* common code for old and new mmaps */ static inline long do_mmap2( unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long fd, unsigned long pgoff) { struct file * file = NULL; unsigned long error = -EBADF; flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); if (!(flags & MAP_ANONYMOUS)) { file = fget(fd); if (!file) goto out; } down_write(¤t->mm->mmap_sem); error = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); if (!IS_ERR((void *) error) && error + len >= 0x80000000ULL) { /* Result is out of bounds. */ do_munmap(current->mm, error, len); error = -ENOMEM; } up_write(¤t->mm->mmap_sem); if (file) fput(file); out: return error; } asmlinkage unsigned long old32_mmap(struct mmap_arg_struct_emu31 *arg) { struct mmap_arg_struct_emu31 a; int error = -EFAULT; if (copy_from_user(&a, arg, sizeof(a))) goto out; error = -EINVAL; if (a.offset & ~PAGE_MASK) goto out; error = do_mmap2(a.addr, a.len, a.prot, a.flags, a.fd, a.offset >> PAGE_SHIFT); out: return error; } asmlinkage long sys32_mmap2(struct mmap_arg_struct_emu31 *arg) { struct mmap_arg_struct_emu31 a; int error = -EFAULT; if (copy_from_user(&a, arg, sizeof(a))) goto out; error = do_mmap2(a.addr, a.len, a.prot, a.flags, a.fd, a.offset); out: return error; } extern asmlinkage long sys_socket(int family, int type, int protocol); extern asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen); extern asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen); extern asmlinkage long sys_listen(int fd, int backlog); extern asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen); extern asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len); extern asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len); extern asmlinkage long sys_socketpair(int family, int type, int protocol, int usockvec[2]); extern asmlinkage long sys_send(int fd, void * buff, size_t len, unsigned flags); extern asmlinkage long sys_sendto(int fd, void * buff, size_t len, unsigned flags, struct sockaddr *addr, int addr_len); extern asmlinkage long sys_recv(int fd, void * ubuf, size_t size, unsigned flags); extern asmlinkage long sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags, struct sockaddr *addr, int *addr_len); extern asmlinkage long sys_shutdown(int fd, int how); extern asmlinkage long sys_getsockopt(int fd, int level, int optname, char *optval, int * optlen); /* Argument list sizes for sys_socketcall */ #define AL(x) ((x) * sizeof(u32)) static unsigned char nas[18] = {AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; #undef AL asmlinkage long sys32_socketcall(int call, u32 *args) { int ret; u32 a[6]; if (call < SYS_SOCKET || call > SYS_RECVMSG) return -EINVAL; if (copy_from_user(a, args, nas[call])) return -EFAULT; switch(call) { case SYS_SOCKET: ret = sys_socket(a[0], a[1], a[2]); break; case SYS_BIND: ret = sys_bind(a[0], (struct sockaddr *) A(a[1]), a[2]); break; case SYS_CONNECT: ret = sys_connect(a[0], (struct sockaddr *) A(a[1]), a[2]); break; case SYS_LISTEN: ret = sys_listen(a[0], a[1]); break; case SYS_ACCEPT: ret = sys_accept(a[0], (struct sockaddr *) A(a[1]), (int *) A(a[2])); break; case SYS_GETSOCKNAME: ret = sys_getsockname(a[0], (struct sockaddr *) A(a[1]), (int *) A(a[2])); break; case SYS_GETPEERNAME: ret = sys_getpeername(a[0], (struct sockaddr *) A(a[1]), (int *) A(a[2])); break; case SYS_SOCKETPAIR: ret = sys_socketpair(a[0], a[1], a[2], (int *) A(a[3])); break; case SYS_SEND: ret = sys_send(a[0], (void *) A(a[1]), a[2], a[3]); break; case SYS_SENDTO: ret = sys_sendto(a[0], (void*) A(a[1]), a[2], a[3], (struct sockaddr *) A(a[4]), a[5]); break; case SYS_RECV: ret = sys_recv(a[0], (void *) A(a[1]), a[2], a[3]); break; case SYS_RECVFROM: ret = sys_recvfrom(a[0], (void *) A(a[1]), a[2], a[3], (struct sockaddr *) A(a[4]), (int *) A(a[5]) ); break; case SYS_SHUTDOWN: ret = sys_shutdown(a[0], a[1]); break; case SYS_SETSOCKOPT: ret = sys32_setsockopt(a[0], a[1], a[2], (char *) A(a[3]), a[4]); break; case SYS_GETSOCKOPT: ret = sys_getsockopt(a[0], a[1], a[2], (char *) A(a[3]), (int *) A(a[4]) ); break; case SYS_SENDMSG: ret = sys32_sendmsg(a[0], (struct msghdr32 *) A(a[1]), a[2]); break; case SYS_RECVMSG: ret = sys32_recvmsg(a[0], (struct msghdr32 *) A(a[1]), a[2]); break; default: ret = EINVAL; break; } return ret; } asmlinkage ssize_t sys_read(unsigned int fd, char * buf, size_t count); asmlinkage ssize_t32 sys32_read(unsigned int fd, char * buf, size_t count) { if ((ssize_t32) count < 0) return -EINVAL; return sys_read(fd, buf, count); } asmlinkage ssize_t sys_write(unsigned int fd, const char * buf, size_t count); asmlinkage ssize_t32 sys32_write(unsigned int fd, char * buf, size_t count) { if ((ssize_t32) count < 0) return -EINVAL; return sys_write(fd, buf, count); }