/* * * Procedures for interfacing to the RTAS on CHRP machines. * * Peter Bergner, IBM March 2001. * Copyright (C) 2001 IBM. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct proc_dir_entry *rtas_proc_dir; /* /proc/ppc64/rtas dir */ struct flash_block_list_header rtas_firmware_flash_list = {0, 0}; struct errinjct_token ei_token_list[MAX_ERRINJCT_TOKENS]; /* * prom_init() is called very early on, before the kernel text * and data have been mapped to KERNELBASE. At this point the code * is running at whatever address it has been loaded at, so * references to extern and static variables must be relocated * explicitly. The procedure reloc_offset() returns the address * we're currently running at minus the address we were linked at. * (Note that strings count as static variables.) * * Because OF may have mapped I/O devices into the area starting at * KERNELBASE, particularly on CHRP machines, we can't safely call * OF once the kernel has been mapped to KERNELBASE. Therefore all * OF calls should be done within prom_init(), and prom_init() * and all routines called within it must be careful to relocate * references as necessary. * * Note that the bss is cleared *after* prom_init runs, so we have * to make sure that any static or extern variables it accesses * are put in the data segment. */ struct rtas_t rtas = { .lock = SPIN_LOCK_UNLOCKED }; extern unsigned long reloc_offset(void); spinlock_t rtas_data_buf_lock = SPIN_LOCK_UNLOCKED; char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned; void phys_call_rtas(int token, int nargs, int nret, ...) { va_list list; unsigned long offset = reloc_offset(); struct rtas_args *rtas = PTRRELOC(&(get_paca()->xRtas)); int i; rtas->token = token; rtas->nargs = nargs; rtas->nret = nret; rtas->rets = (rtas_arg_t *)PTRRELOC(&(rtas->args[nargs])); va_start(list, nret); for (i = 0; i < nargs; i++) rtas->args[i] = (rtas_arg_t)LONG_LSW(va_arg(list, ulong)); va_end(list); enter_rtas(rtas); } void phys_call_rtas_display_status(char c) { unsigned long offset = reloc_offset(); struct rtas_args *rtas = PTRRELOC(&(get_paca()->xRtas)); rtas->token = 10; rtas->nargs = 1; rtas->nret = 1; rtas->rets = (rtas_arg_t *)PTRRELOC(&(rtas->args[1])); rtas->args[0] = (int)c; enter_rtas(rtas); } void call_rtas_display_status(char c) { struct rtas_args *rtas = &(get_paca()->xRtas); rtas->token = 10; rtas->nargs = 1; rtas->nret = 1; rtas->rets = (rtas_arg_t *)&(rtas->args[1]); rtas->args[0] = (int)c; enter_rtas((void *)__pa((unsigned long)rtas)); } __openfirmware int rtas_token(const char *service) { int *tokp; if (rtas.dev == NULL) { PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n"); return RTAS_UNKNOWN_SERVICE; } tokp = (int *) get_property(rtas.dev, service, NULL); return tokp ? *tokp : RTAS_UNKNOWN_SERVICE; } __openfirmware long rtas_call(int token, int nargs, int nret, unsigned long *outputs, ...) { va_list list; int i; unsigned long s; struct rtas_args *rtas_args = &(get_paca()->xRtas); PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n"); PPCDBG(PPCDBG_RTAS, "\ttoken = 0x%x\n", token); PPCDBG(PPCDBG_RTAS, "\tnargs = %d\n", nargs); PPCDBG(PPCDBG_RTAS, "\tnret = %d\n", nret); PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs); if (token == RTAS_UNKNOWN_SERVICE) return -1; rtas_args->token = token; rtas_args->nargs = nargs; rtas_args->nret = nret; rtas_args->rets = (rtas_arg_t *)&(rtas_args->args[nargs]); va_start(list, outputs); for (i = 0; i < nargs; ++i) { rtas_args->args[i] = (rtas_arg_t)LONG_LSW(va_arg(list, ulong)); PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%lx\n", i, rtas_args->args[i]); } va_end(list); for (i = 0; i < nret; ++i) rtas_args->rets[i] = 0; #if 0 /* Gotta do something different here, use global lock for now... */ spin_lock_irqsave(&rtas_args->lock, s); #else spin_lock_irqsave(&rtas.lock, s); #endif PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n", (void *)__pa((unsigned long)rtas_args)); enter_rtas((void *)__pa((unsigned long)rtas_args)); PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n"); #if 0 /* Gotta do something different here, use global lock for now... */ spin_unlock_irqrestore(&rtas_args->lock, s); #else spin_unlock_irqrestore(&rtas.lock, s); #endif ifppcdebug(PPCDBG_RTAS) { for(i=0; i < nret ;i++) udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]); } if (nret > 1 && outputs != NULL) for (i = 0; i < nret-1; ++i) outputs[i] = rtas_args->rets[i+1]; return (ulong)((nret > 0) ? rtas_args->rets[0] : 0); } /* Given an RTAS status code of 990n compute the hinted delay of 10^n * (last digit) milliseconds. For now we bound at n=3 (1 sec). */ unsigned int rtas_extended_busy_delay_time(int status) { int order = status - 9900; unsigned int ms; if (order < 0) order = 0; /* RTC depends on this for -2 clock busy */ else if (order > 3) order = 3; /* bound */ /* Use microseconds for reasonable accuracy */ for (ms = 1000; order > 0; order--) ms = ms * 10; return ms / (1000000/HZ); /* round down is fine */ } #define FLASH_BLOCK_LIST_VERSION (1UL) static void rtas_flash_firmware(void) { unsigned long image_size; struct flash_block_list *f, *next, *flist; unsigned long rtas_block_list; int i, status, update_token; update_token = rtas_token("ibm,update-flash-64-and-reboot"); if (update_token == RTAS_UNKNOWN_SERVICE) { printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n"); printk(KERN_ALERT "FLASH: firmware will not be flashed\n"); return; } /* NOTE: the "first" block list is a global var with no data * blocks in the kernel data segment. We do this because * we want to ensure this block_list addr is under 4GB. */ rtas_firmware_flash_list.num_blocks = 0; flist = (struct flash_block_list *)&rtas_firmware_flash_list; rtas_block_list = virt_to_absolute((unsigned long)flist); if (rtas_block_list >= 4UL*1024*1024*1024) { printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n"); return; } printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n"); /* Update the block_list in place. */ image_size = 0; for (f = flist; f; f = next) { /* Translate data addrs to absolute */ for (i = 0; i < f->num_blocks; i++) { f->blocks[i].data = (char *)virt_to_absolute((unsigned long)f->blocks[i].data); image_size += f->blocks[i].length; } next = f->next; /* Don't translate final NULL pointer */ if(f->next) f->next = (struct flash_block_list *)virt_to_absolute((unsigned long)f->next); else f->next = 0LL; /* make num_blocks into the version/length field */ f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16); } printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size); printk(KERN_ALERT "FLASH: performing flash and reboot\n"); ppc_md.progress("Flashing \n", 0x0); ppc_md.progress("Please Wait... ", 0x0); printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n"); status = rtas_call(update_token, 1, 1, NULL, rtas_block_list); switch (status) { /* should only get "bad" status */ case 0: printk(KERN_ALERT "FLASH: success\n"); break; case -1: printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n"); break; case -3: printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n"); break; case -4: printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n"); break; default: printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status); break; } } void rtas_flash_bypass_warning(void) { printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n"); printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n"); } void __chrp rtas_restart(char *cmd) { if (rtas_firmware_flash_list.next) rtas_flash_firmware(); printk("RTAS system-reboot returned %ld\n", rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); for (;;); } void __chrp rtas_power_off(void) { if (rtas_firmware_flash_list.next) rtas_flash_bypass_warning(); /* allow power on only with power button press */ printk("RTAS power-off returned %ld\n", rtas_call(rtas_token("power-off"), 2, 1, NULL,0xffffffff,0xffffffff)); for (;;); } void __chrp rtas_halt(void) { if (rtas_firmware_flash_list.next) rtas_flash_bypass_warning(); rtas_power_off(); } int rtas_errinjct_open(void) { u32 ret[2]; int open_token; int rc; /* The rc and open_token values are backwards due to a misprint in * the RPA */ open_token = rtas_call(rtas_token("ibm,open-errinjct"), 0, 2, (void *) &ret); rc = ret[0]; if (rc < 0) { printk(KERN_WARNING "error: ibm,open-errinjct failed (%d)\n", rc); return rc; } return open_token; } int rtas_errinjct(unsigned int open_token, char * ei_token, char * in_workspace) { struct errinjct_token * ei; int rtas_ei_token = -1; int rc; int i; ei = ei_token_list; for (i = 0; i < MAX_ERRINJCT_TOKENS && ei->name; i++) { if (strcmp(ei_token, ei->name) == 0) { rtas_ei_token = ei->value; break; } ei++; } if (rtas_ei_token == -1) { return -EINVAL; } spin_lock(&rtas_data_buf_lock); if (in_workspace) memcpy(rtas_data_buf, in_workspace, RTAS_DATA_BUF_SIZE); rc = rtas_call(rtas_token("ibm,errinjct"), 3, 1, NULL, rtas_ei_token, open_token, __pa(rtas_data_buf)); spin_unlock(&rtas_data_buf_lock); return rc; } int rtas_errinjct_close(unsigned int open_token) { int rc; rc = rtas_call(rtas_token("ibm,close-errinjct"), 1, 1, NULL, open_token); if (rc != 0) { printk(KERN_WARNING "error: ibm,close-errinjct failed (%d)\n", rc); return rc; } return 0; } #ifndef CONFIG_PPC_ISERIES static int __init rtas_errinjct_init(void) { char * token_array; char * end_array; int array_len = 0; int len; int i, j; token_array = (char *) get_property(rtas.dev, "ibm,errinjct-tokens", &array_len); /* if token is not found, then we fall through loop */ end_array = token_array + array_len; for (i = 0, j = 0; i < MAX_ERRINJCT_TOKENS && token_array < end_array; i++) { len = strnlen(token_array, ERRINJCT_TOKEN_LEN) + 1; ei_token_list[i].name = (char *) kmalloc(len, GFP_KERNEL); if (!ei_token_list[i].name) { printk(KERN_WARNING "error: kmalloc failed\n"); return -ENOMEM; } strcpy(ei_token_list[i].name, token_array); token_array += len; ei_token_list[i].value = *(int *)token_array; token_array += sizeof(int); } for (; i < MAX_ERRINJCT_TOKENS; i++) { ei_token_list[i].name = 0; ei_token_list[i].value = 0; } return 0; } __initcall(rtas_errinjct_init); #endif