/* * Miscellaneous procedures for dealing with the PowerMac hardware. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef DEBUG #define NVRAM_SIZE 0x2000 /* 8kB of non-volatile RAM */ #define CORE99_SIGNATURE 0x5a #define CORE99_ADLER_START 0x14 /* Core99 nvram is a flash */ #define CORE99_FLASH_STATUS_DONE 0x80 #define CORE99_FLASH_STATUS_ERR 0x38 #define CORE99_FLASH_CMD_ERASE_CONFIRM 0xd0 #define CORE99_FLASH_CMD_ERASE_SETUP 0x20 #define CORE99_FLASH_CMD_RESET 0xff #define CORE99_FLASH_CMD_WRITE_SETUP 0x40 /* CHRP NVRAM header */ struct chrp_header { u8 signature; u8 cksum; u16 len; char name[12]; u8 data[0]; }; struct core99_header { struct chrp_header hdr; u32 adler; u32 generation; u32 reserved[2]; }; /* * Read and write the non-volatile RAM on PowerMacs and CHRP machines. */ static int nvram_naddrs; static volatile unsigned char *nvram_addr; static volatile unsigned char *nvram_data; static int nvram_mult, is_core_99; static int core99_bank = 0; static int nvram_partitions[3]; /* FIXME: kmalloc fails to allocate the image now that I had to move it * before time_init(). For now, I allocate a static buffer here * but it's a waste of space on all but core99 machines */ #if 0 static char* nvram_image; #else static char nvram_image[NVRAM_SIZE] __pmacdata; #endif extern int pmac_newworld; static u8 __openfirmware chrp_checksum(struct chrp_header* hdr) { u8 *ptr; u16 sum = hdr->signature; for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++) sum += *ptr; while (sum > 0xFF) sum = (sum & 0xFF) + (sum>>8); return sum; } static u32 __pmac core99_calc_adler(u8 *buffer) { int cnt; u32 low, high; buffer += CORE99_ADLER_START; low = 1; high = 0; for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) { if ((cnt % 5000) == 0) { high %= 65521UL; high %= 65521UL; } low += buffer[cnt]; high += low; } low %= 65521UL; high %= 65521UL; return (high << 16) | low; } static u32 __pmac core99_check(u8* datas) { struct core99_header* hdr99 = (struct core99_header*)datas; if (hdr99->hdr.signature != CORE99_SIGNATURE) { #ifdef DEBUG printk("Invalid signature\n"); #endif return 0; } if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) { #ifdef DEBUG printk("Invalid checksum\n"); #endif return 0; } if (hdr99->adler != core99_calc_adler(datas)) { #ifdef DEBUG printk("Invalid adler\n"); #endif return 0; } return hdr99->generation; } static int __pmac core99_erase_bank(int bank) { int stat, i; u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE; out_8(base, CORE99_FLASH_CMD_ERASE_SETUP); out_8(base, CORE99_FLASH_CMD_ERASE_CONFIRM); do { stat = in_8(base); } while(!(stat & CORE99_FLASH_STATUS_DONE)); out_8(base, CORE99_FLASH_CMD_RESET); if (stat & CORE99_FLASH_STATUS_ERR) { printk("nvram: flash error 0x%02x on erase !\n", stat); return -ENXIO; } for (i=0; iname, "common")) nvram_partitions[pmac_nvram_OF] = offset + 0x10; if (!strcmp(hdr->name, "APL,MacOS75")) { nvram_partitions[pmac_nvram_XPRAM] = offset + 0x10; nvram_partitions[pmac_nvram_NR] = offset + 0x110; } offset += (hdr->len * 0x10); } while(offset < NVRAM_SIZE); } else { nvram_partitions[pmac_nvram_OF] = 0x1800; nvram_partitions[pmac_nvram_XPRAM] = 0x1300; nvram_partitions[pmac_nvram_NR] = 0x1400; } #ifdef DEBUG printk("nvram: OF partition at 0x%x\n", nvram_partitions[pmac_nvram_OF]); printk("nvram: XP partition at 0x%x\n", nvram_partitions[pmac_nvram_XPRAM]); printk("nvram: NR partition at 0x%x\n", nvram_partitions[pmac_nvram_NR]); #endif } void __init pmac_nvram_init(void) { struct device_node *dp; nvram_naddrs = 0; dp = find_devices("nvram"); if (dp == NULL) { printk(KERN_ERR "Can't find NVRAM device\n"); return; } nvram_naddrs = dp->n_addrs; is_core_99 = device_is_compatible(dp, "nvram,flash"); if (is_core_99) { int i; u32 gen_bank0, gen_bank1; if (nvram_naddrs < 1) { printk(KERN_ERR "nvram: no address\n"); return; } #if 0 nvram_image = kmalloc(NVRAM_SIZE, GFP_KERNEL); if (!nvram_image) { printk(KERN_ERR "nvram: can't allocate image\n"); return; } #endif nvram_data = ioremap(dp->addrs[0].address, NVRAM_SIZE*2); #ifdef DEBUG printk("nvram: Checking bank 0...\n"); #endif gen_bank0 = core99_check((u8 *)nvram_data); gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE); core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0; #ifdef DEBUG printk("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1); printk("nvram: Active bank is: %d\n", core99_bank); #endif for (i=0; iaddrs[0].address + isa_mem_base, dp->addrs[0].size); nvram_mult = 1; } else if (nvram_naddrs == 1) { nvram_data = ioremap(dp->addrs[0].address, dp->addrs[0].size); nvram_mult = (dp->addrs[0].size + NVRAM_SIZE - 1) / NVRAM_SIZE; } else if (nvram_naddrs == 2) { nvram_addr = ioremap(dp->addrs[0].address, dp->addrs[0].size); nvram_data = ioremap(dp->addrs[1].address, dp->addrs[1].size); } else if (nvram_naddrs == 0 && sys_ctrler == SYS_CTRLER_PMU) { nvram_naddrs = -1; } else { printk(KERN_ERR "Don't know how to access NVRAM with %d addresses\n", nvram_naddrs); } lookup_partitions(); } void __pmac pmac_nvram_update(void) { struct core99_header* hdr99; if (!is_core_99 || !nvram_data || !nvram_image) return; if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE, NVRAM_SIZE)) return; #ifdef DEBUG printk("Updating nvram...\n"); #endif hdr99 = (struct core99_header*)nvram_image; hdr99->generation++; hdr99->hdr.signature = CORE99_SIGNATURE; hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr); hdr99->adler = core99_calc_adler(nvram_image); core99_bank = core99_bank ? 0 : 1; if (core99_erase_bank(core99_bank)) { printk("nvram: Error erasing bank %d\n", core99_bank); return; } if (core99_write_bank(core99_bank, nvram_image)) printk("nvram: Error writing bank %d\n", core99_bank); } unsigned char __openfirmware nvram_read_byte(int addr) { switch (nvram_naddrs) { #ifdef CONFIG_ADB_PMU case -1: { struct adb_request req; if (pmu_request(&req, NULL, 3, PMU_READ_NVRAM, (addr >> 8) & 0xff, addr & 0xff)) break; while (!req.complete) pmu_poll(); return req.reply[0]; } #endif case 1: if (is_core_99) return nvram_image[addr]; return nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult]; case 2: *nvram_addr = addr >> 5; eieio(); return nvram_data[(addr & 0x1f) << 4]; } return 0; } void __openfirmware nvram_write_byte(unsigned char val, int addr) { switch (nvram_naddrs) { #ifdef CONFIG_ADB_PMU case -1: { struct adb_request req; if (pmu_request(&req, NULL, 4, PMU_WRITE_NVRAM, (addr >> 8) & 0xff, addr & 0xff, val)) break; while (!req.complete) pmu_poll(); break; } #endif case 1: if (is_core_99) { nvram_image[addr] = val; break; } nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult] = val; break; case 2: *nvram_addr = addr >> 5; eieio(); nvram_data[(addr & 0x1f) << 4] = val; break; } eieio(); } int __pmac pmac_get_partition(int partition) { return nvram_partitions[partition]; } u8 __pmac pmac_xpram_read(int xpaddr) { int offset = nvram_partitions[pmac_nvram_XPRAM]; if (offset < 0) return 0; return nvram_read_byte(xpaddr + offset); } void __pmac pmac_xpram_write(int xpaddr, u8 data) { int offset = nvram_partitions[pmac_nvram_XPRAM]; if (offset < 0) return; nvram_write_byte(xpaddr + offset, data); }