/* * This file contains the routines for handling the MMU on those * PowerPC implementations where the MMU substantially follows the * architecture specification. This includes the 6xx, 7xx, 7xxx, * 8260, and POWER3 implementations but excludes the 8xx and 4xx. * -- paulus * * Derived from arch/ppc/mm/init.c: * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include "mmu_decl.h" #include "mem_pieces.h" PTE *Hash, *Hash_end; unsigned long Hash_size, Hash_mask; unsigned long _SDR1; union ubat { /* BAT register values to be loaded */ BAT bat; #ifdef CONFIG_PPC64BRIDGE u64 word[2]; #else u32 word[2]; #endif } BATS[4][2]; /* 4 pairs of IBAT, DBAT */ struct batrange { /* stores address ranges mapped by BATs */ unsigned long start; unsigned long limit; unsigned long phys; } bat_addrs[4]; /* * Return PA for this VA if it is mapped by a BAT, or 0 */ unsigned long v_mapped_by_bats(unsigned long va) { int b; for (b = 0; b < 4; ++b) if (va >= bat_addrs[b].start && va < bat_addrs[b].limit) return bat_addrs[b].phys + (va - bat_addrs[b].start); return 0; } /* * Return VA for a given PA or 0 if not mapped */ unsigned long p_mapped_by_bats(unsigned long pa) { int b; for (b = 0; b < 4; ++b) if (pa >= bat_addrs[b].phys && pa < (bat_addrs[b].limit-bat_addrs[b].start) +bat_addrs[b].phys) return bat_addrs[b].start+(pa-bat_addrs[b].phys); return 0; } void __init bat_mapin_ram(unsigned long bat2, unsigned long bat3) { unsigned long tot, done; tot = total_lowmem; setbat(2, KERNELBASE, PPC_MEMSTART, bat2, _PAGE_KERNEL); done = (unsigned long)bat_addrs[2].limit - KERNELBASE + 1; if ((done < tot) && !bat_addrs[3].limit && bat3) { tot -= done; setbat(3, KERNELBASE+done, PPC_MEMSTART+done, bat3, _PAGE_KERNEL); } } /* * Set up one of the I/D BAT (block address translation) register pairs. * The parameters are not checked; in particular size must be a power * of 2 between 128k and 256M. */ void __init setbat(int index, unsigned long virt, unsigned long phys, unsigned int size, int flags) { unsigned int bl; int wimgxpp; union ubat *bat = BATS[index]; if (((flags & _PAGE_NO_CACHE) == 0) && (cur_cpu_spec[0]->cpu_features & CPU_FTR_NEED_COHERENT)) flags |= _PAGE_COHERENT; bl = (size >> 17) - 1; if (PVR_VER(mfspr(PVR)) != 1) { /* 603, 604, etc. */ /* Do DBAT first */ wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE | _PAGE_COHERENT | _PAGE_GUARDED); wimgxpp |= (flags & _PAGE_RW)? BPP_RW: BPP_RX; bat[1].word[0] = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */ bat[1].word[1] = phys | wimgxpp; #ifndef CONFIG_KGDB /* want user access for breakpoints */ if (flags & _PAGE_USER) #endif bat[1].bat.batu.vp = 1; if (flags & _PAGE_GUARDED) { /* G bit must be zero in IBATs */ bat[0].word[0] = bat[0].word[1] = 0; } else { /* make IBAT same as DBAT */ bat[0] = bat[1]; } } else { /* 601 cpu */ if (bl > BL_8M) bl = BL_8M; wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE | _PAGE_COHERENT); wimgxpp |= (flags & _PAGE_RW)? ((flags & _PAGE_USER)? PP_RWRW: PP_RWXX): PP_RXRX; bat->word[0] = virt | wimgxpp | 4; /* Ks=0, Ku=1 */ bat->word[1] = phys | bl | 0x40; /* V=1 */ } bat_addrs[index].start = virt; bat_addrs[index].limit = virt + ((bl + 1) << 17) - 1; bat_addrs[index].phys = phys; } /* * Initialize the hash table and patch the instructions in hashtable.S. */ void __init MMU_init_hw(void) { unsigned int hmask, mb, mb2; unsigned int n_hpteg, lg_n_hpteg; extern unsigned int hash_page_patch_A[]; extern unsigned int hash_page_patch_B[], hash_page_patch_C[]; extern unsigned int flush_hash_patch_A[], flush_hash_patch_B[]; if ((cur_cpu_spec[0]->cpu_features & CPU_FTR_HPTE_TABLE) == 0) { Hash_size = 0; Hash_end = 0; Hash = 0; return; } if ( ppc_md.progress ) ppc_md.progress("hash:enter", 0x105); #ifdef CONFIG_PPC64BRIDGE #define LG_HPTEG_SIZE 7 /* 128 bytes per HPTEG */ #define SDR1_LOW_BITS (lg_n_hpteg - 11) #define MIN_N_HPTEG 2048 /* min 256kB hash table */ #else #define LG_HPTEG_SIZE 6 /* 64 bytes per HPTEG */ #define SDR1_LOW_BITS ((n_hpteg - 1) >> 10) #define MIN_N_HPTEG 1024 /* min 64kB hash table */ #endif #ifdef CONFIG_POWER4 /* The hash table has already been allocated and initialized in prom.c */ n_hpteg = Hash_size >> LG_HPTEG_SIZE; lg_n_hpteg = __ilog2(n_hpteg); /* Remove the hash table from the available memory */ if (Hash) reserve_phys_mem(__pa(Hash), Hash_size); #else /* CONFIG_POWER4 */ /* * Allow 1 HPTE (1/8 HPTEG) for each page of memory. * This is less than the recommended amount, but then * Linux ain't AIX. */ n_hpteg = total_memory / (PAGE_SIZE * 8); if (n_hpteg < MIN_N_HPTEG) n_hpteg = MIN_N_HPTEG; lg_n_hpteg = __ilog2(n_hpteg); if (n_hpteg & (n_hpteg - 1)) { ++lg_n_hpteg; /* round up if not power of 2 */ n_hpteg = 1 << lg_n_hpteg; } Hash_size = n_hpteg << LG_HPTEG_SIZE; /* * Find some memory for the hash table. */ if ( ppc_md.progress ) ppc_md.progress("hash:find piece", 0x322); Hash = mem_pieces_find(Hash_size, Hash_size); cacheable_memzero(Hash, Hash_size); _SDR1 = __pa(Hash) | SDR1_LOW_BITS; Hash_end = (PTE *) ((unsigned long)Hash + Hash_size); #endif /* CONFIG_POWER4 */ printk("Total memory = %ldMB; using %ldkB for hash table (at %p)\n", total_memory >> 20, Hash_size >> 10, Hash); /* * Patch up the instructions in hashtable.S:create_hpte */ if ( ppc_md.progress ) ppc_md.progress("hash:patch", 0x345); Hash_mask = n_hpteg - 1; hmask = Hash_mask >> (16 - LG_HPTEG_SIZE); mb2 = mb = 32 - LG_HPTEG_SIZE - lg_n_hpteg; if (lg_n_hpteg > 16) mb2 = 16 - LG_HPTEG_SIZE; hash_page_patch_A[0] = (hash_page_patch_A[0] & ~0xffff) | ((unsigned int)(Hash) >> 16); hash_page_patch_A[1] = (hash_page_patch_A[1] & ~0x7c0) | (mb << 6); hash_page_patch_A[2] = (hash_page_patch_A[2] & ~0x7c0) | (mb2 << 6); hash_page_patch_B[0] = (hash_page_patch_B[0] & ~0xffff) | hmask; hash_page_patch_C[0] = (hash_page_patch_C[0] & ~0xffff) | hmask; /* * Ensure that the locations we've patched have been written * out from the data cache and invalidated in the instruction * cache, on those machines with split caches. */ flush_icache_range((unsigned long) &hash_page_patch_A[0], (unsigned long) &hash_page_patch_C[1]); /* * Patch up the instructions in hashtable.S:flush_hash_page */ flush_hash_patch_A[0] = (flush_hash_patch_A[0] & ~0xffff) | ((unsigned int)(Hash) >> 16); flush_hash_patch_A[1] = (flush_hash_patch_A[1] & ~0x7c0) | (mb << 6); flush_hash_patch_A[2] = (flush_hash_patch_A[2] & ~0x7c0) | (mb2 << 6); flush_hash_patch_B[0] = (flush_hash_patch_B[0] & ~0xffff) | hmask; flush_icache_range((unsigned long) &flush_hash_patch_A[0], (unsigned long) &flush_hash_patch_B[1]); if ( ppc_md.progress ) ppc_md.progress("hash:done", 0x205); } /* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a PTE in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux PTE. */ void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) { struct mm_struct *mm; pmd_t *pmd; pte_t *ptep; static int nopreload; if (Hash == 0 || nopreload) return; /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ if (!pte_young(pte)) return; mm = (address < TASK_SIZE)? vma->vm_mm: &init_mm; pmd = pmd_offset(pgd_offset(mm, address), address); if (!pmd_none(*pmd)) { ptep = pte_offset(pmd, address); add_hash_page(mm->context, address, ptep); } }