/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_BLK_DEV_INITRD #include /* for initrd_* */ #endif #include #include #include #include #include #include #include #include #include #include #include "mem_pieces.h" #include "mmu_decl.h" /* * Just any arbitrary offset to the start of the vmalloc VM area: the * current 64MB value just means that there will be a 64MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) * * We no longer map larger than phys RAM with the BATs so we don't have * to worry about the VMALLOC_OFFSET causing problems. We do have to worry * about clashes between our early calls to ioremap() that start growing down * from ioremap_base being run into the VM area allocations (growing upwards * from VMALLOC_START). For this reason we have ioremap_bot to check when * we actually run into our mappings setup in the early boot with the VM * system. This really does become a problem for machines with good amounts * of RAM. -- Cort */ #ifdef CONFIG_PIN_TLB #define VMALLOC_OFFSET (0x2000000) /* 32M */ #else #define VMALLOC_OFFSET (0x1000000) /* 16M */ #endif unsigned long vmalloc_start; mmu_gather_t mmu_gathers[NR_CPUS]; unsigned long total_memory; unsigned long total_lowmem; unsigned long ppc_memstart; unsigned long ppc_memoffset = PAGE_OFFSET; int mem_init_done; int init_bootmem_done; int boot_mapsize; unsigned long totalram_pages; unsigned long totalhigh_pages; #ifdef CONFIG_ALL_PPC unsigned long agp_special_page; #endif extern char _end[]; extern char etext[], _stext[]; extern char __init_begin, __init_end; extern char __prep_begin, __prep_end; extern char __chrp_begin, __chrp_end; extern char __pmac_begin, __pmac_end; extern char __openfirmware_begin, __openfirmware_end; #ifdef CONFIG_HIGHMEM pte_t *kmap_pte; pgprot_t kmap_prot; #endif void MMU_init(void); void set_phys_avail(unsigned long total_ram); /* XXX should be in current.h -- paulus */ extern struct task_struct *current_set[NR_CPUS]; char *klimit = _end; struct mem_pieces phys_avail; extern char *sysmap; extern unsigned long sysmap_size; /* * this tells the system to map all of ram with the segregs * (i.e. page tables) instead of the bats. * -- Cort */ int __map_without_bats; /* max amount of RAM to use */ unsigned long __max_memory; int do_check_pgt_cache(int low, int high) { int freed = 0; if (pgtable_cache_size > high) { do { if (pgd_quicklist) { free_pgd_slow(get_pgd_fast()); freed++; } if (pte_quicklist) { pte_free_slow(pte_alloc_one_fast(NULL, 0)); freed++; } } while (pgtable_cache_size > low); } return freed; } void show_mem(void) { int i,free = 0,total = 0,reserved = 0; int shared = 0, cached = 0; struct task_struct *p; int highmem = 0; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10)); i = max_mapnr; while (i-- > 0) { total++; if (PageHighMem(mem_map+i)) highmem++; if (PageReserved(mem_map+i)) reserved++; else if (PageSwapCache(mem_map+i)) cached++; else if (!page_count(mem_map+i)) free++; else shared += atomic_read(&mem_map[i].count) - 1; } printk("%d pages of RAM\n",total); printk("%d pages of HIGHMEM\n", highmem); printk("%d free pages\n",free); printk("%d reserved pages\n",reserved); printk("%d pages shared\n",shared); printk("%d pages swap cached\n",cached); printk("%d pages in page table cache\n",(int)pgtable_cache_size); show_buffers(); printk("%-8s %3s %8s %8s %8s %9s %8s", "Process", "Pid", "Ctx", "Ctx<<4", "Last Sys", "pc", "task"); #ifdef CONFIG_SMP printk(" %3s", "CPU"); #endif /* CONFIG_SMP */ printk("\n"); for_each_task(p) { printk("%-8.8s %3d %8ld %8ld %8ld %c%08lx %08lx ", p->comm,p->pid, (p->mm)?p->mm->context:0, (p->mm)?(p->mm->context<<4):0, p->thread.last_syscall, (p->thread.regs)?user_mode(p->thread.regs) ? 'u' : 'k' : '?', (p->thread.regs)?p->thread.regs->nip:0, (ulong)p); { int iscur = 0; #ifdef CONFIG_SMP printk("%3d ", p->processor); if ( (p->processor != NO_PROC_ID) && (p == current_set[p->processor]) ) { iscur = 1; printk("current"); } #else if ( p == current ) { iscur = 1; printk("current"); } if ( p == last_task_used_math ) { if ( iscur ) printk(","); printk("last math"); } #endif /* CONFIG_SMP */ printk("\n"); } } } void si_meminfo(struct sysinfo *val) { val->totalram = totalram_pages; val->sharedram = 0; val->freeram = nr_free_pages(); val->bufferram = atomic_read(&buffermem_pages); val->totalhigh = totalhigh_pages; val->freehigh = nr_free_highpages(); val->mem_unit = PAGE_SIZE; } /* Free up now-unused memory */ static void free_sec(unsigned long start, unsigned long end, const char *name) { unsigned long cnt = 0; while (start < end) { ClearPageReserved(virt_to_page(start)); set_page_count(virt_to_page(start), 1); free_page(start); cnt++; start += PAGE_SIZE; } if (cnt) { printk(" %ldk %s", cnt << (PAGE_SHIFT - 10), name); totalram_pages += cnt; } } void free_initmem(void) { #define FREESEC(TYPE) \ free_sec((unsigned long)(&__ ## TYPE ## _begin), \ (unsigned long)(&__ ## TYPE ## _end), \ #TYPE); printk (KERN_INFO "Freeing unused kernel memory:"); FREESEC(init); if (_machine != _MACH_Pmac) FREESEC(pmac); if (_machine != _MACH_chrp) FREESEC(chrp); if (_machine != _MACH_prep) FREESEC(prep); if (!have_of) FREESEC(openfirmware); printk("\n"); #undef FREESEC } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { printk (KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); set_page_count(virt_to_page(start), 1); free_page(start); totalram_pages++; } } #endif /* * Check for command-line options that affect what MMU_init will do. */ void MMU_setup(void) { /* Check for nobats option (used in mapin_ram). */ if (strstr(cmd_line, "nobats")) { __map_without_bats = 1; } /* Look for mem= option on command line */ if (strstr(cmd_line, "mem=")) { char *p, *q; unsigned long maxmem = 0; for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) { q = p + 4; if (p > cmd_line && p[-1] != ' ') continue; maxmem = simple_strtoul(q, &q, 0); if (*q == 'k' || *q == 'K') { maxmem <<= 10; ++q; } else if (*q == 'm' || *q == 'M') { maxmem <<= 20; ++q; } } __max_memory = maxmem; } } /* * MMU_init sets up the basic memory mappings for the kernel, * including both RAM and possibly some I/O regions, * and sets up the page tables and the MMU hardware ready to go. */ void __init MMU_init(void) { if (ppc_md.progress) ppc_md.progress("MMU:enter", 0x111); /* parse args from command line */ MMU_setup(); /* * Figure out how much memory we have, how much * is lowmem, and how much is highmem. */ total_memory = ppc_md.find_end_of_memory(); if (__max_memory && total_memory > __max_memory) total_memory = __max_memory; total_lowmem = total_memory; adjust_total_lowmem(); set_phys_avail(total_lowmem); vmalloc_start = KERNELBASE + total_lowmem; /* Initialize the MMU hardware */ if (ppc_md.progress) ppc_md.progress("MMU:hw init", 0x300); MMU_init_hw(); /* Map in all of RAM starting at KERNELBASE */ if (ppc_md.progress) ppc_md.progress("MMU:mapin", 0x301); mapin_ram(); #ifdef CONFIG_HIGHMEM ioremap_base = PKMAP_BASE; #else ioremap_base = 0xfe000000UL; /* for now, could be 0xfffff000 */ #endif /* CONFIG_HIGHMEM */ ioremap_bot = ioremap_base; /* Map in I/O resources */ if (ppc_md.progress) ppc_md.progress("MMU:setio", 0x302); if (ppc_md.setup_io_mappings) ppc_md.setup_io_mappings(); /* Initialize the context management stuff */ mmu_context_init(); if (ppc_md.progress) ppc_md.progress("MMU:exit", 0x211); #ifdef CONFIG_BOOTX_TEXT /* By default, we are no longer mapped */ boot_text_mapped = 0; /* Must be done last, or ppc_md.progress will die. */ map_boot_text(); #endif } /* This is only called until mem_init is done. */ void __init *early_get_page(void) { void *p; if (init_bootmem_done) { p = alloc_bootmem_pages(PAGE_SIZE); } else { p = mem_pieces_find(PAGE_SIZE, PAGE_SIZE); } return p; } /* * Initialize the bootmem system and give it all the memory we * have available. */ void __init do_init_bootmem(void) { unsigned long start, size; int i; /* * Find an area to use for the bootmem bitmap. * We look for the first area which is at least * 128kB in length (128kB is enough for a bitmap * for 4GB of memory, using 4kB pages), plus 1 page * (in case the address isn't page-aligned). */ start = 0; size = 0; for (i = 0; i < phys_avail.n_regions; ++i) { unsigned long a = phys_avail.regions[i].address; unsigned long s = phys_avail.regions[i].size; if (s <= size) continue; start = a; size = s; if (s >= 33 * PAGE_SIZE) break; } start = PAGE_ALIGN(start); min_low_pfn = start >> PAGE_SHIFT; max_low_pfn = (PPC_MEMSTART + total_lowmem) >> PAGE_SHIFT; boot_mapsize = init_bootmem_node(&contig_page_data, min_low_pfn, PPC_MEMSTART >> PAGE_SHIFT, max_low_pfn); /* remove the bootmem bitmap from the available memory */ mem_pieces_remove(&phys_avail, start, boot_mapsize, 1); /* add everything in phys_avail into the bootmem map */ for (i = 0; i < phys_avail.n_regions; ++i) free_bootmem(phys_avail.regions[i].address, phys_avail.regions[i].size); init_bootmem_done = 1; } /* * paging_init() sets up the page tables - in fact we've already done this. */ void __init paging_init(void) { unsigned long zones_size[MAX_NR_ZONES], i; #ifdef CONFIG_HIGHMEM map_page(PKMAP_BASE, 0, 0); /* XXX gross */ pkmap_page_table = pte_offset(pmd_offset(pgd_offset_k(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE); map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */ kmap_pte = pte_offset(pmd_offset(pgd_offset_k(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN); kmap_prot = PAGE_KERNEL; #endif /* CONFIG_HIGHMEM */ /* * All pages are DMA-able so we put them all in the DMA zone. */ zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT; for (i = 1; i < MAX_NR_ZONES; i++) zones_size[i] = 0; #ifdef CONFIG_HIGHMEM zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT; #endif /* CONFIG_HIGHMEM */ free_area_init(zones_size); } void __init mem_init(void) { unsigned long addr; int codepages = 0; int datapages = 0; int initpages = 0; #ifdef CONFIG_HIGHMEM unsigned long highmem_mapnr; highmem_mapnr = total_lowmem >> PAGE_SHIFT; highmem_start_page = mem_map + highmem_mapnr; #endif /* CONFIG_HIGHMEM */ max_mapnr = total_memory >> PAGE_SHIFT; high_memory = (void *) __va(PPC_MEMSTART + total_lowmem); num_physpages = max_mapnr; /* RAM is assumed contiguous */ totalram_pages += free_all_bootmem(); /* adjust vmalloc_start */ vmalloc_start = (vmalloc_start + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1); #ifdef CONFIG_BLK_DEV_INITRD /* if we are booted from BootX with an initial ramdisk, make sure the ramdisk pages aren't reserved. */ if (initrd_start) { for (addr = initrd_start; addr < initrd_end; addr += PAGE_SIZE) ClearPageReserved(virt_to_page(addr)); } #endif /* CONFIG_BLK_DEV_INITRD */ #if defined(CONFIG_ALL_PPC) /* mark the RTAS pages as reserved */ if ( rtas_data ) for (addr = (ulong)__va(rtas_data); addr < PAGE_ALIGN((ulong)__va(rtas_data)+rtas_size) ; addr += PAGE_SIZE) SetPageReserved(virt_to_page(addr)); if (agp_special_page) SetPageReserved(virt_to_page(agp_special_page)); #endif /* defined(CONFIG_ALL_PPC) */ if ( sysmap ) for (addr = (unsigned long)sysmap; addr < PAGE_ALIGN((unsigned long)sysmap+sysmap_size) ; addr += PAGE_SIZE) SetPageReserved(virt_to_page(addr)); for (addr = PAGE_OFFSET; addr < (unsigned long)high_memory; addr += PAGE_SIZE) { if (!PageReserved(virt_to_page(addr))) continue; if (addr < (ulong) etext) codepages++; else if (addr >= (unsigned long)&__init_begin && addr < (unsigned long)&__init_end) initpages++; else if (addr < (ulong) klimit) datapages++; } #ifdef CONFIG_HIGHMEM { unsigned long pfn; for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { struct page *page = mem_map + pfn; ClearPageReserved(page); set_bit(PG_highmem, &page->flags); atomic_set(&page->count, 1); __free_page(page); totalhigh_pages++; } totalram_pages += totalhigh_pages; } #endif /* CONFIG_HIGHMEM */ printk(KERN_INFO "Memory: %luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n", (unsigned long)nr_free_pages()<< (PAGE_SHIFT-10), codepages<< (PAGE_SHIFT-10), datapages<< (PAGE_SHIFT-10), initpages<< (PAGE_SHIFT-10), (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))); if (sysmap) printk("System.map loaded at 0x%08x for debugger, size: %ld bytes\n", (unsigned int)sysmap, sysmap_size); #if defined(CONFIG_ALL_PPC) if (agp_special_page) printk(KERN_INFO "AGP special page: 0x%08lx\n", agp_special_page); #endif /* defined(CONFIG_ALL_PPC) */ mem_init_done = 1; } /* * Set phys_avail to the amount of physical memory, * less the kernel text/data/bss. */ void __init set_phys_avail(unsigned long total_memory) { unsigned long kstart, ksize; /* * Initially, available physical memory is equivalent to all * physical memory. */ phys_avail.regions[0].address = PPC_MEMSTART; phys_avail.regions[0].size = total_memory; phys_avail.n_regions = 1; /* * Map out the kernel text/data/bss from the available physical * memory. */ kstart = __pa(_stext); /* should be 0 */ ksize = PAGE_ALIGN(klimit - _stext); mem_pieces_remove(&phys_avail, kstart, ksize, 0); mem_pieces_remove(&phys_avail, 0, 0x4000, 0); #if defined(CONFIG_BLK_DEV_INITRD) /* Remove the init RAM disk from the available memory. */ if (initrd_start) { mem_pieces_remove(&phys_avail, __pa(initrd_start), initrd_end - initrd_start, 1); } #endif /* CONFIG_BLK_DEV_INITRD */ #ifdef CONFIG_ALL_PPC /* remove the RTAS pages from the available memory */ if (rtas_data) mem_pieces_remove(&phys_avail, rtas_data, rtas_size, 1); /* Because of some uninorth weirdness, we need a page of * memory as high as possible (it must be outside of the * bus address seen as the AGP aperture). It will be used * by the r128 DRM driver * * FIXME: We need to make sure that page doesn't overlap any of the\ * above. This could be done by improving mem_pieces_find to be able * to do a backward search from the end of the list. */ if (_machine == _MACH_Pmac && find_devices("uni-north-agp")) { agp_special_page = (total_memory - PAGE_SIZE); mem_pieces_remove(&phys_avail, agp_special_page, PAGE_SIZE, 0); agp_special_page = (unsigned long)__va(agp_special_page); } #endif /* CONFIG_ALL_PPC */ /* remove the sysmap pages from the available memory */ if (sysmap) mem_pieces_remove(&phys_avail, __pa(sysmap), sysmap_size, 1); } /* Mark some memory as reserved by removing it from phys_avail. */ void __init reserve_phys_mem(unsigned long start, unsigned long size) { mem_pieces_remove(&phys_avail, start, size, 1); } /* * This is called when a page has been modified by the kernel. * It just marks the page as not i-cache clean. We do the i-cache * flush later when the page is given to a user process, if necessary. */ void flush_dcache_page(struct page *page) { clear_bit(PG_arch_1, &page->flags); } void flush_icache_page(struct vm_area_struct *vma, struct page *page) { if (page->mapping && !PageReserved(page) && !test_bit(PG_arch_1, &page->flags)) { __flush_dcache_icache(kmap(page)); kunmap(page); set_bit(PG_arch_1, &page->flags); } } void clear_user_page(void *page, unsigned long vaddr) { clear_page(page); __flush_dcache_icache(page); } void copy_user_page(void *vto, void *vfrom, unsigned long vaddr) { copy_page(vto, vfrom); __flush_dcache_icache(vto); } void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, unsigned long addr, int len) { unsigned long maddr; maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); flush_icache_range(maddr, maddr + len); kunmap(page); }