/* * UART driver for MPC8260 CPM SCC or SMC * Copyright (c) 1999 Dan Malek (dmalek@jlc.net) * Copyright (c) 2000 MontaVista Software, Inc. (source@mvista.com) * 2.3.99 updates * * I used the 8xx uart.c driver as the framework for this driver. * The original code was written for the EST8260 board. I tried to make * it generic, but there may be some assumptions in the structures that * have to be fixed later. * * The 8xx and 8260 are similar, but not identical. Over time we * could probably merge these two drivers. * To save porting time, I did not bother to change any object names * that are not accessed outside of this file. * It still needs lots of work........When it was easy, I included code * to support the SCCs. * Only the SCCs support modem control, so that is not complete either. * * This module exports the following rs232 io functions: * * int rs_8xx_init(void); */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MAGIC_SYSRQ #include #endif #ifdef CONFIG_SERIAL_CONSOLE #include /* SCC Console configuration. Not quite finished. The SCC_CONSOLE * should be the number of the SCC to use, but only SCC1 will * work at this time. */ #ifdef CONFIG_SCC_CONSOLE #define SCC_CONSOLE 1 #endif /* this defines the index into rs_table for the port to use */ #ifndef CONFIG_SERIAL_CONSOLE_PORT #define CONFIG_SERIAL_CONSOLE_PORT 0 #endif #endif #define CONFIG_SERIAL_CONSOLE_PORT 0 #define TX_WAKEUP ASYNC_SHARE_IRQ static char *serial_name = "CPM UART driver"; static char *serial_version = "0.01"; static DECLARE_TASK_QUEUE(tq_serial); static struct tty_driver serial_driver, callout_driver; static int serial_refcount; static int serial_console_setup(struct console *co, char *options); static void serial_console_write(struct console *c, const char *s, unsigned count); static kdev_t serial_console_device(struct console *c); #if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) static unsigned long break_pressed; /* break, really ... */ #endif /* * Serial driver configuration section. Here are the various options: */ #define SERIAL_PARANOIA_CHECK #define CONFIG_SERIAL_NOPAUSE_IO #define SERIAL_DO_RESTART /* Set of debugging defines */ #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #undef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT #define _INLINE_ inline #define DBG_CNT(s) /* We overload some of the items in the data structure to meet our * needs. For example, the port address is the CPM parameter ram * offset for the SCC or SMC. The maximum number of ports is 4 SCCs and * 2 SMCs. The "hub6" field is used to indicate the channel number, with * 0 and 1 indicating the SMCs and 2, 3, 4, and 5 are the SCCs. * Since these ports are so versatile, I don't yet have a strategy for * their management. For example, SCC1 is used for Ethernet. Right * now, just don't put them in the table. Of course, right now I just * want the SMC to work as a uart :-).. * The "type" field is currently set to 0, for PORT_UNKNOWN. It is * not currently used. I should probably use it to indicate the port * type of CMS or SCC. * The SMCs do not support any modem control signals. */ #define smc_scc_num hub6 /* The choice of serial port to use for KGDB. If the system has * two ports, you can use one for console and one for KGDB (which * doesn't make sense to me, but people asked for it). */ #ifdef CONFIG_KGDB_TTYS1 #define KGDB_SER_IDX 1 /* SCC2/SMC2 */ #else #define KGDB_SER_IDX 0 /* SCC1/SMC1 */ #endif #ifndef SCC_CONSOLE /* SMC2 is sometimes used for low performance TDM interfaces. Define * this as 1 if you want SMC2 as a serial port UART managed by this driver. * Define this as 0 if you wish to use SMC2 for something else. */ #define USE_SMC2 1 /* Define SCC to ttySx mapping. */ #define SCC_NUM_BASE (USE_SMC2 + 1) /* SCC base tty "number" */ /* Define which SCC is the first one to use for a serial port. These * are 0-based numbers, i.e. this assumes the first SCC (SCC1) is used * for Ethernet, and the first available SCC for serial UART is SCC2. * NOTE: IF YOU CHANGE THIS, you have to change the PROFF_xxx and * interrupt vectors in the table below to match. */ #define SCC_IDX_BASE 1 /* table index */ static struct serial_state rs_table[] = { /* UART CLK PORT IRQ FLAGS NUM */ { 0, 0, PROFF_SMC1, SIU_INT_SMC1, 0, 0 }, /* SMC1 ttyS0 */ #if USE_SMC2 { 0, 0, PROFF_SMC2, SIU_INT_SMC2, 0, 1 }, /* SMC2 ttyS1 */ #endif #ifndef CONFIG_SCC1_ENET { 0, 0, PROFF_SCC1, SIU_INT_SCC1, 0, SCC_NUM_BASE}, /* SCC1 ttyS2 */ #endif #ifndef CONFIG_SCC2_ENET { 0, 0, PROFF_SCC2, SIU_INT_SCC2, 0, SCC_NUM_BASE + 1}, /* SCC2 ttyS3 */ #endif }; #else /* SCC_CONSOLE */ #define SCC_NUM_BASE 0 /* SCC base tty "number" */ #define SCC_IDX_BASE 0 /* table index */ static struct serial_state rs_table[] = { /* UART CLK PORT IRQ FLAGS NUM */ { 0, 0, PROFF_SCC1, SIU_INT_SCC1, 0, SCC_NUM_BASE}, /* SCC1 ttyS2 */ { 0, 0, PROFF_SCC2, SIU_INT_SCC2, 0, SCC_NUM_BASE + 1}, /* SCC2 ttyS3 */ }; #endif /* SCC_CONSOLE */ #define PORT_NUM(P) (((P) < (SCC_NUM_BASE)) ? (P) : (P)-(SCC_NUM_BASE)) #define NR_PORTS (sizeof(rs_table)/sizeof(struct serial_state)) static struct tty_struct *serial_table[NR_PORTS]; static struct termios *serial_termios[NR_PORTS]; static struct termios *serial_termios_locked[NR_PORTS]; /* The number of buffer descriptors and their sizes. */ #define RX_NUM_FIFO 4 #define RX_BUF_SIZE 32 #define TX_NUM_FIFO 4 #define TX_BUF_SIZE 32 #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif /* The async_struct in serial.h does not really give us what we * need, so define our own here. */ typedef struct serial_info { int magic; int flags; struct serial_state *state; struct tty_struct *tty; int read_status_mask; int ignore_status_mask; int timeout; int line; int x_char; /* xon/xoff character */ int close_delay; unsigned short closing_wait; unsigned short closing_wait2; unsigned long event; unsigned long last_active; int blocked_open; /* # of blocked opens */ long session; /* Session of opening process */ long pgrp; /* pgrp of opening process */ struct tq_struct tqueue; struct tq_struct tqueue_hangup; wait_queue_head_t open_wait; wait_queue_head_t close_wait; /* CPM Buffer Descriptor pointers. */ cbd_t *rx_bd_base; cbd_t *rx_cur; cbd_t *tx_bd_base; cbd_t *tx_cur; } ser_info_t; static struct console sercons = { name: "ttyS", write: serial_console_write, device: serial_console_device, setup: serial_console_setup, flags: CON_PRINTBUFFER, index: CONFIG_SERIAL_CONSOLE_PORT, }; static void change_speed(ser_info_t *info); static void rs_8xx_wait_until_sent(struct tty_struct *tty, int timeout); static inline int serial_paranoia_check(ser_info_t *info, kdev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%s) in %s\n"; static const char *badinfo = "Warning: null async_struct for (%s) in %s\n"; if (!info) { printk(badinfo, kdevname(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, kdevname(device), routine); return 1; } #endif return 0; } /* * This is used to figure out the divisor speeds and the timeouts, * indexed by the termio value. The generic CPM functions are responsible * for setting and assigning baud rate generators for us. */ static int baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 0 }; /* * ------------------------------------------------------------ * rs_stop() and rs_start() * * This routines are called before setting or resetting tty->stopped. * They enable or disable transmitter interrupts, as necessary. * ------------------------------------------------------------ */ static void rs_8xx_stop(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; int idx; unsigned long flags; volatile scc_t *sccp; volatile smc_t *smcp; if (serial_paranoia_check(info, tty->device, "rs_stop")) return; save_flags(flags); cli(); if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) { smcp = &cpm2_immr->im_smc[idx]; smcp->smc_smcm &= ~SMCM_TX; } else { sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE]; sccp->scc_sccm &= ~UART_SCCM_TX; } restore_flags(flags); } static void rs_8xx_start(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; int idx; unsigned long flags; volatile scc_t *sccp; volatile smc_t *smcp; if (serial_paranoia_check(info, tty->device, "rs_stop")) return; save_flags(flags); cli(); if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) { smcp = &cpm2_immr->im_smc[idx]; smcp->smc_smcm |= SMCM_TX; } else { sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE]; sccp->scc_sccm |= UART_SCCM_TX; } restore_flags(flags); } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * Note: rs_interrupt() is a "fast" interrupt, which means that it * runs with interrupts turned off. People who may want to modify * rs_interrupt() should try to keep the interrupt handler as fast as * possible. After you are done making modifications, it is not a bad * idea to do: * * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c * * and look at the resulting assemble code in serial.s. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static _INLINE_ void rs_sched_event(ser_info_t *info, int event) { info->event |= 1 << event; queue_task(&info->tqueue, &tq_serial); mark_bh(SERIAL_BH); } static _INLINE_ void receive_chars(ser_info_t *info, struct pt_regs *regs) { struct tty_struct *tty = info->tty; unsigned char ch, *cp; /*int ignored = 0;*/ int i; ushort status; struct async_icount *icount; volatile cbd_t *bdp; icount = &info->state->icount; /* Just loop through the closed BDs and copy the characters into * the buffer. */ bdp = info->rx_cur; for (;;) { if (bdp->cbd_sc & BD_SC_EMPTY) /* If this one is empty */ break; /* we are all done */ /* The read status mask tell us what we should do with * incoming characters, especially if errors occur. * One special case is the use of BD_SC_EMPTY. If * this is not set, we are supposed to be ignoring * inputs. In this case, just mark the buffer empty and * continue. if (!(info->read_status_mask & BD_SC_EMPTY)) { bdp->cbd_sc |= BD_SC_EMPTY; bdp->cbd_sc &= ~(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV); if (bdp->cbd_sc & BD_SC_WRAP) bdp = info->rx_bd_base; else bdp++; continue; } */ /* Get the number of characters and the buffer pointer. */ i = bdp->cbd_datlen; cp = (unsigned char *)__va(bdp->cbd_bufaddr); status = bdp->cbd_sc; #ifdef CONFIG_KGDB if (info->state->smc_scc_num == KGDB_SER_IDX && (*cp == 0x03 || *cp == '$')) { breakpoint(); return; } #endif /* Check to see if there is room in the tty buffer for * the characters in our BD buffer. If not, we exit * now, leaving the BD with the characters. We'll pick * them up again on the next receive interrupt (which could * be a timeout). */ if ((tty->flip.count + i) >= TTY_FLIPBUF_SIZE) break; while (i-- > 0) { ch = *cp++; *tty->flip.char_buf_ptr = ch; icount->rx++; #ifdef SERIAL_DEBUG_INTR printk("DR%02x:%02x...", ch, *status); #endif *tty->flip.flag_buf_ptr = 0; if (status & (BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV)) { /* * For statistics only */ if (status & BD_SC_BR) icount->brk++; else if (status & BD_SC_PR) icount->parity++; else if (status & BD_SC_FR) icount->frame++; if (status & BD_SC_OV) icount->overrun++; /* * Now check to see if character should be * ignored, and mask off conditions which * should be ignored. if (status & info->ignore_status_mask) { if (++ignored > 100) break; continue; } */ status &= info->read_status_mask; if (status & (BD_SC_BR)) { #ifdef SERIAL_DEBUG_INTR printk("handling break...."); #endif *tty->flip.flag_buf_ptr = TTY_BREAK; if (info->flags & ASYNC_SAK) do_SAK(tty); } else if (status & BD_SC_PR) *tty->flip.flag_buf_ptr = TTY_PARITY; else if (status & BD_SC_FR) *tty->flip.flag_buf_ptr = TTY_FRAME; if (status & BD_SC_OV) { /* * Overrun is special, since it's * reported immediately, and doesn't * affect the current character */ if (tty->flip.count < TTY_FLIPBUF_SIZE) { tty->flip.count++; tty->flip.flag_buf_ptr++; tty->flip.char_buf_ptr++; *tty->flip.flag_buf_ptr = TTY_OVERRUN; } } } #if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) if (break_pressed && info->line == sercons.index) { if (ch != 0 && time_before(jiffies, break_pressed + HZ*5)) { handle_sysrq(ch, regs, NULL, NULL); break_pressed = 0; goto ignore_char; } else break_pressed = 0; } #endif if (tty->flip.count >= TTY_FLIPBUF_SIZE) break; tty->flip.flag_buf_ptr++; tty->flip.char_buf_ptr++; tty->flip.count++; } #if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) ignore_char: #endif /* This BD is ready to be used again. Clear status. * Get next BD. */ bdp->cbd_sc |= BD_SC_EMPTY; bdp->cbd_sc &= ~(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV); if (bdp->cbd_sc & BD_SC_WRAP) bdp = info->rx_bd_base; else bdp++; } info->rx_cur = (cbd_t *)bdp; queue_task(&tty->flip.tqueue, &tq_timer); } static _INLINE_ void receive_break(ser_info_t *info, struct pt_regs *regs) { struct tty_struct *tty = info->tty; info->state->icount.brk++; #if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) if (info->line == sercons.index) { if (!break_pressed) { break_pressed = jiffies; return; } else break_pressed = 0; } #endif /* Check to see if there is room in the tty buffer for * the break. If not, we exit now, losing the break. FIXME */ if ((tty->flip.count + 1) >= TTY_FLIPBUF_SIZE) return; *(tty->flip.flag_buf_ptr++) = TTY_BREAK; *(tty->flip.char_buf_ptr++) = 0; tty->flip.count++; queue_task(&tty->flip.tqueue, &tq_timer); } static _INLINE_ void transmit_chars(ser_info_t *info, struct pt_regs *regs) { if (info->flags & TX_WAKEUP) { rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); } #ifdef SERIAL_DEBUG_INTR printk("THRE..."); #endif } #ifdef notdef /* I need to do this for the SCCs, so it is left as a reminder. */ static _INLINE_ void check_modem_status(struct async_struct *info) { int status; struct async_icount *icount; status = serial_in(info, UART_MSR); if (status & UART_MSR_ANY_DELTA) { icount = &info->state->icount; /* update input line counters */ if (status & UART_MSR_TERI) icount->rng++; if (status & UART_MSR_DDSR) icount->dsr++; if (status & UART_MSR_DDCD) { icount->dcd++; #ifdef CONFIG_HARD_PPS if ((info->flags & ASYNC_HARDPPS_CD) && (status & UART_MSR_DCD)) hardpps(); #endif } if (status & UART_MSR_DCTS) icount->cts++; wake_up_interruptible(&info->delta_msr_wait); } if ((info->flags & ASYNC_CHECK_CD) && (status & UART_MSR_DDCD)) { #if (defined(SERIAL_DEBUG_OPEN) || defined(SERIAL_DEBUG_INTR)) printk("ttys%d CD now %s...", info->line, (status & UART_MSR_DCD) ? "on" : "off"); #endif if (status & UART_MSR_DCD) wake_up_interruptible(&info->open_wait); else if (!((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_CALLOUT_NOHUP))) { #ifdef SERIAL_DEBUG_OPEN printk("scheduling hangup..."); #endif MOD_INC_USE_COUNT; if (schedule_task(&info->tqueue_hangup) == 0) MOD_DEC_USE_COUNT; } } if (info->flags & ASYNC_CTS_FLOW) { if (info->tty->hw_stopped) { if (status & UART_MSR_CTS) { #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) printk("CTS tx start..."); #endif info->tty->hw_stopped = 0; info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); return; } } else { if (!(status & UART_MSR_CTS)) { #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) printk("CTS tx stop..."); #endif info->tty->hw_stopped = 1; info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } } } } #endif /* * This is the serial driver's interrupt routine for a single port */ static void rs_8xx_interrupt(int irq, void * dev_id, struct pt_regs * regs) { u_char events; int idx; ser_info_t *info; volatile smc_t *smcp; volatile scc_t *sccp; info = (ser_info_t *)dev_id; if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) { smcp = &cpm2_immr->im_smc[idx]; events = smcp->smc_smce; if (events & SMCM_BRKE) receive_break(info, regs); if (events & SMCM_RX) receive_chars(info, regs); if (events & SMCM_TX) transmit_chars(info, regs); smcp->smc_smce = events; } else { sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE]; events = sccp->scc_scce; if (events & SMCM_BRKE) receive_break(info, regs); if (events & SCCM_RX) receive_chars(info, regs); if (events & SCCM_TX) transmit_chars(info, regs); sccp->scc_scce = events; } #ifdef SERIAL_DEBUG_INTR printk("rs_interrupt_single(%d, %x)...", info->state->smc_scc_num, events); #endif #ifdef modem_control check_modem_status(info); #endif info->last_active = jiffies; #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using rs_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&tq_serial); } static void do_softint(void *private_) { ser_info_t *info = (ser_info_t *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); wake_up_interruptible(&tty->write_wait); } } /* * This routine is called from the scheduler tqueue when the interrupt * routine has signalled that a hangup has occurred. The path of * hangup processing is: * * serial interrupt routine -> (scheduler tqueue) -> * do_serial_hangup() -> tty->hangup() -> rs_hangup() * */ static void do_serial_hangup(void *private_) { struct async_struct *info = (struct async_struct *) private_; struct tty_struct *tty; tty = info->tty; if (tty) tty_hangup(tty); MOD_DEC_USE_COUNT; } /*static void rs_8xx_timer(void) { printk("rs_8xx_timer\n"); }*/ static int startup(ser_info_t *info) { unsigned long flags; int retval=0; int idx; struct serial_state *state= info->state; volatile smc_t *smcp; volatile scc_t *sccp; volatile smc_uart_t *up; volatile scc_uart_t *scup; save_flags(flags); cli(); if (info->flags & ASYNC_INITIALIZED) { goto errout; } #ifdef maybe if (!state->port || !state->type) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); goto errout; } #endif #ifdef SERIAL_DEBUG_OPEN printk("starting up ttys%d (irq %d)...", info->line, state->irq); #endif #ifdef modem_control info->MCR = 0; if (info->tty->termios->c_cflag & CBAUD) info->MCR = UART_MCR_DTR | UART_MCR_RTS; #endif if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); /* * and set the speed of the serial port */ change_speed(info); if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) { smcp = &cpm2_immr->im_smc[idx]; /* Enable interrupts and I/O. */ smcp->smc_smcm |= (SMCM_RX | SMCM_TX); smcp->smc_smcmr |= (SMCMR_REN | SMCMR_TEN); /* We can tune the buffer length and idle characters * to take advantage of the entire incoming buffer size. * If mrblr is something other than 1, maxidl has to be * non-zero or we never get an interrupt. The maxidl * is the number of character times we wait after reception * of the last character before we decide no more characters * are coming. */ up = (smc_uart_t *)&cpm2_immr->im_dprambase[state->port]; #if 0 up->smc_mrblr = 1; /* receive buffer length */ up->smc_maxidl = 0; /* wait forever for next char */ #else up->smc_mrblr = RX_BUF_SIZE; up->smc_maxidl = RX_BUF_SIZE; #endif up->smc_brkcr = 1; /* number of break chars */ } else { sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE]; scup = (scc_uart_t *)&cpm2_immr->im_dprambase[state->port]; #if 0 scup->scc_genscc.scc_mrblr = 1; /* receive buffer length */ scup->scc_maxidl = 0; /* wait forever for next char */ #else scup->scc_genscc.scc_mrblr = RX_BUF_SIZE; scup->scc_maxidl = RX_BUF_SIZE; #endif sccp->scc_sccm |= (UART_SCCM_TX | UART_SCCM_RX); sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); } info->flags |= ASYNC_INITIALIZED; restore_flags(flags); return 0; errout: restore_flags(flags); return retval; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(ser_info_t * info) { unsigned long flags; struct serial_state *state; int idx; volatile smc_t *smcp; volatile scc_t *sccp; if (!(info->flags & ASYNC_INITIALIZED)) return; state = info->state; #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....", info->line, state->irq); #endif save_flags(flags); cli(); /* Disable interrupts */ if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) { smcp = &cpm2_immr->im_smc[idx]; /* Disable interrupts and I/O. */ smcp->smc_smcm &= ~(SMCM_RX | SMCM_TX); #ifdef CONFIG_SERIAL_CONSOLE /* We can't disable the transmitter if this is the * system console. */ if (idx != CONFIG_SERIAL_CONSOLE_PORT) #endif smcp->smc_smcmr &= ~(SMCMR_REN | SMCMR_TEN); } else { sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE]; sccp->scc_sccm &= ~(UART_SCCM_TX | UART_SCCM_RX); #ifdef CONFIG_SERIAL_CONSOLE if (idx != CONFIG_SERIAL_CONSOLE_PORT) sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); #endif } if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); info->flags &= ~ASYNC_INITIALIZED; restore_flags(flags); } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(ser_info_t *info) { int baud_rate; unsigned cflag, cval, scval, prev_mode; int i, bits, sbits, idx; unsigned long flags; volatile smc_t *smcp; volatile scc_t *sccp; if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; /* Character length programmed into the mode register is the * sum of: 1 start bit, number of data bits, 0 or 1 parity bit, * 1 or 2 stop bits, minus 1. * The value 'bits' counts this for us. */ cval = 0; scval = 0; /* byte size and parity */ switch (cflag & CSIZE) { case CS5: bits = 5; break; case CS6: bits = 6; break; case CS7: bits = 7; break; case CS8: bits = 8; break; /* Never happens, but GCC is too dumb to figure it out */ default: bits = 8; break; } sbits = bits - 5; if (cflag & CSTOPB) { cval |= SMCMR_SL; /* Two stops */ scval |= SCU_PSMR_SL; bits++; } if (cflag & PARENB) { cval |= SMCMR_PEN; scval |= SCU_PSMR_PEN; bits++; } if (!(cflag & PARODD)) { cval |= SMCMR_PM_EVEN; scval |= (SCU_PSMR_REVP | SCU_PSMR_TEVP); } /* Determine divisor based on baud rate */ i = cflag & CBAUD; if (i >= (sizeof(baud_table)/sizeof(int))) baud_rate = 9600; else baud_rate = baud_table[i]; info->timeout = (TX_BUF_SIZE*HZ*bits); info->timeout += HZ/50; /* Add .02 seconds of slop */ #ifdef modem_control /* CTS flow control flag and modem status interrupts */ info->IER &= ~UART_IER_MSI; if (info->flags & ASYNC_HARDPPS_CD) info->IER |= UART_IER_MSI; if (cflag & CRTSCTS) { info->flags |= ASYNC_CTS_FLOW; info->IER |= UART_IER_MSI; } else info->flags &= ~ASYNC_CTS_FLOW; if (cflag & CLOCAL) info->flags &= ~ASYNC_CHECK_CD; else { info->flags |= ASYNC_CHECK_CD; info->IER |= UART_IER_MSI; } serial_out(info, UART_IER, info->IER); #endif /* * Set up parity check flag */ #define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK)) info->read_status_mask = (BD_SC_EMPTY | BD_SC_OV); if (I_INPCK(info->tty)) info->read_status_mask |= BD_SC_FR | BD_SC_PR; if (I_BRKINT(info->tty) || I_PARMRK(info->tty)) info->read_status_mask |= BD_SC_BR; /* * Characters to ignore */ info->ignore_status_mask = 0; if (I_IGNPAR(info->tty)) info->ignore_status_mask |= BD_SC_PR | BD_SC_FR; if (I_IGNBRK(info->tty)) { info->ignore_status_mask |= BD_SC_BR; /* * If we're ignore parity and break indicators, ignore * overruns too. (For real raw support). */ if (I_IGNPAR(info->tty)) info->ignore_status_mask |= BD_SC_OV; } /* * !!! ignore all characters if CREAD is not set */ if ((cflag & CREAD) == 0) info->read_status_mask &= ~BD_SC_EMPTY; save_flags(flags); cli(); /* Start bit has not been added (so don't, because we would just * subtract it later), and we need to add one for the number of * stops bits (there is always at least one). */ bits++; if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) { smcp = &cpm2_immr->im_smc[idx]; /* Set the mode register. We want to keep a copy of the * enables, because we want to put them back if they were * present. */ prev_mode = smcp->smc_smcmr & (SMCMR_REN | SMCMR_TEN); smcp->smc_smcmr = smcr_mk_clen(bits) | cval | SMCMR_SM_UART | prev_mode; } else { sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE]; sccp->scc_psmr = (sbits << 12) | scval; } cpm2_setbrg(info->state->smc_scc_num, baud_rate); restore_flags(flags); } static void rs_8xx_put_char(struct tty_struct *tty, unsigned char ch) { ser_info_t *info = (ser_info_t *)tty->driver_data; volatile cbd_t *bdp; if (serial_paranoia_check(info, tty->device, "rs_put_char")) return; if (!tty) return; bdp = info->tx_cur; while (bdp->cbd_sc & BD_SC_READY); *((char *)__va(bdp->cbd_bufaddr)) = ch; bdp->cbd_datlen = 1; bdp->cbd_sc |= BD_SC_READY; /* Get next BD. */ if (bdp->cbd_sc & BD_SC_WRAP) bdp = info->tx_bd_base; else bdp++; info->tx_cur = (cbd_t *)bdp; } static int rs_8xx_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { int c, ret = 0; ser_info_t *info = (ser_info_t *)tty->driver_data; volatile cbd_t *bdp; if (serial_paranoia_check(info, tty->device, "rs_write")) return 0; if (!tty) return 0; bdp = info->tx_cur; while (1) { c = MIN(count, TX_BUF_SIZE); if (c <= 0) break; if (bdp->cbd_sc & BD_SC_READY) { info->flags |= TX_WAKEUP; break; } if (from_user) { if (copy_from_user(__va(bdp->cbd_bufaddr), buf, c)) { if (!ret) ret = -EFAULT; break; } } else { memcpy(__va(bdp->cbd_bufaddr), buf, c); } bdp->cbd_datlen = c; bdp->cbd_sc |= BD_SC_READY; buf += c; count -= c; ret += c; /* Get next BD. */ if (bdp->cbd_sc & BD_SC_WRAP) bdp = info->tx_bd_base; else bdp++; info->tx_cur = (cbd_t *)bdp; } return ret; } static int rs_8xx_write_room(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->device, "rs_write_room")) return 0; if ((info->tx_cur->cbd_sc & BD_SC_READY) == 0) { info->flags &= ~TX_WAKEUP; ret = TX_BUF_SIZE; } else { info->flags |= TX_WAKEUP; ret = 0; } return ret; } /* I could track this with transmit counters....maybe later. */ static int rs_8xx_chars_in_buffer(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer")) return 0; return 0; } static void rs_8xx_flush_buffer(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_flush_buffer")) return; /* There is nothing to "flush", whatever we gave the CPM * is on its way out. */ wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); info->flags &= ~TX_WAKEUP; } /* * This function is used to send a high-priority XON/XOFF character to * the device */ static void rs_8xx_send_xchar(struct tty_struct *tty, char ch) { volatile cbd_t *bdp; ser_info_t *info = (ser_info_t *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_send_char")) return; bdp = info->tx_cur; while (bdp->cbd_sc & BD_SC_READY); *((char *)__va(bdp->cbd_bufaddr)) = ch; bdp->cbd_datlen = 1; bdp->cbd_sc |= BD_SC_READY; /* Get next BD. */ if (bdp->cbd_sc & BD_SC_WRAP) bdp = info->tx_bd_base; else bdp++; info->tx_cur = (cbd_t *)bdp; } /* * ------------------------------------------------------------ * rs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void rs_8xx_throttle(struct tty_struct * tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_throttle")) return; if (I_IXOFF(tty)) rs_8xx_send_xchar(tty, STOP_CHAR(tty)); #ifdef modem_control if (tty->termios->c_cflag & CRTSCTS) info->MCR &= ~UART_MCR_RTS; cli(); serial_out(info, UART_MCR, info->MCR); sti(); #endif } static void rs_8xx_unthrottle(struct tty_struct * tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_unthrottle")) return; if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else rs_8xx_send_xchar(tty, START_CHAR(tty)); } #ifdef modem_control if (tty->termios->c_cflag & CRTSCTS) info->MCR |= UART_MCR_RTS; cli(); serial_out(info, UART_MCR, info->MCR); sti(); #endif } /* * ------------------------------------------------------------ * rs_ioctl() and friends * ------------------------------------------------------------ */ #ifdef maybe /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct async_struct * info, unsigned int *value) { unsigned char status; unsigned int result; cli(); status = serial_in(info, UART_LSR); sti(); result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0); return put_user(result,value); } #endif static int get_modem_info(ser_info_t *info, unsigned int *value) { unsigned int result = 0; #ifdef modem_control unsigned char control, status; control = info->MCR; cli(); status = serial_in(info, UART_MSR); sti(); result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0) | ((control & UART_MCR_DTR) ? TIOCM_DTR : 0) #ifdef TIOCM_OUT1 | ((control & UART_MCR_OUT1) ? TIOCM_OUT1 : 0) | ((control & UART_MCR_OUT2) ? TIOCM_OUT2 : 0) #endif | ((status & UART_MSR_DCD) ? TIOCM_CAR : 0) | ((status & UART_MSR_RI) ? TIOCM_RNG : 0) | ((status & UART_MSR_DSR) ? TIOCM_DSR : 0) | ((status & UART_MSR_CTS) ? TIOCM_CTS : 0); #endif return put_user(result,value); } static int set_modem_info(ser_info_t *info, unsigned int cmd, unsigned int *value) { int error; unsigned int arg; error = get_user(arg, value); if (error) return error; #ifdef modem_control switch (cmd) { case TIOCMBIS: if (arg & TIOCM_RTS) info->MCR |= UART_MCR_RTS; if (arg & TIOCM_DTR) info->MCR |= UART_MCR_DTR; #ifdef TIOCM_OUT1 if (arg & TIOCM_OUT1) info->MCR |= UART_MCR_OUT1; if (arg & TIOCM_OUT2) info->MCR |= UART_MCR_OUT2; #endif break; case TIOCMBIC: if (arg & TIOCM_RTS) info->MCR &= ~UART_MCR_RTS; if (arg & TIOCM_DTR) info->MCR &= ~UART_MCR_DTR; #ifdef TIOCM_OUT1 if (arg & TIOCM_OUT1) info->MCR &= ~UART_MCR_OUT1; if (arg & TIOCM_OUT2) info->MCR &= ~UART_MCR_OUT2; #endif break; case TIOCMSET: info->MCR = ((info->MCR & ~(UART_MCR_RTS | #ifdef TIOCM_OUT1 UART_MCR_OUT1 | UART_MCR_OUT2 | #endif UART_MCR_DTR)) | ((arg & TIOCM_RTS) ? UART_MCR_RTS : 0) #ifdef TIOCM_OUT1 | ((arg & TIOCM_OUT1) ? UART_MCR_OUT1 : 0) | ((arg & TIOCM_OUT2) ? UART_MCR_OUT2 : 0) #endif | ((arg & TIOCM_DTR) ? UART_MCR_DTR : 0)); break; default: return -EINVAL; } cli(); serial_out(info, UART_MCR, info->MCR); sti(); #endif return 0; } /* Sending a break is a two step process on the SMC/SCC. It is accomplished * by sending a STOP TRANSMIT command followed by a RESTART TRANSMIT * command. We take advantage of the begin/end functions to make this * happen. */ static void begin_break(ser_info_t *info) { volatile cpm_cpm2_t *cp; uint page, sblock; ushort num; cp = cpmp; if ((num = info->state->smc_scc_num) < SCC_NUM_BASE) { if (num == 0) { page = CPM_CR_SMC1_PAGE; sblock = CPM_CR_SMC1_SBLOCK; } else { page = CPM_CR_SMC2_PAGE; sblock = CPM_CR_SMC2_SBLOCK; } } else { num -= SCC_NUM_BASE; switch (num) { case 0: page = CPM_CR_SCC1_PAGE; sblock = CPM_CR_SCC1_SBLOCK; break; case 1: page = CPM_CR_SCC2_PAGE; sblock = CPM_CR_SCC2_SBLOCK; break; case 2: page = CPM_CR_SCC3_PAGE; sblock = CPM_CR_SCC3_SBLOCK; break; case 3: page = CPM_CR_SCC4_PAGE; sblock = CPM_CR_SCC4_SBLOCK; break; default: return; } } cp->cp_cpcr = mk_cr_cmd(page, sblock, 0, CPM_CR_STOP_TX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); } static void end_break(ser_info_t *info) { volatile cpm_cpm2_t *cp; uint page, sblock; ushort num; cp = cpmp; if ((num = info->state->smc_scc_num) < SCC_NUM_BASE) { if (num == 0) { page = CPM_CR_SMC1_PAGE; sblock = CPM_CR_SMC1_SBLOCK; } else { page = CPM_CR_SMC2_PAGE; sblock = CPM_CR_SMC2_SBLOCK; } } else { num -= SCC_NUM_BASE; switch (num) { case 0: page = CPM_CR_SCC1_PAGE; sblock = CPM_CR_SCC1_SBLOCK; break; case 1: page = CPM_CR_SCC2_PAGE; sblock = CPM_CR_SCC2_SBLOCK; break; case 2: page = CPM_CR_SCC3_PAGE; sblock = CPM_CR_SCC3_SBLOCK; break; case 3: page = CPM_CR_SCC4_PAGE; sblock = CPM_CR_SCC4_SBLOCK; break; default: return; } } cp->cp_cpcr = mk_cr_cmd(page, sblock, 0, CPM_CR_RESTART_TX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); } /* * This routine sends a break character out the serial port. */ static void send_break(ser_info_t *info, int duration) { current->state = TASK_INTERRUPTIBLE; #ifdef SERIAL_DEBUG_SEND_BREAK printk("rs_send_break(%d) jiff=%lu...", duration, jiffies); #endif begin_break(info); schedule_timeout(duration); end_break(info); #ifdef SERIAL_DEBUG_SEND_BREAK printk("done jiffies=%lu\n", jiffies); #endif } static int rs_8xx_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int error; ser_info_t *info = (ser_info_t *)tty->driver_data; int retval; struct async_icount cnow; /* kernel counter temps */ struct serial_icounter_struct *p_cuser; /* user space */ if (serial_paranoia_check(info, tty->device, "rs_ioctl")) return -ENODEV; if ((cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TCSBRK: /* SVID version: non-zero arg --> no break */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); if (signal_pending(current)) return -EINTR; if (!arg) { send_break(info, HZ/4); /* 1/4 second */ if (signal_pending(current)) return -EINTR; } return 0; case TCSBRKP: /* support for POSIX tcsendbreak() */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); if (signal_pending(current)) return -EINTR; send_break(info, arg ? arg*(HZ/10) : HZ/4); if (signal_pending(current)) return -EINTR; return 0; case TIOCSBRK: retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); begin_break(info); return 0; case TIOCCBRK: retval = tty_check_change(tty); if (retval) return retval; end_break(info); return 0; case TIOCGSOFTCAR: return put_user(C_CLOCAL(tty) ? 1 : 0, (int *) arg); case TIOCSSOFTCAR: error = get_user(arg, (unsigned int *) arg); if (error) return error; tty->termios->c_cflag = ((tty->termios->c_cflag & ~CLOCAL) | (arg ? CLOCAL : 0)); return 0; case TIOCMGET: return get_modem_info(info, (unsigned int *) arg); case TIOCMBIS: case TIOCMBIC: case TIOCMSET: return set_modem_info(info, cmd, (unsigned int *) arg); #ifdef maybe case TIOCSERGETLSR: /* Get line status register */ return get_lsr_info(info, (unsigned int *) arg); #endif /* * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change * - mask passed in arg for lines of interest * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) * Caller should use TIOCGICOUNT to see which one it was */ case TIOCMIWAIT: #ifdef modem_control cli(); /* note the counters on entry */ cprev = info->state->icount; sti(); while (1) { interruptible_sleep_on(&info->delta_msr_wait); /* see if a signal did it */ if (signal_pending(current)) return -ERESTARTSYS; cli(); cnow = info->state->icount; /* atomic copy */ sti(); if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) return -EIO; /* no change => error */ if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) { return 0; } cprev = cnow; } /* NOTREACHED */ #else return 0; #endif /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ case TIOCGICOUNT: cli(); cnow = info->state->icount; sti(); p_cuser = (struct serial_icounter_struct *) arg; error = put_user(cnow.cts, &p_cuser->cts); if (error) return error; error = put_user(cnow.dsr, &p_cuser->dsr); if (error) return error; error = put_user(cnow.rng, &p_cuser->rng); if (error) return error; error = put_user(cnow.dcd, &p_cuser->dcd); if (error) return error; return 0; default: return -ENOIOCTLCMD; } return 0; } /* FIX UP modem control here someday...... */ static void rs_8xx_set_termios(struct tty_struct *tty, struct termios *old_termios) { ser_info_t *info = (ser_info_t *)tty->driver_data; if ( (tty->termios->c_cflag == old_termios->c_cflag) && ( RELEVANT_IFLAG(tty->termios->c_iflag) == RELEVANT_IFLAG(old_termios->c_iflag))) return; change_speed(info); #ifdef modem_control /* Handle transition to B0 status */ if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) { info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); cli(); serial_out(info, UART_MCR, info->MCR); sti(); } /* Handle transition away from B0 status */ if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) { info->MCR |= UART_MCR_DTR; if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS)) { info->MCR |= UART_MCR_RTS; } cli(); serial_out(info, UART_MCR, info->MCR); sti(); } /* Handle turning off CRTSCTS */ if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { tty->hw_stopped = 0; rs_8xx_start(tty); } #endif #if 0 /* * No need to wake up processes in open wait, since they * sample the CLOCAL flag once, and don't recheck it. * XXX It's not clear whether the current behavior is correct * or not. Hence, this may change..... */ if (!(old_termios->c_cflag & CLOCAL) && (tty->termios->c_cflag & CLOCAL)) wake_up_interruptible(&info->open_wait); #endif } /* * ------------------------------------------------------------ * rs_close() * * This routine is called when the serial port gets closed. First, we * wait for the last remaining data to be sent. Then, we unlink its * async structure from the interrupt chain if necessary, and we free * that IRQ if nothing is left in the chain. * ------------------------------------------------------------ */ static void rs_8xx_close(struct tty_struct *tty, struct file * filp) { ser_info_t *info = (ser_info_t *)tty->driver_data; struct serial_state *state; unsigned long flags; int idx; volatile smc_t *smcp; volatile scc_t *sccp; if (!info || serial_paranoia_check(info, tty->device, "rs_close")) return; state = info->state; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { DBG_CNT("before DEC-hung"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("rs_close ttys%d, count = %d\n", info->line, state->count); #endif if ((tty->count == 1) && (state->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. state->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("rs_close: bad serial port count; tty->count is 1, " "state->count is %d\n", state->count); state->count = 1; } if (--state->count < 0) { printk("rs_close: bad serial port count for ttys%d: %d\n", info->line, state->count); state->count = 0; } if (state->count) { DBG_CNT("before DEC-2"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } info->flags |= ASYNC_CLOSING; /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ASYNC_NORMAL_ACTIVE) info->state->normal_termios = *tty->termios; if (info->flags & ASYNC_CALLOUT_ACTIVE) info->state->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (state->closing_wait != ASYNC_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, state->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receive line status interrupts, and tell the * interrupt driver to stop checking the data ready bit in the * line status register. */ info->read_status_mask &= ~BD_SC_EMPTY; if (info->flags & ASYNC_INITIALIZED) { if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) { smcp = &cpm2_immr->im_smc[idx]; smcp->smc_smcm &= ~SMCM_RX; smcp->smc_smcmr &= ~SMCMR_REN; } else { sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE]; sccp->scc_sccm &= ~UART_SCCM_RX; sccp->scc_gsmrl &= ~SCC_GSMRL_ENR; } /* * Before we drop DTR, make sure the UART transmitter * has completely drained; this is especially * important if there is a transmit FIFO! */ rs_8xx_wait_until_sent(tty, info->timeout); } shutdown(info); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (info->blocked_open) { if (state->close_delay) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(state->close_delay); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE| ASYNC_CLOSING); wake_up_interruptible(&info->close_wait); MOD_DEC_USE_COUNT; restore_flags(flags); } /* * rs_wait_until_sent() --- wait until the transmitter is empty */ static void rs_8xx_wait_until_sent(struct tty_struct *tty, int timeout) { ser_info_t *info = (ser_info_t *)tty->driver_data; unsigned long orig_jiffies, char_time; /*int lsr;*/ volatile cbd_t *bdp; if (serial_paranoia_check(info, tty->device, "rs_wait_until_sent")) return; #ifdef maybe if (info->state->type == PORT_UNKNOWN) return; #endif orig_jiffies = jiffies; /* * Set the check interval to be 1/5 of the estimated time to * send a single character, and make it at least 1. The check * interval should also be less than the timeout. * * Note: we have to use pretty tight timings here to satisfy * the NIST-PCTS. */ char_time = 1; if (timeout) char_time = MIN(char_time, timeout); #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("In rs_wait_until_sent(%d) check=%lu...", timeout, char_time); printk("jiff=%lu...", jiffies); #endif /* We go through the loop at least once because we can't tell * exactly when the last character exits the shifter. There can * be at least two characters waiting to be sent after the buffers * are empty. */ do { #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("lsr = %d (jiff=%lu)...", lsr, jiffies); #endif current->state = TASK_INTERRUPTIBLE; /* current->counter = 0; make us low-priority */ schedule_timeout(char_time); if (signal_pending(current)) break; if (timeout && time_after(jiffies, orig_jiffies + timeout)) break; bdp = info->tx_cur; } while (bdp->cbd_sc & BD_SC_READY); current->state = TASK_RUNNING; #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies); #endif } /* * rs_hangup() --- called by tty_hangup() when a hangup is signaled. */ static void rs_8xx_hangup(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; struct serial_state *state = info->state; if (serial_paranoia_check(info, tty->device, "rs_hangup")) return; state = info->state; rs_8xx_flush_buffer(tty); shutdown(info); info->event = 0; state->count = 0; info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * rs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, ser_info_t *info) { #ifdef DO_THIS_LATER DECLARE_WAITQUEUE(wait, current); #endif struct serial_state *state = info->state; int retval; int do_clocal = 0; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (tty_hung_up_p(filp) || (info->flags & ASYNC_CLOSING)) { if (info->flags & ASYNC_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) return -EAGAIN; else return -ERESTARTSYS; #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ASYNC_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ASYNC_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. * If this is an SMC port, we don't have modem control to wait * for, so just get out here. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR)) || (info->state->smc_scc_num < SCC_NUM_BASE)) { if (info->flags & ASYNC_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } if (info->flags & ASYNC_CALLOUT_ACTIVE) { if (state->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, state->count is dropped by one, so that * rs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; #ifdef DO_THIS_LATER add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttys%d, count = %d\n", state->line, state->count); #endif cli(); if (!tty_hung_up_p(filp)) state->count--; sti(); info->blocked_open++; while (1) { cli(); if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && (tty->termios->c_cflag & CBAUD)) serial_out(info, UART_MCR, serial_inp(info, UART_MCR) | (UART_MCR_DTR | UART_MCR_RTS)); sti(); set_current_state(TASK_INTERRUPTIBLE); if (tty_hung_up_p(filp) || !(info->flags & ASYNC_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && !(info->flags & ASYNC_CLOSING) && (do_clocal || (serial_in(info, UART_MSR) & UART_MSR_DCD))) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, state->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (!tty_hung_up_p(filp)) state->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, state->count); #endif #endif /* DO_THIS_LATER */ if (retval) return retval; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } static int get_async_struct(int line, ser_info_t **ret_info) { struct serial_state *sstate; sstate = rs_table + line; if (sstate->info) { sstate->count++; *ret_info = (ser_info_t *)sstate->info; return 0; } else { return -ENOMEM; } } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its async structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ static int rs_8xx_open(struct tty_struct *tty, struct file * filp) { ser_info_t *info; int retval, line; line = MINOR(tty->device) - tty->driver.minor_start; if ((line < 0) || (line >= NR_PORTS)) return -ENODEV; retval = get_async_struct(line, &info); if (retval) return retval; if (serial_paranoia_check(info, tty->device, "rs_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("rs_open %s%d, count = %d\n", tty->driver.name, info->line, info->state->count); #endif tty->driver_data = info; info->tty = tty; /* * Start up serial port */ retval = startup(info); if (retval) return retval; MOD_INC_USE_COUNT; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("rs_open returning after block_til_ready with %d\n", retval); #endif return retval; } if ((info->state->count == 1) && (info->flags & ASYNC_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->state->normal_termios; else *tty->termios = info->state->callout_termios; change_speed(info); } info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN printk("rs_open ttys%d successful...", info->line); #endif return 0; } /* * /proc fs routines.... */ static int inline line_info(char *buf, struct serial_state *state) { #ifdef notdef struct async_struct *info = state->info, scr_info; char stat_buf[30], control, status; #endif int ret; ret = sprintf(buf, "%d: uart:%s port:%X irq:%d", state->line, (state->smc_scc_num < SCC_NUM_BASE) ? "SMC" : "SCC", (unsigned int)(state->port), state->irq); if (!state->port || (state->type == PORT_UNKNOWN)) { ret += sprintf(buf+ret, "\n"); return ret; } #ifdef notdef /* * Figure out the current RS-232 lines */ if (!info) { info = &scr_info; /* This is just for serial_{in,out} */ info->magic = SERIAL_MAGIC; info->port = state->port; info->flags = state->flags; info->quot = 0; info->tty = 0; } cli(); status = serial_in(info, UART_MSR); control = info ? info->MCR : serial_in(info, UART_MCR); sti(); stat_buf[0] = 0; stat_buf[1] = 0; if (control & UART_MCR_RTS) strcat(stat_buf, "|RTS"); if (status & UART_MSR_CTS) strcat(stat_buf, "|CTS"); if (control & UART_MCR_DTR) strcat(stat_buf, "|DTR"); if (status & UART_MSR_DSR) strcat(stat_buf, "|DSR"); if (status & UART_MSR_DCD) strcat(stat_buf, "|CD"); if (status & UART_MSR_RI) strcat(stat_buf, "|RI"); if (info->quot) { ret += sprintf(buf+ret, " baud:%d", state->baud_base / info->quot); } ret += sprintf(buf+ret, " tx:%d rx:%d", state->icount.tx, state->icount.rx); if (state->icount.frame) ret += sprintf(buf+ret, " fe:%d", state->icount.frame); if (state->icount.parity) ret += sprintf(buf+ret, " pe:%d", state->icount.parity); if (state->icount.brk) ret += sprintf(buf+ret, " brk:%d", state->icount.brk); if (state->icount.overrun) ret += sprintf(buf+ret, " oe:%d", state->icount.overrun); /* * Last thing is the RS-232 status lines */ ret += sprintf(buf+ret, " %s\n", stat_buf+1); #endif return ret; } int rs_8xx_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int i, len = 0; off_t begin = 0; len += sprintf(page, "serinfo:1.0 driver:%s\n", serial_version); for (i = 0; i < NR_PORTS && len < 4000; i++) { len += line_info(page + len, &rs_table[i]); if (len+begin > off+count) goto done; if (len+begin < off) { begin += len; len = 0; } } *eof = 1; done: if (off >= len+begin) return 0; *start = page + (begin-off); return ((count < begin+len-off) ? count : begin+len-off); } /* * --------------------------------------------------------------------- * rs_init() and friends * * rs_init() is called at boot-time to initialize the serial driver. * --------------------------------------------------------------------- */ /* * This routine prints out the appropriate serial driver version * number, and identifies which options were configured into this * driver. */ static _INLINE_ void show_serial_version(void) { printk(KERN_INFO "%s version %s\n", serial_name, serial_version); } /* * The serial console driver used during boot. Note that these names * clash with those found in "serial.c", so we currently can't support * the 16xxx uarts and these at the same time. I will fix this to become * an indirect function call from tty_io.c (or something). */ #ifdef CONFIG_SERIAL_CONSOLE /* * Print a string to the serial port trying not to disturb any possible * real use of the port... * These funcitons work equally well for SCC, even though they are * designed for SMC. Our only interests are the transmit/receive * buffers, which are identically mapped for either the SCC or SMC. */ static void my_console_write(int idx, const char *s, unsigned count) { struct serial_state *ser; ser_info_t *info; unsigned i; volatile cbd_t *bdp, *bdbase; volatile smc_uart_t *up; volatile u_char *cp; ser = rs_table + idx; /* If the port has been initialized for general use, we have * to use the buffer descriptors allocated there. Otherwise, * we simply use the single buffer allocated. */ if ((info = (ser_info_t *)ser->info) != NULL) { bdp = info->tx_cur; bdbase = info->tx_bd_base; } else { /* Pointer to UART in parameter ram. */ up = (smc_uart_t *)&cpm2_immr->im_dprambase[ser->port]; /* Get the address of the host memory buffer. */ bdp = bdbase = (cbd_t *)&cpm2_immr->im_dprambase[up->smc_tbase]; } /* * We need to gracefully shut down the transmitter, disable * interrupts, then send our bytes out. */ /* * Now, do each character. This is not as bad as it looks * since this is a holding FIFO and not a transmitting FIFO. * We could add the complexity of filling the entire transmit * buffer, but we would just wait longer between accesses...... */ for (i = 0; i < count; i++, s++) { /* Wait for transmitter fifo to empty. * Ready indicates output is ready, and xmt is doing * that, not that it is ready for us to send. */ while (bdp->cbd_sc & BD_SC_READY); /* Send the character out. * If the buffer address is in the CPM DPRAM, don't * convert it. */ if ((uint)(bdp->cbd_bufaddr) > (uint)CPM_MAP_ADDR) cp = (u_char *)(bdp->cbd_bufaddr); else cp = __va(bdp->cbd_bufaddr); *cp = *s; bdp->cbd_datlen = 1; bdp->cbd_sc |= BD_SC_READY; if (bdp->cbd_sc & BD_SC_WRAP) bdp = bdbase; else bdp++; /* if a LF, also do CR... */ if (*s == 10) { while (bdp->cbd_sc & BD_SC_READY); cp = __va(bdp->cbd_bufaddr); *cp = 13; bdp->cbd_datlen = 1; bdp->cbd_sc |= BD_SC_READY; if (bdp->cbd_sc & BD_SC_WRAP) { bdp = bdbase; } else { bdp++; } } } /* * Finally, Wait for transmitter & holding register to empty * and restore the IER */ while (bdp->cbd_sc & BD_SC_READY); if (info) info->tx_cur = (cbd_t *)bdp; } static void serial_console_write(struct console *c, const char *s, unsigned count) { #if defined(CONFIG_KGDB_CONSOLE) && !defined(CONFIG_USE_SERIAL2_KGDB) /* Try to let stub handle output. Returns true if it did. */ if (kgdb_output_string(s, count)) return; #endif my_console_write(c->index, s, count); } #ifdef CONFIG_XMON int xmon_8xx_write(const char *s, unsigned count) { my_console_write(KGDB_SER_IDX, s, count); return(count); } #endif #ifdef CONFIG_KGDB void putDebugChar(char ch) { my_console_write(KGDB_SER_IDX, &ch, 1); } #endif #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) /* * Receive character from the serial port. This only works well * before the port is initialize for real use. */ static int my_console_wait_key(int idx, int xmon, char *obuf) { struct serial_state *ser; u_char c, *cp; ser_info_t *info; volatile cbd_t *bdp; volatile smc_uart_t *up; int i; ser = rs_table + idx; /* Pointer to UART in parameter ram. */ up = (smc_uart_t *)&cpm2_immr->im_dprambase[ser->port]; /* Get the address of the host memory buffer. * If the port has been initialized for general use, we must * use information from the port structure. */ if ((info = (ser_info_t *)ser->info)) bdp = info->rx_cur; else bdp = (cbd_t *)&cpm2_immr->im_dprambase[up->smc_rbase]; /* * We need to gracefully shut down the receiver, disable * interrupts, then read the input. * XMON just wants a poll. If no character, return -1, else * return the character. */ if (!xmon) { while (bdp->cbd_sc & BD_SC_EMPTY); } else { if (bdp->cbd_sc & BD_SC_EMPTY) return -1; } /* If the buffer address is in the CPM DPRAM, don't * convert it. */ if ((uint)(bdp->cbd_bufaddr) > (uint)CPM_MAP_ADDR) cp = (u_char *)(bdp->cbd_bufaddr); else cp = __va(bdp->cbd_bufaddr); if (obuf) { i = c = bdp->cbd_datlen; while (i-- > 0) *obuf++ = *cp++; } else { c = *cp; } bdp->cbd_sc |= BD_SC_EMPTY; if (info) { if (bdp->cbd_sc & BD_SC_WRAP) { bdp = info->rx_bd_base; } else { bdp++; } info->rx_cur = (cbd_t *)bdp; } return((int)c); } #endif #ifdef CONFIG_XMON int xmon_8xx_read_poll(void) { return(my_console_wait_key(KGDB_SER_IDX, 1, NULL)); } int xmon_8xx_read_char(void) { return(my_console_wait_key(KGDB_SER_IDX, 0, NULL)); } #endif #ifdef CONFIG_KGDB static char kgdb_buf[RX_BUF_SIZE], *kgdp; static int kgdb_chars; char getDebugChar(void) { if (kgdb_chars <= 0) { kgdb_chars = my_console_wait_key(KGDB_SER_IDX, 0, kgdb_buf); kgdp = kgdb_buf; } kgdb_chars--; return(*kgdp++); } void kgdb_interruptible(int yes) { volatile smc_t *smcp; smcp = &cpm2_immr->im_smc[KGDB_SER_IDX]; if (yes == 1) smcp->smc_smcm |= SMCM_RX; else smcp->smc_smcm &= ~SMCM_RX; } void kgdb_map_scc(void) { ushort serbase; uint mem_addr; volatile cbd_t *bdp; volatile smc_uart_t *up; /* The serial port has already been initialized before * we get here. We have to assign some pointers needed by * the kernel, and grab a memory location in the CPM that will * work until the driver is really initialized. */ cpm2_immr = (cpm2_map_t *)CPM_MAP_ADDR; /* Right now, assume we are using SMCs. */ #ifdef USE_KGDB_SMC2 *(ushort *)(&cpm2_immr->im_dprambase[PROFF_SMC2_BASE]) = serbase = PROFF_SMC2; #else *(ushort *)(&cpm2_immr->im_dprambase[PROFF_SMC1_BASE]) = serbase = PROFF_SMC1; #endif up = (smc_uart_t *)&cpm2_immr->im_dprambase[serbase]; /* Allocate space for an input FIFO, plus a few bytes for output. * Allocate bytes to maintain word alignment. */ mem_addr = (uint)(&cpm2_immr->im_dprambase[0x1000]); /* Set the physical address of the host memory buffers in * the buffer descriptors. */ bdp = (cbd_t *)&cpm2_immr->im_dprambase[up->smc_rbase]; bdp->cbd_bufaddr = mem_addr; bdp = (cbd_t *)&cpm2_immr->im_dprambase[up->smc_tbase]; bdp->cbd_bufaddr = mem_addr+RX_BUF_SIZE; up->smc_mrblr = RX_BUF_SIZE; /* receive buffer length */ up->smc_maxidl = RX_BUF_SIZE; } #endif static kdev_t serial_console_device(struct console *c) { return MKDEV(TTY_MAJOR, 64 + c->index); } /* * Register console. */ long __init console_8xx_init(long kmem_start, long kmem_end) { register_console(&sercons); return kmem_start; } #endif /* Default console baud rate as determined by the board information * structure. */ static int baud_idx; /* * The serial driver boot-time initialization code! */ int __init rs_8xx_init(void) { struct serial_state * state; ser_info_t *info; uint mem_addr, dp_addr; int i, j, idx; uint page, sblock; volatile cbd_t *bdp; volatile cpm_cpm2_t *cp; volatile smc_t *sp; volatile smc_uart_t *up; volatile scc_t *scp; volatile scc_uart_t *sup; volatile cpm2_map_t *immap; volatile iop_cpm2_t *io; init_bh(SERIAL_BH, do_serial_bh); show_serial_version(); /* Initialize the tty_driver structure */ /*memset(&serial_driver, 0, sizeof(struct tty_driver));*/ __clear_user(&serial_driver,sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; serial_driver.driver_name = "serial"; #ifdef CONFIG_DEVFS_FS serial_driver.name = "tts/%d"; #else serial_driver.name = "ttyS"; #endif serial_driver.major = TTY_MAJOR; serial_driver.minor_start = 64; serial_driver.num = NR_PORTS; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = baud_idx | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW; serial_driver.refcount = &serial_refcount; serial_driver.table = serial_table; serial_driver.termios = serial_termios; serial_driver.termios_locked = serial_termios_locked; serial_driver.open = rs_8xx_open; serial_driver.close = rs_8xx_close; serial_driver.write = rs_8xx_write; serial_driver.put_char = rs_8xx_put_char; serial_driver.write_room = rs_8xx_write_room; serial_driver.chars_in_buffer = rs_8xx_chars_in_buffer; serial_driver.flush_buffer = rs_8xx_flush_buffer; serial_driver.ioctl = rs_8xx_ioctl; serial_driver.throttle = rs_8xx_throttle; serial_driver.unthrottle = rs_8xx_unthrottle; serial_driver.send_xchar = rs_8xx_send_xchar; serial_driver.set_termios = rs_8xx_set_termios; serial_driver.stop = rs_8xx_stop; serial_driver.start = rs_8xx_start; serial_driver.hangup = rs_8xx_hangup; serial_driver.wait_until_sent = rs_8xx_wait_until_sent; serial_driver.read_proc = rs_8xx_read_proc; /* * The callout device is just like normal device except for * major number and the subtype code. */ callout_driver = serial_driver; #ifdef CONFIG_DEVFS_FS callout_driver.name = "cua/%d"; #else callout_driver.name = "cua"; #endif callout_driver.major = TTYAUX_MAJOR; callout_driver.subtype = SERIAL_TYPE_CALLOUT; callout_driver.read_proc = 0; callout_driver.proc_entry = 0; if (tty_register_driver(&serial_driver)) panic("Couldn't register serial driver\n"); if (tty_register_driver(&callout_driver)) panic("Couldn't register callout driver\n"); immap = cpm2_immr; cp = &immap->im_cpm; io = &immap->im_ioport; /* This should have been done long ago by the early boot code, * but do it again to make sure. */ *(ushort *)(&immap->im_dprambase[PROFF_SMC1_BASE]) = PROFF_SMC1; *(ushort *)(&immap->im_dprambase[PROFF_SMC2_BASE]) = PROFF_SMC2; /* Geeze, here we go....Picking I/O port bits....Lots of * choices. If you don't like mine, pick your own. * Configure SMCs Tx/Rx. SMC1 is only on Port D, SMC2 is * only on Port A. You either pick 'em, or not. */ #ifndef SCC_CONSOLE io->iop_ppard |= 0x00c00000; io->iop_pdird |= 0x00400000; io->iop_pdird &= ~0x00800000; io->iop_psord &= ~0x00c00000; #if USE_SMC2 io->iop_ppara |= 0x00c00000; io->iop_pdira |= 0x00400000; io->iop_pdira &= ~0x00800000; io->iop_psora &= ~0x00c00000; #endif /* Configure SCC2 and SCC3. Be careful about the fine print. * Secondary options are only available when you take away * the primary option. Unless the pins are used for something * else, SCC2 and SCC3 are on Port B. * Port B, 8 - SCC3 TxD * Port B, 12 - SCC2 TxD * Port B, 14 - SCC3 RxD * Port B, 15 - SCC2 RxD */ io->iop_pparb |= 0x008b0000; io->iop_pdirb |= 0x00880000; io->iop_psorb |= 0x00880000; io->iop_pdirb &= ~0x00030000; io->iop_psorb &= ~0x00030000; /* Wire BRG1 to SMC1 and BRG2 to SMC2. */ immap->im_cpmux.cmx_smr = 0; /* Connect SCC2 and SCC3 to NMSI. Connect BRG3 to SCC2 and * BRG4 to SCC3. */ immap->im_cpmux.cmx_scr &= ~0x00ffff00; immap->im_cpmux.cmx_scr |= 0x00121b00; #else io->iop_pparb |= 0x008b0000; io->iop_pdirb |= 0x00880000; io->iop_psorb |= 0x00880000; io->iop_pdirb &= ~0x00030000; io->iop_psorb &= ~0x00030000; /* Use Port D for SCC1 instead of other functions. */ io->iop_ppard |= 0x00000003; io->iop_psord &= ~0x00000001; /* Rx */ io->iop_psord |= 0x00000002; /* Tx */ io->iop_pdird &= ~0x00000001; /* Rx */ io->iop_pdird |= 0x00000002; /* Tx */ /* Connect SCC1, SCC2, SCC3 to NMSI. Connect BRG1 to SCC1, * BRG2 to SCC2, BRG3 to SCC3. */ immap->im_cpmux.cmx_scr &= ~0xffffff00; immap->im_cpmux.cmx_scr |= 0x00091200; #endif for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) { state->magic = SSTATE_MAGIC; state->line = i; state->type = PORT_UNKNOWN; state->custom_divisor = 0; state->close_delay = 5*HZ/10; state->closing_wait = 30*HZ; state->callout_termios = callout_driver.init_termios; state->normal_termios = serial_driver.init_termios; state->icount.cts = state->icount.dsr = state->icount.rng = state->icount.dcd = 0; state->icount.rx = state->icount.tx = 0; state->icount.frame = state->icount.parity = 0; state->icount.overrun = state->icount.brk = 0; printk (KERN_INFO "ttyS%d on %s%d at 0x%04x, BRG%d\n", i, (state->smc_scc_num < SCC_NUM_BASE) ? "SMC" : "SCC", PORT_NUM(state->smc_scc_num) + 1, (unsigned int)(state->port), state->smc_scc_num + 1); #ifdef CONFIG_SERIAL_CONSOLE /* If we just printed the message on the console port, and * we are about to initialize it for general use, we have * to wait a couple of character times for the CR/NL to * make it out of the transmit buffer. */ if (i == CONFIG_SERIAL_CONSOLE_PORT) mdelay(300); #endif info = kmalloc(sizeof(ser_info_t), GFP_KERNEL); if (info) { /*memset(info, 0, sizeof(ser_info_t));*/ __clear_user(info,sizeof(ser_info_t)); init_waitqueue_head(&info->open_wait); init_waitqueue_head(&info->close_wait); info->magic = SERIAL_MAGIC; info->flags = state->flags; info->tqueue.routine = do_softint; info->tqueue.data = info; info->tqueue_hangup.routine = do_serial_hangup; info->tqueue_hangup.data = info; info->line = i; info->state = state; state->info = (struct async_struct *)info; /* We need to allocate a transmit and receive buffer * descriptors from dual port ram, and a character * buffer area from host mem. */ dp_addr = cpm2_dpalloc(sizeof(cbd_t) * RX_NUM_FIFO, 8); /* Allocate space for FIFOs in the host memory. */ mem_addr = cpm2_hostalloc(RX_NUM_FIFO * RX_BUF_SIZE, 1); /* Set the physical address of the host memory * buffers in the buffer descriptors, and the * virtual address for us to work with. */ bdp = (cbd_t *)&immap->im_dprambase[dp_addr]; info->rx_cur = info->rx_bd_base = (cbd_t *)bdp; for (j=0; j<(RX_NUM_FIFO-1); j++) { bdp->cbd_bufaddr = __pa(mem_addr); bdp->cbd_sc = BD_SC_EMPTY | BD_SC_INTRPT; mem_addr += RX_BUF_SIZE; bdp++; } bdp->cbd_bufaddr = __pa(mem_addr); bdp->cbd_sc = BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT; if ((idx = state->smc_scc_num) < SCC_NUM_BASE) { sp = &immap->im_smc[idx]; up = (smc_uart_t *)&immap->im_dprambase[state->port]; up->smc_rbase = dp_addr; } else { scp = &immap->im_scc[idx - SCC_IDX_BASE]; sup = (scc_uart_t *)&immap->im_dprambase[state->port]; scp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); sup->scc_genscc.scc_rbase = dp_addr; } dp_addr = cpm2_dpalloc(sizeof(cbd_t) * TX_NUM_FIFO, 8); /* Allocate space for FIFOs in the host memory. */ mem_addr = cpm2_hostalloc(TX_NUM_FIFO * TX_BUF_SIZE, 1); /* Set the physical address of the host memory * buffers in the buffer descriptors, and the * virtual address for us to work with. */ bdp = (cbd_t *)&immap->im_dprambase[dp_addr]; info->tx_cur = info->tx_bd_base = (cbd_t *)bdp; for (j=0; j<(TX_NUM_FIFO-1); j++) { bdp->cbd_bufaddr = __pa(mem_addr); bdp->cbd_sc = BD_SC_INTRPT; mem_addr += TX_BUF_SIZE; bdp++; } bdp->cbd_bufaddr = __pa(mem_addr); bdp->cbd_sc = (BD_SC_WRAP | BD_SC_INTRPT); if (idx < SCC_NUM_BASE) { up->smc_tbase = dp_addr; /* Set up the uart parameters in the * parameter ram. */ up->smc_rfcr = CPMFCR_GBL | CPMFCR_EB; up->smc_tfcr = CPMFCR_GBL | CPMFCR_EB; /* Set this to 1 for now, so we get single * character interrupts. Using idle charater * time requires some additional tuning. */ up->smc_mrblr = 1; up->smc_maxidl = 0; up->smc_brkcr = 1; /* Send the CPM an initialize command. */ if (state->smc_scc_num == 0) { page = CPM_CR_SMC1_PAGE; sblock = CPM_CR_SMC1_SBLOCK; } else { page = CPM_CR_SMC2_PAGE; sblock = CPM_CR_SMC2_SBLOCK; } cp->cp_cpcr = mk_cr_cmd(page, sblock, 0, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); /* Set UART mode, 8 bit, no parity, one stop. * Enable receive and transmit. */ sp->smc_smcmr = smcr_mk_clen(9) | SMCMR_SM_UART; /* Disable all interrupts and clear all pending * events. */ sp->smc_smcm = 0; sp->smc_smce = 0xff; } else { sup->scc_genscc.scc_tbase = dp_addr; /* Set up the uart parameters in the * parameter ram. */ sup->scc_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB; sup->scc_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB; /* Set this to 1 for now, so we get single * character interrupts. Using idle charater * time requires some additional tuning. */ sup->scc_genscc.scc_mrblr = 1; sup->scc_maxidl = 0; sup->scc_brkcr = 1; sup->scc_parec = 0; sup->scc_frmec = 0; sup->scc_nosec = 0; sup->scc_brkec = 0; sup->scc_uaddr1 = 0; sup->scc_uaddr2 = 0; sup->scc_toseq = 0; sup->scc_char1 = 0x8000; sup->scc_char2 = 0x8000; sup->scc_char3 = 0x8000; sup->scc_char4 = 0x8000; sup->scc_char5 = 0x8000; sup->scc_char6 = 0x8000; sup->scc_char7 = 0x8000; sup->scc_char8 = 0x8000; sup->scc_rccm = 0xc0ff; /* Send the CPM an initialize command. */ #ifdef SCC_CONSOLE switch (state->smc_scc_num) { case 0: page = CPM_CR_SCC1_PAGE; sblock = CPM_CR_SCC1_SBLOCK; break; case 1: page = CPM_CR_SCC2_PAGE; sblock = CPM_CR_SCC2_SBLOCK; break; case 2: page = CPM_CR_SCC3_PAGE; sblock = CPM_CR_SCC3_SBLOCK; break; } #else if (state->smc_scc_num == 2) { page = CPM_CR_SCC2_PAGE; sblock = CPM_CR_SCC2_SBLOCK; } else { page = CPM_CR_SCC3_PAGE; sblock = CPM_CR_SCC3_SBLOCK; } #endif cp->cp_cpcr = mk_cr_cmd(page, sblock, 0, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); /* Set UART mode, 8 bit, no parity, one stop. * Enable receive and transmit. */ scp->scc_gsmrh = 0; scp->scc_gsmrl = (SCC_GSMRL_MODE_UART | SCC_GSMRL_TDCR_16 | SCC_GSMRL_RDCR_16); /* Disable all interrupts and clear all pending * events. */ scp->scc_sccm = 0; scp->scc_scce = 0xffff; scp->scc_dsr = 0x7e7e; scp->scc_psmr = 0x3000; } /* Install interrupt handler. */ request_irq(state->irq, rs_8xx_interrupt, 0, "uart", info); /* Set up the baud rate generator. */ cpm2_setbrg(state->smc_scc_num, baud_table[baud_idx]); /* If the port is the console, enable Rx and Tx. */ #ifdef CONFIG_SERIAL_CONSOLE if (i == CONFIG_SERIAL_CONSOLE_PORT) { if (idx < SCC_NUM_BASE) sp->smc_smcmr |= SMCMR_REN | SMCMR_TEN; else scp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); } #endif } } return 0; } /* This must always be called before the rs_8xx_init() function, otherwise * it blows away the port control information. */ static int __init serial_console_setup(struct console *co, char *options) { struct serial_state *ser; uint mem_addr, dp_addr, bidx; volatile cbd_t *bdp; volatile cpm_cpm2_t *cp; volatile cpm2_map_t *immap; #ifndef SCC_CONSOLE volatile smc_t *sp; volatile smc_uart_t *up; #endif volatile scc_t *scp; volatile scc_uart_t *sup; volatile iop_cpm2_t *io; bd_t *bd; bd = (bd_t *)__res; for (bidx = 0; bidx < (sizeof(baud_table) / sizeof(int)); bidx++) if (bd->bi_baudrate == baud_table[bidx]) break; co->cflag = CREAD|CLOCAL|bidx|CS8; baud_idx = bidx; ser = rs_table + co->index; immap = cpm2_immr; cp = &immap->im_cpm; io = &immap->im_ioport; #ifdef SCC_CONSOLE scp = (scc_t *)&(immap->im_scc[SCC_CONSOLE-1]); sup = (scc_uart_t *)&immap->im_dprambase[PROFF_SCC1 + ((SCC_CONSOLE-1) << 8)]; scp->scc_sccm &= ~(UART_SCCM_TX | UART_SCCM_RX); scp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); /* Use Port D for SCC1 instead of other functions. */ io->iop_ppard |= 0x00000003; io->iop_psord &= ~0x00000001; /* Rx */ io->iop_psord |= 0x00000002; /* Tx */ io->iop_pdird &= ~0x00000001; /* Rx */ io->iop_pdird |= 0x00000002; /* Tx */ #else /* This should have been done long ago by the early boot code, * but do it again to make sure. */ *(ushort *)(&immap->im_dprambase[PROFF_SMC1_BASE]) = PROFF_SMC1; *(ushort *)(&immap->im_dprambase[PROFF_SMC2_BASE]) = PROFF_SMC2; /* Right now, assume we are using SMCs. */ sp = &immap->im_smc[ser->smc_scc_num]; /* When we get here, the CPM has been reset, so we need * to configure the port. * We need to allocate a transmit and receive buffer descriptor * from dual port ram, and a character buffer area from host mem. */ up = (smc_uart_t *)&immap->im_dprambase[ser->port]; /* Disable transmitter/receiver. */ sp->smc_smcmr &= ~(SMCMR_REN | SMCMR_TEN); /* Use Port D for SMC1 instead of other functions. */ io->iop_ppard |= 0x00c00000; io->iop_pdird |= 0x00400000; io->iop_pdird &= ~0x00800000; io->iop_psord &= ~0x00c00000; #endif /* Allocate space for two buffer descriptors in the DP ram. */ dp_addr = cpm2_dpalloc(sizeof(cbd_t) * 2, 8); /* Allocate space for two 2 byte FIFOs in the host memory. */ mem_addr = cpm2_hostalloc(4, 1); /* Set the physical address of the host memory buffers in * the buffer descriptors. */ bdp = (cbd_t *)&immap->im_dprambase[dp_addr]; bdp->cbd_bufaddr = __pa(mem_addr); (bdp+1)->cbd_bufaddr = __pa(mem_addr+2); /* For the receive, set empty and wrap. * For transmit, set wrap. */ bdp->cbd_sc = BD_SC_EMPTY | BD_SC_WRAP; (bdp+1)->cbd_sc = BD_SC_WRAP; /* Set up the uart parameters in the parameter ram. */ #ifdef SCC_CONSOLE sup->scc_genscc.scc_rbase = dp_addr; sup->scc_genscc.scc_tbase = dp_addr + sizeof(cbd_t); /* Set up the uart parameters in the * parameter ram. */ sup->scc_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB; sup->scc_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB; sup->scc_genscc.scc_mrblr = 1; sup->scc_maxidl = 0; sup->scc_brkcr = 1; sup->scc_parec = 0; sup->scc_frmec = 0; sup->scc_nosec = 0; sup->scc_brkec = 0; sup->scc_uaddr1 = 0; sup->scc_uaddr2 = 0; sup->scc_toseq = 0; sup->scc_char1 = 0x8000; sup->scc_char2 = 0x8000; sup->scc_char3 = 0x8000; sup->scc_char4 = 0x8000; sup->scc_char5 = 0x8000; sup->scc_char6 = 0x8000; sup->scc_char7 = 0x8000; sup->scc_char8 = 0x8000; sup->scc_rccm = 0xc0ff; /* Send the CPM an initialize command. */ cp->cp_cpcr = mk_cr_cmd(CPM_CR_SCC1_PAGE, CPM_CR_SCC1_SBLOCK, 0, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); /* Set UART mode, 8 bit, no parity, one stop. * Enable receive and transmit. */ scp->scc_gsmrh = 0; scp->scc_gsmrl = (SCC_GSMRL_MODE_UART | SCC_GSMRL_TDCR_16 | SCC_GSMRL_RDCR_16); /* Disable all interrupts and clear all pending * events. */ scp->scc_sccm = 0; scp->scc_scce = 0xffff; scp->scc_dsr = 0x7e7e; scp->scc_psmr = 0x3000; /* Wire BRG1 to SCC1. The serial init will take care of * others. */ immap->im_cpmux.cmx_scr = 0; /* Set up the baud rate generator. */ cpm2_setbrg(ser->smc_scc_num, bd->bi_baudrate); scp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); #else up->smc_rbase = dp_addr; /* Base of receive buffer desc. */ up->smc_tbase = dp_addr+sizeof(cbd_t); /* Base of xmt buffer desc. */ up->smc_rfcr = CPMFCR_GBL | CPMFCR_EB; up->smc_tfcr = CPMFCR_GBL | CPMFCR_EB; /* Set this to 1 for now, so we get single character interrupts. */ up->smc_mrblr = 1; /* receive buffer length */ up->smc_maxidl = 0; /* wait forever for next char */ /* Send the CPM an initialize command. */ cp->cp_cpcr = mk_cr_cmd(CPM_CR_SMC1_PAGE, CPM_CR_SMC1_SBLOCK, 0, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); /* Set UART mode, 8 bit, no parity, one stop. * Enable receive and transmit. */ sp->smc_smcmr = smcr_mk_clen(9) | SMCMR_SM_UART; /* Set up the baud rate generator. */ cpm2_setbrg(ser->smc_scc_num, bd->bi_baudrate); /* And finally, enable Rx and Tx. */ sp->smc_smcmr |= SMCMR_REN | SMCMR_TEN; #endif return 0; }