/* * sys_parisc32.c: Conversion between 32bit and 64bit native syscalls. * * Copyright (C) 2000-2001 Hewlett Packard Company * Copyright (C) 2000 John Marvin * Copyright (C) 2001 Matthew Wilcox * * These routines maintain argument size conversion between 32bit and 64bit * environment. Based heavily on sys_ia32.c and sys_sparc32.c. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for setsockopt() */ #include /* for setsockopt() */ #include /* for setsockopt() */ #include /* for setsockopt() */ #include /* for setsockopt() */ #include #include #include #include #include #include #include "sys32.h" #define A(__x) ((unsigned long)(__x)) #undef DEBUG #ifdef DEBUG #define DBG(x) printk x #else #define DBG(x) #endif /* * count32() counts the number of arguments/envelopes. It is basically * a copy of count() from fs/exec.c, except that it works * with 32 bit argv and envp pointers. */ static int count32(u32 *argv, int max) { int i = 0; if (argv != NULL) { for (;;) { u32 p; int error; error = get_user(p,argv); if (error) return error; if (!p) break; argv++; if(++i > max) return -E2BIG; } } return i; } /* * copy_strings32() is basically a copy of copy_strings() from fs/exec.c * except that it works with 32 bit argv and envp pointers. */ static int copy_strings32(int argc, u32 *argv, struct linux_binprm *bprm) { while (argc-- > 0) { u32 str; int len; unsigned long pos; if (get_user(str, argv + argc) || !str || !(len = strnlen_user((char *)A(str), bprm->p))) return -EFAULT; if (bprm->p < len) return -E2BIG; bprm->p -= len; pos = bprm->p; while (len > 0) { char *kaddr; int i, new, err; struct page *page; int offset, bytes_to_copy; offset = pos % PAGE_SIZE; i = pos/PAGE_SIZE; page = bprm->page[i]; new = 0; if (!page) { page = alloc_page(GFP_HIGHUSER); bprm->page[i] = page; if (!page) return -ENOMEM; new = 1; } kaddr = (char *)kmap(page); if (new && offset) memset(kaddr, 0, offset); bytes_to_copy = PAGE_SIZE - offset; if (bytes_to_copy > len) { bytes_to_copy = len; if (new) memset(kaddr+offset+len, 0, PAGE_SIZE-offset-len); } err = copy_from_user(kaddr + offset, (char *)A(str), bytes_to_copy); flush_dcache_page(page); flush_page_to_ram(page); kunmap(page); if (err) return -EFAULT; pos += bytes_to_copy; str += bytes_to_copy; len -= bytes_to_copy; } } return 0; } /* * do_execve32() is mostly a copy of do_execve(), with the exception * that it processes 32 bit argv and envp pointers. */ static inline int do_execve32(char * filename, u32 * argv, u32 * envp, struct pt_regs * regs) { struct linux_binprm bprm; struct file *file; int retval; int i; file = open_exec(filename); retval = PTR_ERR(file); if (IS_ERR(file)) return retval; bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0])); DBG(("do_execve32(%s, %p, %p, %p)\n", filename, argv, envp, regs)); bprm.file = file; bprm.filename = filename; bprm.sh_bang = 0; bprm.loader = 0; bprm.exec = 0; if ((bprm.argc = count32(argv, bprm.p / sizeof(u32))) < 0) { allow_write_access(file); fput(file); return bprm.argc; } if ((bprm.envc = count32(envp, bprm.p / sizeof(u32))) < 0) { allow_write_access(file); fput(file); return bprm.envc; } retval = prepare_binprm(&bprm); if (retval < 0) goto out; retval = copy_strings_kernel(1, &bprm.filename, &bprm); if (retval < 0) goto out; bprm.exec = bprm.p; retval = copy_strings32(bprm.envc, envp, &bprm); if (retval < 0) goto out; retval = copy_strings32(bprm.argc, argv, &bprm); if (retval < 0) goto out; retval = search_binary_handler(&bprm,regs); if (retval >= 0) /* execve success */ return retval; out: /* Something went wrong, return the inode and free the argument pages*/ allow_write_access(bprm.file); if (bprm.file) fput(bprm.file); for (i = 0 ; i < MAX_ARG_PAGES ; i++) { struct page * page = bprm.page[i]; if (page) __free_page(page); } return retval; } /* * sys32_execve() executes a new program. */ asmlinkage int sys32_execve(struct pt_regs *regs) { int error; char *filename; DBG(("sys32_execve(%p) r26 = 0x%lx\n", regs, regs->gr[26])); filename = getname((char *) regs->gr[26]); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve32(filename, (u32 *) regs->gr[25], (u32 *) regs->gr[24], regs); if (error == 0) current->ptrace &= ~PT_DTRACE; putname(filename); out: return error; } asmlinkage long sys32_unimplemented(int r26, int r25, int r24, int r23, int r22, int r21, int r20) { printk(KERN_ERR "%s(%d): Unimplemented 32 on 64 syscall #%d!\n", current->comm, current->pid, r20); return -ENOSYS; } /* 32-bit user apps use struct statfs which uses 'long's */ struct statfs32 { __s32 f_type; __s32 f_bsize; __s32 f_blocks; __s32 f_bfree; __s32 f_bavail; __s32 f_files; __s32 f_ffree; __kernel_fsid_t f_fsid; __s32 f_namelen; __s32 f_spare[6]; }; /* convert statfs struct to statfs32 struct and copy result to user */ static unsigned long statfs32_to_user(struct statfs32 *ust32, struct statfs *st) { struct statfs32 st32; #undef CP #define CP(a) st32.a = st->a CP(f_type); CP(f_bsize); CP(f_blocks); CP(f_bfree); CP(f_bavail); CP(f_files); CP(f_ffree); CP(f_fsid); CP(f_namelen); return copy_to_user(ust32, &st32, sizeof st32); } /* The following statfs calls are copies of code from linux/fs/open.c and * should be checked against those from time to time */ asmlinkage long sys32_statfs(const char * path, struct statfs32 * buf) { struct nameidata nd; int error; error = user_path_walk(path, &nd); if (!error) { struct statfs tmp; error = vfs_statfs(nd.dentry->d_inode->i_sb, &tmp); if (!error && statfs32_to_user(buf, &tmp)) error = -EFAULT; path_release(&nd); } return error; } asmlinkage long sys32_fstatfs(unsigned int fd, struct statfs32 * buf) { struct file * file; struct statfs tmp; int error; error = -EBADF; file = fget(fd); if (!file) goto out; error = vfs_statfs(file->f_dentry->d_inode->i_sb, &tmp); if (!error && statfs32_to_user(buf, &tmp)) error = -EFAULT; fput(file); out: return error; } /* These may not work without my local types changes, but I wanted the * code available in case it's useful to others. -PB */ /* from utime.h */ struct utimbuf32 { __kernel_time_t32 actime; __kernel_time_t32 modtime; }; asmlinkage long sys32_utime(char *filename, struct utimbuf32 *times) { struct utimbuf32 times32; struct utimbuf times64; extern long sys_utime(char *filename, struct utimbuf *times); char *fname; long ret; if (!times) return sys_utime(filename, NULL); /* get the 32-bit struct from user space */ if (copy_from_user(×32, times, sizeof times32)) return -EFAULT; /* convert it into the 64-bit one */ times64.actime = times32.actime; times64.modtime = times32.modtime; /* grab the file name */ fname = getname(filename); KERNEL_SYSCALL(ret, sys_utime, fname, ×64); /* free the file name */ putname(fname); return ret; } struct tms32 { __kernel_clock_t32 tms_utime; __kernel_clock_t32 tms_stime; __kernel_clock_t32 tms_cutime; __kernel_clock_t32 tms_cstime; }; asmlinkage long sys32_times(struct tms32 *tbuf) { struct tms t; long ret; extern asmlinkage long sys_times(struct tms * tbuf); int err; KERNEL_SYSCALL(ret, sys_times, tbuf ? &t : NULL); if (tbuf) { err = put_user (t.tms_utime, &tbuf->tms_utime); err |= __put_user (t.tms_stime, &tbuf->tms_stime); err |= __put_user (t.tms_cutime, &tbuf->tms_cutime); err |= __put_user (t.tms_cstime, &tbuf->tms_cstime); if (err) ret = -EFAULT; } return ret; } struct flock32 { short l_type; short l_whence; __kernel_off_t32 l_start; __kernel_off_t32 l_len; __kernel_pid_t32 l_pid; }; static inline int get_flock(struct flock *kfl, struct flock32 *ufl) { int err; err = get_user(kfl->l_type, &ufl->l_type); err |= __get_user(kfl->l_whence, &ufl->l_whence); err |= __get_user(kfl->l_start, &ufl->l_start); err |= __get_user(kfl->l_len, &ufl->l_len); err |= __get_user(kfl->l_pid, &ufl->l_pid); return err; } static inline int put_flock(struct flock *kfl, struct flock32 *ufl) { int err; err = __put_user(kfl->l_type, &ufl->l_type); err |= __put_user(kfl->l_whence, &ufl->l_whence); err |= __put_user(kfl->l_start, &ufl->l_start); err |= __put_user(kfl->l_len, &ufl->l_len); err |= __put_user(kfl->l_pid, &ufl->l_pid); return err; } extern asmlinkage long sys_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg); asmlinkage long sys32_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg) { switch (cmd) { case F_GETLK: case F_SETLK: case F_SETLKW: { struct flock f; long ret; if(get_flock(&f, (struct flock32 *)arg)) return -EFAULT; KERNEL_SYSCALL(ret, sys_fcntl, fd, cmd, (unsigned long)&f); if (ret) return ret; if (f.l_start >= 0x7fffffffUL || f.l_len >= 0x7fffffffUL || f.l_start + f.l_len >= 0x7fffffffUL) return -EOVERFLOW; if(put_flock(&f, (struct flock32 *)arg)) return -EFAULT; return 0; } default: return sys_fcntl(fd, cmd, (unsigned long)arg); } } #ifdef CONFIG_SYSCTL struct __sysctl_args32 { u32 name; int nlen; u32 oldval; u32 oldlenp; u32 newval; u32 newlen; u32 __unused[4]; }; asmlinkage long sys32_sysctl(struct __sysctl_args32 *args) { struct __sysctl_args32 tmp; int error; unsigned int oldlen32; size_t oldlen, *oldlenp = NULL; unsigned long addr = (((long)&args->__unused[0]) + 7) & ~7; extern int do_sysctl(int *name, int nlen, void *oldval, size_t *oldlenp, void *newval, size_t newlen); DBG(("sysctl32(%p)\n", args)); if (copy_from_user(&tmp, args, sizeof(tmp))) return -EFAULT; if (tmp.oldval && tmp.oldlenp) { /* Duh, this is ugly and might not work if sysctl_args is in read-only memory, but do_sysctl does indirectly a lot of uaccess in both directions and we'd have to basically copy the whole sysctl.c here, and glibc's __sysctl uses rw memory for the structure anyway. */ /* a possibly better hack than this, which will avoid the * problem if the struct is read only, is to push the * 'oldlen' value out to the user's stack instead. -PB */ if (get_user(oldlen32, (u32 *)(u64)tmp.oldlenp)) return -EFAULT; oldlen = oldlen32; if (put_user(oldlen, (size_t *)addr)) return -EFAULT; oldlenp = (size_t *)addr; } lock_kernel(); error = do_sysctl((int *)(u64)tmp.name, tmp.nlen, (void *)(u64)tmp.oldval, oldlenp, (void *)(u64)tmp.newval, tmp.newlen); unlock_kernel(); if (oldlenp) { if (!error) { if (get_user(oldlen, (size_t *)addr)) { error = -EFAULT; } else { oldlen32 = oldlen; if (put_user(oldlen32, (u32 *)(u64)tmp.oldlenp)) error = -EFAULT; } } if (copy_to_user(args->__unused, tmp.__unused, sizeof(tmp.__unused))) error = -EFAULT; } return error; } #else /* CONFIG_SYSCTL */ asmlinkage long sys32_sysctl(struct __sysctl_args *args) { return -ENOSYS; } #endif /* CONFIG_SYSCTL */ struct timespec32 { s32 tv_sec; s32 tv_nsec; }; static int put_timespec32(struct timespec32 *u, struct timespec *t) { struct timespec32 t32; t32.tv_sec = t->tv_sec; t32.tv_nsec = t->tv_nsec; return copy_to_user(u, &t32, sizeof t32); } asmlinkage int sys32_nanosleep(struct timespec32 *rqtp, struct timespec32 *rmtp) { struct timespec t; struct timespec32 t32; int ret; extern asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp); if (copy_from_user(&t32, rqtp, sizeof t32)) return -EFAULT; t.tv_sec = t32.tv_sec; t.tv_nsec = t32.tv_nsec; DBG(("sys32_nanosleep({%d, %d})\n", t32.tv_sec, t32.tv_nsec)); KERNEL_SYSCALL(ret, sys_nanosleep, &t, rmtp ? &t : NULL); if (rmtp && ret == -EINTR) { if (put_timespec32(rmtp, &t)) return -EFAULT; } return ret; } asmlinkage long sys32_sched_rr_get_interval(pid_t pid, struct timespec32 *interval) { struct timespec t; int ret; extern asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval); KERNEL_SYSCALL(ret, sys_sched_rr_get_interval, pid, &t); if (put_timespec32(interval, &t)) return -EFAULT; return ret; } typedef __kernel_time_t32 time_t32; static int put_timeval32(struct timeval32 *u, struct timeval *t) { struct timeval32 t32; t32.tv_sec = t->tv_sec; t32.tv_usec = t->tv_usec; return copy_to_user(u, &t32, sizeof t32); } static int get_timeval32(struct timeval32 *u, struct timeval *t) { int err; struct timeval32 t32; if ((err = copy_from_user(&t32, u, sizeof t32)) == 0) { t->tv_sec = t32.tv_sec; t->tv_usec = t32.tv_usec; } return err; } asmlinkage long sys32_time(time_t32 *tloc) { time_t now = CURRENT_TIME; time_t32 now32 = now; if (tloc) if (put_user(now32, tloc)) now32 = -EFAULT; return now32; } asmlinkage int sys32_gettimeofday(struct timeval32 *tv, struct timezone *tz) { extern void do_gettimeofday(struct timeval *tv); if (tv) { struct timeval ktv; do_gettimeofday(&ktv); if (put_timeval32(tv, &ktv)) return -EFAULT; } if (tz) { extern struct timezone sys_tz; if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } asmlinkage int sys32_settimeofday(struct timeval32 *tv, struct timezone *tz) { struct timeval ktv; struct timezone ktz; extern int do_sys_settimeofday(struct timeval *tv, struct timezone *tz); if (tv) { if (get_timeval32(tv, &ktv)) return -EFAULT; } if (tz) { if (copy_from_user(&ktz, tz, sizeof(ktz))) return -EFAULT; } return do_sys_settimeofday(tv ? &ktv : NULL, tz ? &ktz : NULL); } struct itimerval32 { struct timeval32 it_interval; /* timer interval */ struct timeval32 it_value; /* current value */ }; asmlinkage long sys32_getitimer(int which, struct itimerval32 *ov32) { int error = -EFAULT; struct itimerval get_buffer; extern int do_getitimer(int which, struct itimerval *value); if (ov32) { error = do_getitimer(which, &get_buffer); if (!error) { struct itimerval32 gb32; gb32.it_interval.tv_sec = get_buffer.it_interval.tv_sec; gb32.it_interval.tv_usec = get_buffer.it_interval.tv_usec; gb32.it_value.tv_sec = get_buffer.it_value.tv_sec; gb32.it_value.tv_usec = get_buffer.it_value.tv_usec; if (copy_to_user(ov32, &gb32, sizeof(gb32))) error = -EFAULT; } } return error; } asmlinkage long sys32_setitimer(int which, struct itimerval32 *v32, struct itimerval32 *ov32) { struct itimerval set_buffer, get_buffer; struct itimerval32 sb32, gb32; extern int do_setitimer(int which, struct itimerval *value, struct itimerval *ov32); int error; if (v32) { if(copy_from_user(&sb32, v32, sizeof(sb32))) return -EFAULT; set_buffer.it_interval.tv_sec = sb32.it_interval.tv_sec; set_buffer.it_interval.tv_usec = sb32.it_interval.tv_usec; set_buffer.it_value.tv_sec = sb32.it_value.tv_sec; set_buffer.it_value.tv_usec = sb32.it_value.tv_usec; } else memset((char *) &set_buffer, 0, sizeof(set_buffer)); error = do_setitimer(which, &set_buffer, ov32 ? &get_buffer : 0); if (error || !ov32) return error; gb32.it_interval.tv_sec = get_buffer.it_interval.tv_sec; gb32.it_interval.tv_usec = get_buffer.it_interval.tv_usec; gb32.it_value.tv_sec = get_buffer.it_value.tv_sec; gb32.it_value.tv_usec = get_buffer.it_value.tv_usec; if (copy_to_user(ov32, &gb32, sizeof(gb32))) return -EFAULT; return 0; } struct rusage32 { struct timeval32 ru_utime; struct timeval32 ru_stime; int ru_maxrss; int ru_ixrss; int ru_idrss; int ru_isrss; int ru_minflt; int ru_majflt; int ru_nswap; int ru_inblock; int ru_oublock; int ru_msgsnd; int ru_msgrcv; int ru_nsignals; int ru_nvcsw; int ru_nivcsw; }; static int put_rusage32(struct rusage32 *ru32p, struct rusage *r) { struct rusage32 r32; #undef CP #define CP(t) r32.t = r->t; CP(ru_utime.tv_sec); CP(ru_utime.tv_usec); CP(ru_stime.tv_sec); CP(ru_stime.tv_usec); CP(ru_maxrss); CP(ru_ixrss); CP(ru_idrss); CP(ru_isrss); CP(ru_minflt); CP(ru_majflt); CP(ru_nswap); CP(ru_inblock); CP(ru_oublock); CP(ru_msgsnd); CP(ru_msgrcv); CP(ru_nsignals); CP(ru_nvcsw); CP(ru_nivcsw); return copy_to_user(ru32p, &r32, sizeof r32); } asmlinkage int sys32_getrusage(int who, struct rusage32 *ru) { struct rusage r; int ret; extern asmlinkage int sys_getrusage(int who, struct rusage *ru); KERNEL_SYSCALL(ret, sys_getrusage, who, &r); if (put_rusage32(ru, &r)) return -EFAULT; return ret; } asmlinkage int sys32_wait4(__kernel_pid_t32 pid, unsigned int * stat_addr, int options, struct rusage32 * ru) { if (!ru) return sys_wait4(pid, stat_addr, options, NULL); else { struct rusage r; int ret; unsigned int status; KERNEL_SYSCALL(ret, sys_wait4, pid, stat_addr ? &status : NULL, options, &r); if (put_rusage32(ru, &r)) return -EFAULT; if (stat_addr && put_user(status, stat_addr)) return -EFAULT; return ret; } } struct stat32 { __kernel_dev_t32 st_dev; /* dev_t is 32 bits on parisc */ __kernel_ino_t32 st_ino; /* 32 bits */ __kernel_mode_t32 st_mode; /* 16 bits */ __kernel_nlink_t32 st_nlink; /* 16 bits */ unsigned short st_reserved1; /* old st_uid */ unsigned short st_reserved2; /* old st_gid */ __kernel_dev_t32 st_rdev; __kernel_off_t32 st_size; __kernel_time_t32 st_atime; unsigned int st_spare1; __kernel_time_t32 st_mtime; unsigned int st_spare2; __kernel_time_t32 st_ctime; unsigned int st_spare3; int st_blksize; int st_blocks; unsigned int __unused1; /* ACL stuff */ __kernel_dev_t32 __unused2; /* network */ __kernel_ino_t32 __unused3; /* network */ unsigned int __unused4; /* cnodes */ unsigned short __unused5; /* netsite */ short st_fstype; __kernel_dev_t32 st_realdev; unsigned short st_basemode; unsigned short st_spareshort; __kernel_uid_t32 st_uid; __kernel_gid_t32 st_gid; unsigned int st_spare4[3]; }; /* * Revalidate the inode. This is required for proper NFS attribute caching. */ static __inline__ int do_revalidate(struct dentry *dentry) { struct inode * inode = dentry->d_inode; if (inode->i_op && inode->i_op->revalidate) return inode->i_op->revalidate(dentry); return 0; } static int cp_new_stat32(struct inode *inode, struct stat32 *statbuf) { struct stat32 tmp; unsigned int blocks, indirect; memset(&tmp, 0, sizeof(tmp)); tmp.st_dev = kdev_t_to_nr(inode->i_dev); tmp.st_ino = inode->i_ino; tmp.st_mode = inode->i_mode; tmp.st_nlink = inode->i_nlink; SET_STAT_UID(tmp, inode->i_uid); SET_STAT_GID(tmp, inode->i_gid); tmp.st_rdev = kdev_t_to_nr(inode->i_rdev); #if BITS_PER_LONG == 32 if (inode->i_size > 0x7fffffff) return -EOVERFLOW; #endif tmp.st_size = inode->i_size; tmp.st_atime = inode->i_atime; tmp.st_mtime = inode->i_mtime; tmp.st_ctime = inode->i_ctime; /* * st_blocks and st_blksize are approximated with a simple algorithm if * they aren't supported directly by the filesystem. The minix and msdos * filesystems don't keep track of blocks, so they would either have to * be counted explicitly (by delving into the file itself), or by using * this simple algorithm to get a reasonable (although not 100% accurate) * value. */ /* * Use minix fs values for the number of direct and indirect blocks. The * count is now exact for the minix fs except that it counts zero blocks. * Everything is in units of BLOCK_SIZE until the assignment to * tmp.st_blksize. */ #define D_B 7 #define I_B (BLOCK_SIZE / sizeof(unsigned short)) if (!inode->i_blksize) { blocks = (tmp.st_size + BLOCK_SIZE - 1) / BLOCK_SIZE; if (blocks > D_B) { indirect = (blocks - D_B + I_B - 1) / I_B; blocks += indirect; if (indirect > 1) { indirect = (indirect - 1 + I_B - 1) / I_B; blocks += indirect; if (indirect > 1) blocks++; } } tmp.st_blocks = (BLOCK_SIZE / 512) * blocks; tmp.st_blksize = BLOCK_SIZE; } else { tmp.st_blocks = inode->i_blocks; tmp.st_blksize = inode->i_blksize; } return copy_to_user(statbuf,&tmp,sizeof(tmp)) ? -EFAULT : 0; } asmlinkage long sys32_newstat(char * filename, struct stat32 *statbuf) { struct nameidata nd; int error; error = user_path_walk(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_new_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } return error; } asmlinkage long sys32_newlstat(char * filename, struct stat32 *statbuf) { struct nameidata nd; int error; error = user_path_walk_link(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_new_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } return error; } asmlinkage long sys32_newfstat(unsigned int fd, struct stat32 *statbuf) { struct file * f; int err = -EBADF; f = fget(fd); if (f) { struct dentry * dentry = f->f_dentry; err = do_revalidate(dentry); if (!err) err = cp_new_stat32(dentry->d_inode, statbuf); fput(f); } return err; } struct linux32_dirent { u32 d_ino; __kernel_off_t32 d_off; u16 d_reclen; char d_name[1]; }; struct old_linux32_dirent { u32 d_ino; u32 d_offset; u16 d_namlen; char d_name[1]; }; struct getdents32_callback { struct linux32_dirent * current_dir; struct linux32_dirent * previous; int count; int error; }; struct readdir32_callback { struct old_linux32_dirent * dirent; int count; }; #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1))) #define NAME_OFFSET(de) ((int) ((de)->d_name - (char *) (de))) static int filldir32 (void *__buf, const char *name, int namlen, loff_t offset, ino_t ino, unsigned int d_type) { struct linux32_dirent * dirent; struct getdents32_callback * buf = (struct getdents32_callback *) __buf; int reclen = ROUND_UP(NAME_OFFSET(dirent) + namlen + 1, 4); buf->error = -EINVAL; /* only used if we fail.. */ if (reclen > buf->count) return -EINVAL; dirent = buf->previous; if (dirent) put_user(offset, &dirent->d_off); dirent = buf->current_dir; buf->previous = dirent; put_user(ino, &dirent->d_ino); put_user(reclen, &dirent->d_reclen); copy_to_user(dirent->d_name, name, namlen); put_user(0, dirent->d_name + namlen); ((char *) dirent) += reclen; buf->current_dir = dirent; buf->count -= reclen; return 0; } asmlinkage long sys32_getdents (unsigned int fd, void * dirent, unsigned int count) { struct file * file; struct linux32_dirent * lastdirent; struct getdents32_callback buf; int error; error = -EBADF; file = fget(fd); if (!file) goto out; buf.current_dir = (struct linux32_dirent *) dirent; buf.previous = NULL; buf.count = count; buf.error = 0; error = vfs_readdir(file, filldir32, &buf); if (error < 0) goto out_putf; error = buf.error; lastdirent = buf.previous; if (lastdirent) { put_user(file->f_pos, &lastdirent->d_off); error = count - buf.count; } out_putf: fput(file); out: return error; } static int fillonedir32 (void * __buf, const char * name, int namlen, loff_t offset, ino_t ino, unsigned int d_type) { struct readdir32_callback * buf = (struct readdir32_callback *) __buf; struct old_linux32_dirent * dirent; if (buf->count) return -EINVAL; buf->count++; dirent = buf->dirent; put_user(ino, &dirent->d_ino); put_user(offset, &dirent->d_offset); put_user(namlen, &dirent->d_namlen); copy_to_user(dirent->d_name, name, namlen); put_user(0, dirent->d_name + namlen); return 0; } asmlinkage long sys32_readdir (unsigned int fd, void * dirent, unsigned int count) { int error; struct file * file; struct readdir32_callback buf; error = -EBADF; file = fget(fd); if (!file) goto out; buf.count = 0; buf.dirent = dirent; error = vfs_readdir(file, fillonedir32, &buf); if (error >= 0) error = buf.count; fput(file); out: return error; } struct rlimit32 { __u32 rlim_cur; __u32 rlim_max; }; #define RLIM32_INFINITY 0xffffffff asmlinkage long sys32_getrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit32 rlim32; struct rlimit *rlimip; if (resource >= RLIM_NLIMITS) return -EINVAL; rlimip = current->rlim + resource; if (rlimip->rlim_cur >= RLIM32_INFINITY) { rlim32.rlim_cur = RLIM32_INFINITY; } else { rlim32.rlim_cur = rlimip->rlim_cur; } if (rlimip->rlim_max >= RLIM32_INFINITY) { rlim32.rlim_max = RLIM32_INFINITY; } else { rlim32.rlim_max = rlimip->rlim_max; } return copy_to_user(rlim, &rlim32, sizeof (struct rlimit32)); } asmlinkage long sys32_setrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit32 rlim32; struct rlimit new_rlim, *old_rlim; if (resource >= RLIM_NLIMITS) return -EINVAL; if (copy_from_user(&rlim32, rlim, sizeof(rlim))) return -EFAULT; if (rlim32.rlim_cur == RLIM32_INFINITY) { new_rlim.rlim_cur = RLIM_INFINITY; } else { new_rlim.rlim_cur = rlim32.rlim_cur; } if (rlim32.rlim_max == RLIM32_INFINITY) { new_rlim.rlim_max = RLIM_INFINITY; } else { new_rlim.rlim_max = rlim32.rlim_max; } old_rlim = current->rlim + resource; if (((new_rlim.rlim_cur > old_rlim->rlim_max) || (new_rlim.rlim_max > old_rlim->rlim_max)) && !capable(CAP_SYS_RESOURCE)) return -EPERM; if (resource == RLIMIT_NOFILE) { if (new_rlim.rlim_cur > NR_OPEN || new_rlim.rlim_max > NR_OPEN) return -EPERM; } if (resource == RLIMIT_STACK) { if (new_rlim.rlim_max > 1024 * 1024 * 1024) { new_rlim.rlim_max = 1024 * 1024 * 1024; } new_rlim.rlim_max = PAGE_ALIGN(new_rlim.rlim_max); } *old_rlim = new_rlim; return 0; } static int copy_mount_stuff_to_kernel(const void *user, unsigned long *kernel) { int i; unsigned long page; struct vm_area_struct *vma; *kernel = 0; if(!user) return 0; vma = find_vma(current->mm, (unsigned long)user); if(!vma || (unsigned long)user < vma->vm_start) return -EFAULT; if(!(vma->vm_flags & VM_READ)) return -EFAULT; i = vma->vm_end - (unsigned long) user; if(PAGE_SIZE <= (unsigned long) i) i = PAGE_SIZE - 1; if(!(page = __get_free_page(GFP_KERNEL))) return -ENOMEM; if(copy_from_user((void *) page, user, i)) { free_page(page); return -EFAULT; } *kernel = page; return 0; } #define SMBFS_NAME "smbfs" #define NCPFS_NAME "ncpfs" asmlinkage int sys32_mount(char *dev_name, char *dir_name, char *type, unsigned long new_flags, u32 data) { unsigned long type_page = 0; unsigned long data_page = 0; unsigned long dev_page = 0; unsigned long dir_page = 0; int err, is_smb, is_ncp; is_smb = is_ncp = 0; err = copy_mount_stuff_to_kernel((const void *)type, &type_page); if (err) goto out; if (!type_page) { err = -EINVAL; goto out; } is_smb = !strcmp((char *)type_page, SMBFS_NAME); is_ncp = !strcmp((char *)type_page, NCPFS_NAME); err = copy_mount_stuff_to_kernel((const void *)(unsigned long)data, &data_page); if (err) goto type_out; err = copy_mount_stuff_to_kernel(dev_name, &dev_page); if (err) goto data_out; err = copy_mount_stuff_to_kernel(dir_name, &dir_page); if (err) goto dev_out; if (!is_smb && !is_ncp) { lock_kernel(); err = do_mount((char*)dev_page, (char*)dir_page, (char*)type_page, new_flags, (char*)data_page); unlock_kernel(); } else { if (is_ncp) panic("NCP mounts not yet supported 32/64 parisc"); /* do_ncp_super_data_conv((void *)data_page); */ else { panic("SMB mounts not yet supported 32/64 parisc"); /* do_smb_super_data_conv((void *)data_page); */ } lock_kernel(); err = do_mount((char*)dev_page, (char*)dir_page, (char*)type_page, new_flags, (char*)data_page); unlock_kernel(); } free_page(dir_page); dev_out: free_page(dev_page); data_out: free_page(data_page); type_out: free_page(type_page); out: return err; } #ifdef CONFIG_MODULES struct module_info32 { u32 addr; u32 size; u32 flags; s32 usecount; }; /* Query various bits about modules. */ static inline long get_mod_name(const char *user_name, char **buf) { unsigned long page; long retval; if ((unsigned long)user_name >= TASK_SIZE && !segment_eq(get_fs (), KERNEL_DS)) return -EFAULT; page = __get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; retval = strncpy_from_user((char *)page, user_name, PAGE_SIZE); if (retval > 0) { if (retval < PAGE_SIZE) { *buf = (char *)page; return retval; } retval = -ENAMETOOLONG; } else if (!retval) retval = -EINVAL; free_page(page); return retval; } static inline void put_mod_name(char *buf) { free_page((unsigned long)buf); } static __inline__ struct module *find_module(const char *name) { struct module *mod; for (mod = module_list; mod ; mod = mod->next) { if (mod->flags & MOD_DELETED) continue; if (!strcmp(mod->name, name)) break; } return mod; } static int qm_modules(char *buf, size_t bufsize, __kernel_size_t32 *ret) { struct module *mod; size_t nmod, space, len; nmod = space = 0; for (mod = module_list; mod->next != NULL; mod = mod->next, ++nmod) { len = strlen(mod->name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, mod->name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } if (put_user(nmod, ret)) return -EFAULT; else return 0; calc_space_needed: space += len; while ((mod = mod->next)->next != NULL) space += strlen(mod->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static int qm_deps(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t i, space, len; if (mod->next == NULL) return -EINVAL; if (!MOD_CAN_QUERY(mod)) return put_user(0, ret); space = 0; for (i = 0; i < mod->ndeps; ++i) { const char *dep_name = mod->deps[i].dep->name; len = strlen(dep_name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, dep_name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } return put_user(i, ret); calc_space_needed: space += len; while (++i < mod->ndeps) space += strlen(mod->deps[i].dep->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static int qm_refs(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t nrefs, space, len; struct module_ref *ref; if (mod->next == NULL) return -EINVAL; if (!MOD_CAN_QUERY(mod)) if (put_user(0, ret)) return -EFAULT; else return 0; space = 0; for (nrefs = 0, ref = mod->refs; ref ; ++nrefs, ref = ref->next_ref) { const char *ref_name = ref->ref->name; len = strlen(ref_name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, ref_name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } if (put_user(nrefs, ret)) return -EFAULT; else return 0; calc_space_needed: space += len; while ((ref = ref->next_ref) != NULL) space += strlen(ref->ref->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static inline int qm_symbols(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t i, space, len; struct module_symbol *s; char *strings; unsigned *vals; if (!MOD_CAN_QUERY(mod)) if (put_user(0, ret)) return -EFAULT; else return 0; space = mod->nsyms * 2*sizeof(u32); i = len = 0; s = mod->syms; if (space > bufsize) goto calc_space_needed; if (!access_ok(VERIFY_WRITE, buf, space)) return -EFAULT; bufsize -= space; vals = (unsigned *)buf; strings = buf+space; for (; i < mod->nsyms ; ++i, ++s, vals += 2) { len = strlen(s->name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(strings, s->name, len) || __put_user(s->value, vals+0) || __put_user(space, vals+1)) return -EFAULT; strings += len; bufsize -= len; space += len; } if (put_user(i, ret)) return -EFAULT; else return 0; calc_space_needed: for (; i < mod->nsyms; ++i, ++s) space += strlen(s->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static inline int qm_info(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { int error = 0; if (mod->next == NULL) return -EINVAL; if (sizeof(struct module_info32) <= bufsize) { struct module_info32 info; info.addr = (unsigned long)mod; info.size = mod->size; info.flags = mod->flags; info.usecount = ((mod_member_present(mod, can_unload) && mod->can_unload) ? -1 : atomic_read(&mod->uc.usecount)); if (copy_to_user(buf, &info, sizeof(struct module_info32))) return -EFAULT; } else error = -ENOSPC; if (put_user(sizeof(struct module_info32), ret)) return -EFAULT; return error; } asmlinkage int sys32_query_module(char *name_user, int which, char *buf, __kernel_size_t32 bufsize, __kernel_size_t32 *ret) { struct module *mod; int err; lock_kernel(); if (name_user == 0) { /* This finds "kernel_module" which is not exported. */ for(mod = module_list; mod->next != NULL; mod = mod->next) ; } else { long namelen; char *name; if ((namelen = get_mod_name(name_user, &name)) < 0) { err = namelen; goto out; } err = -ENOENT; if (namelen == 0) { /* This finds "kernel_module" which is not exported. */ for(mod = module_list; mod->next != NULL; mod = mod->next) ; } else if ((mod = find_module(name)) == NULL) { put_mod_name(name); goto out; } put_mod_name(name); } switch (which) { case 0: err = 0; break; case QM_MODULES: err = qm_modules(buf, bufsize, ret); break; case QM_DEPS: err = qm_deps(mod, buf, bufsize, ret); break; case QM_REFS: err = qm_refs(mod, buf, bufsize, ret); break; case QM_SYMBOLS: err = qm_symbols(mod, buf, bufsize, ret); break; case QM_INFO: err = qm_info(mod, buf, bufsize, ret); break; default: err = -EINVAL; break; } out: unlock_kernel(); return err; } struct kernel_sym32 { u32 value; char name[60]; }; extern asmlinkage int sys_get_kernel_syms(struct kernel_sym *table); asmlinkage int sys32_get_kernel_syms(struct kernel_sym32 *table) { int len, i; struct kernel_sym *tbl; mm_segment_t old_fs; len = sys_get_kernel_syms(NULL); if (!table) return len; tbl = kmalloc (len * sizeof (struct kernel_sym), GFP_KERNEL); if (!tbl) return -ENOMEM; old_fs = get_fs(); set_fs (KERNEL_DS); sys_get_kernel_syms(tbl); set_fs (old_fs); for (i = 0; i < len; i++, table++) { if (put_user (tbl[i].value, &table->value) || copy_to_user (table->name, tbl[i].name, 60)) break; } kfree (tbl); return i; } #else /* CONFIG_MODULES */ asmlinkage int sys32_query_module(const char *name_user, int which, char *buf, size_t bufsize, size_t *ret) { /* Let the program know about the new interface. Not that it'll do them much good. */ if (which == 0) return 0; return -ENOSYS; } asmlinkage int sys32_get_kernel_syms(struct kernel_sym *table) { return -ENOSYS; } #endif /* CONFIG_MODULES */ /* readv/writev stolen from mips64 */ struct iovec32 { unsigned int iov_base; int iov_len; }; typedef ssize_t (*IO_fn_t)(struct file *, char *, size_t, loff_t *); static long do_readv_writev32(int type, struct file *file, const struct iovec32 *vector, u32 count) { unsigned long tot_len; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov=iovstack, *ivp; struct inode *inode; long retval, i; IO_fn_t fn; /* First get the "struct iovec" from user memory and * verify all the pointers */ if (!count) return 0; if(verify_area(VERIFY_READ, vector, sizeof(struct iovec32)*count)) return -EFAULT; if (count > UIO_MAXIOV) return -EINVAL; if (count > UIO_FASTIOV) { iov = kmalloc(count*sizeof(struct iovec), GFP_KERNEL); if (!iov) return -ENOMEM; } tot_len = 0; i = count; ivp = iov; while (i > 0) { u32 len; u32 buf; __get_user(len, &vector->iov_len); __get_user(buf, &vector->iov_base); tot_len += len; ivp->iov_base = (void *)A(buf); ivp->iov_len = (__kernel_size_t) len; vector++; ivp++; i--; } /* VERIFY_WRITE actually means a read, as we write to user space */ retval = rw_verify_area((type == VERIFY_WRITE ? READ : WRITE), file, &file->f_pos, tot_len); if (retval) { if (iov != iovstack) kfree(iov); return retval; } /* Then do the actual IO. Note that sockets need to be handled * specially as they have atomicity guarantees and can handle * iovec's natively */ if (inode->i_sock) { int err; err = sock_readv_writev(type, inode, file, iov, count, tot_len); if (iov != iovstack) kfree(iov); return err; } if (!file->f_op) { if (iov != iovstack) kfree(iov); return -EINVAL; } /* VERIFY_WRITE actually means a read, as we write to user space */ fn = file->f_op->read; if (type == VERIFY_READ) fn = (IO_fn_t) file->f_op->write; ivp = iov; while (count > 0) { void * base; int len, nr; base = ivp->iov_base; len = ivp->iov_len; ivp++; count--; nr = fn(file, base, len, &file->f_pos); if (nr < 0) { if (retval) break; retval = nr; break; } retval += nr; if (nr != len) break; } if (iov != iovstack) kfree(iov); return retval; } asmlinkage long sys32_readv(int fd, struct iovec32 *vector, u32 count) { struct file *file; ssize_t ret; ret = -EBADF; file = fget(fd); if (!file) goto bad_file; if (file->f_op && (file->f_mode & FMODE_READ) && (file->f_op->readv || file->f_op->read)) ret = do_readv_writev32(VERIFY_WRITE, file, vector, count); fput(file); bad_file: return ret; } asmlinkage long sys32_writev(int fd, struct iovec32 *vector, u32 count) { struct file *file; ssize_t ret; ret = -EBADF; file = fget(fd); if(!file) goto bad_file; if (file->f_op && (file->f_mode & FMODE_WRITE) && (file->f_op->writev || file->f_op->write)) ret = do_readv_writev32(VERIFY_READ, file, vector, count); fput(file); bad_file: return ret; } /********** Borrowed from sparc64 -- hardly reviewed, not tested *****/ #include /* XXX This really belongs in some header file... -DaveM */ #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 16 for IP, 16 for IPX, 24 for IPv6, about 80 for AX.25 */ extern struct socket *sockfd_lookup(int fd, int *err); /* XXX This as well... */ extern __inline__ void sockfd_put(struct socket *sock) { fput(sock->file); } struct msghdr32 { u32 msg_name; int msg_namelen; u32 msg_iov; __kernel_size_t32 msg_iovlen; u32 msg_control; __kernel_size_t32 msg_controllen; unsigned msg_flags; }; struct cmsghdr32 { __kernel_size_t32 cmsg_len; int cmsg_level; int cmsg_type; }; /* Bleech... */ #define __CMSG32_NXTHDR(ctl, len, cmsg, cmsglen) __cmsg32_nxthdr((ctl),(len),(cmsg),(cmsglen)) #define CMSG32_NXTHDR(mhdr, cmsg, cmsglen) cmsg32_nxthdr((mhdr), (cmsg), (cmsglen)) #define CMSG32_ALIGN(len) ( ((len)+sizeof(int)-1) & ~(sizeof(int)-1) ) #define CMSG32_DATA(cmsg) ((void *)((char *)(cmsg) + CMSG32_ALIGN(sizeof(struct cmsghdr32)))) #define CMSG32_SPACE(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + CMSG32_ALIGN(len)) #define CMSG32_LEN(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + (len)) #define __CMSG32_FIRSTHDR(ctl,len) ((len) >= sizeof(struct cmsghdr32) ? \ (struct cmsghdr32 *)(ctl) : \ (struct cmsghdr32 *)NULL) #define CMSG32_FIRSTHDR(msg) __CMSG32_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen) #define CMSG32_OK(ucmlen, ucmsg, mhdr) \ ((ucmlen) >= sizeof(struct cmsghdr32) && \ (ucmlen) <= (unsigned long) \ ((mhdr)->msg_controllen - \ ((char *)(ucmsg) - (char *)(mhdr)->msg_control))) __inline__ struct cmsghdr32 *__cmsg32_nxthdr(void *__ctl, __kernel_size_t __size, struct cmsghdr32 *__cmsg, int __cmsg_len) { struct cmsghdr32 * __ptr; __ptr = (struct cmsghdr32 *)(((unsigned char *) __cmsg) + CMSG32_ALIGN(__cmsg_len)); if ((unsigned long)((char*)(__ptr+1) - (char *) __ctl) > __size) return NULL; return __ptr; } __inline__ struct cmsghdr32 *cmsg32_nxthdr (struct msghdr *__msg, struct cmsghdr32 *__cmsg, int __cmsg_len) { return __cmsg32_nxthdr(__msg->msg_control, __msg->msg_controllen, __cmsg, __cmsg_len); } static inline int iov_from_user32_to_kern(struct iovec *kiov, struct iovec32 *uiov32, int niov) { int tot_len = 0; while(niov > 0) { u32 len, buf; if(get_user(len, &uiov32->iov_len) || get_user(buf, &uiov32->iov_base)) { tot_len = -EFAULT; break; } tot_len += len; kiov->iov_base = (void *)A(buf); kiov->iov_len = (__kernel_size_t) len; uiov32++; kiov++; niov--; } return tot_len; } static inline int msghdr_from_user32_to_kern(struct msghdr *kmsg, struct msghdr32 *umsg) { u32 tmp1, tmp2, tmp3; int err; err = get_user(tmp1, &umsg->msg_name); err |= __get_user(tmp2, &umsg->msg_iov); err |= __get_user(tmp3, &umsg->msg_control); if (err) return -EFAULT; kmsg->msg_name = (void *)A(tmp1); kmsg->msg_iov = (struct iovec *)A(tmp2); kmsg->msg_control = (void *)A(tmp3); err = get_user(kmsg->msg_namelen, &umsg->msg_namelen); err |= get_user(kmsg->msg_iovlen, &umsg->msg_iovlen); err |= get_user(kmsg->msg_controllen, &umsg->msg_controllen); err |= get_user(kmsg->msg_flags, &umsg->msg_flags); return err; } /* I've named the args so it is easy to tell whose space the pointers are in. */ static int verify_iovec32(struct msghdr *kern_msg, struct iovec *kern_iov, char *kern_address, int mode) { int tot_len; if(kern_msg->msg_namelen) { if(mode==VERIFY_READ) { int err = move_addr_to_kernel(kern_msg->msg_name, kern_msg->msg_namelen, kern_address); if(err < 0) return err; } kern_msg->msg_name = kern_address; } else kern_msg->msg_name = NULL; if(kern_msg->msg_iovlen > UIO_FASTIOV) { kern_iov = kmalloc(kern_msg->msg_iovlen * sizeof(struct iovec), GFP_KERNEL); if(!kern_iov) return -ENOMEM; } tot_len = iov_from_user32_to_kern(kern_iov, (struct iovec32 *)kern_msg->msg_iov, kern_msg->msg_iovlen); if(tot_len >= 0) kern_msg->msg_iov = kern_iov; else if(kern_msg->msg_iovlen > UIO_FASTIOV) kfree(kern_iov); return tot_len; } /* There is a lot of hair here because the alignment rules (and * thus placement) of cmsg headers and length are different for * 32-bit apps. -DaveM */ static int cmsghdr_from_user32_to_kern(struct msghdr *kmsg, unsigned char *stackbuf, int stackbuf_size) { struct cmsghdr32 *ucmsg; struct cmsghdr *kcmsg, *kcmsg_base; __kernel_size_t32 ucmlen; __kernel_size_t kcmlen, tmp; int err = -EFAULT; kcmlen = 0; kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf; ucmsg = CMSG32_FIRSTHDR(kmsg); while(ucmsg != NULL) { if (get_user(ucmlen, &ucmsg->cmsg_len)) return -EFAULT; /* Catch bogons. */ if (!CMSG32_OK(ucmlen, ucmsg, kmsg)) return -EINVAL; tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); tmp = CMSG_ALIGN(tmp); kcmlen += tmp; ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } if(kcmlen == 0) return -EINVAL; /* The kcmlen holds the 64-bit version of the control length. * It may not be modified as we do not stick it into the kmsg * until we have successfully copied over all of the data * from the user. */ if(kcmlen > stackbuf_size) kcmsg_base = kcmsg = kmalloc(kcmlen, GFP_KERNEL); if(kcmsg == NULL) return -ENOBUFS; /* Now copy them over neatly. */ memset(kcmsg, 0, kcmlen); ucmsg = CMSG32_FIRSTHDR(kmsg); while(ucmsg != NULL) { if (__get_user(ucmlen, &ucmsg->cmsg_len)) goto Efault; tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); if ((char *)kcmsg_base + kcmlen - (char *)kcmsg < CMSG_ALIGN(tmp)) goto Einval; kcmsg->cmsg_len = tmp; tmp = CMSG_ALIGN(tmp); if (__get_user(kcmsg->cmsg_level, &ucmsg->cmsg_level) || __get_user(kcmsg->cmsg_type, &ucmsg->cmsg_type) || copy_from_user(CMSG_DATA(kcmsg), CMSG32_DATA(ucmsg), (ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))))) goto Efault; /* Advance. */ kcmsg = (struct cmsghdr *)((char *)kcmsg + tmp); ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } /* Ok, looks like we made it. Hook it up and return success. */ kmsg->msg_control = kcmsg_base; kmsg->msg_controllen = kcmlen; return 0; Einval: err = -EINVAL; Efault: if (kcmsg_base != (struct cmsghdr *)stackbuf) kfree(kcmsg_base); return err; } static void put_cmsg32(struct msghdr *kmsg, int level, int type, int len, void *data) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; struct cmsghdr32 cmhdr; int cmlen = CMSG32_LEN(len); if(cm == NULL || kmsg->msg_controllen < sizeof(*cm)) { kmsg->msg_flags |= MSG_CTRUNC; return; } if(kmsg->msg_controllen < cmlen) { kmsg->msg_flags |= MSG_CTRUNC; cmlen = kmsg->msg_controllen; } cmhdr.cmsg_level = level; cmhdr.cmsg_type = type; cmhdr.cmsg_len = cmlen; if(copy_to_user(cm, &cmhdr, sizeof cmhdr)) return; if(copy_to_user(CMSG32_DATA(cm), data, cmlen - sizeof(struct cmsghdr32))) return; cmlen = CMSG32_SPACE(len); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } static void scm_detach_fds32(struct msghdr *kmsg, struct scm_cookie *scm) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; int fdmax = (kmsg->msg_controllen - sizeof(struct cmsghdr32)) / sizeof(int); int fdnum = scm->fp->count; struct file **fp = scm->fp->fp; int *cmfptr; int err = 0, i; if (fdnum < fdmax) fdmax = fdnum; for (i = 0, cmfptr = (int *) CMSG32_DATA(cm); i < fdmax; i++, cmfptr++) { int new_fd; err = get_unused_fd(); if (err < 0) break; new_fd = err; err = put_user(new_fd, cmfptr); if (err) { put_unused_fd(new_fd); break; } /* Bump the usage count and install the file. */ get_file(fp[i]); fd_install(new_fd, fp[i]); } if (i > 0) { int cmlen = CMSG32_LEN(i * sizeof(int)); if (!err) err = put_user(SOL_SOCKET, &cm->cmsg_level); if (!err) err = put_user(SCM_RIGHTS, &cm->cmsg_type); if (!err) err = put_user(cmlen, &cm->cmsg_len); if (!err) { cmlen = CMSG32_SPACE(i * sizeof(int)); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } } if (i < fdnum) kmsg->msg_flags |= MSG_CTRUNC; /* * All of the files that fit in the message have had their * usage counts incremented, so we just free the list. */ __scm_destroy(scm); } /* In these cases we (currently) can just copy to data over verbatim * because all CMSGs created by the kernel have well defined types which * have the same layout in both the 32-bit and 64-bit API. One must add * some special cased conversions here if we start sending control messages * with incompatible types. * * SCM_RIGHTS and SCM_CREDENTIALS are done by hand in recvmsg32 right after * we do our work. The remaining cases are: * * SOL_IP IP_PKTINFO struct in_pktinfo 32-bit clean * IP_TTL int 32-bit clean * IP_TOS __u8 32-bit clean * IP_RECVOPTS variable length 32-bit clean * IP_RETOPTS variable length 32-bit clean * (these last two are clean because the types are defined * by the IPv4 protocol) * IP_RECVERR struct sock_extended_err + * struct sockaddr_in 32-bit clean * SOL_IPV6 IPV6_RECVERR struct sock_extended_err + * struct sockaddr_in6 32-bit clean * IPV6_PKTINFO struct in6_pktinfo 32-bit clean * IPV6_HOPLIMIT int 32-bit clean * IPV6_FLOWINFO u32 32-bit clean * IPV6_HOPOPTS ipv6 hop exthdr 32-bit clean * IPV6_DSTOPTS ipv6 dst exthdr(s) 32-bit clean * IPV6_RTHDR ipv6 routing exthdr 32-bit clean * IPV6_AUTHHDR ipv6 auth exthdr 32-bit clean */ static void cmsg32_recvmsg_fixup(struct msghdr *kmsg, unsigned long orig_cmsg_uptr, __kernel_size_t orig_cmsg_len) { unsigned char *workbuf, *wp; unsigned long bufsz, space_avail; struct cmsghdr *ucmsg; bufsz = ((unsigned long)kmsg->msg_control) - orig_cmsg_uptr; space_avail = kmsg->msg_controllen + bufsz; wp = workbuf = kmalloc(bufsz, GFP_KERNEL); if(workbuf == NULL) goto fail; /* To make this more sane we assume the kernel sends back properly * formatted control messages. Because of how the kernel will truncate * the cmsg_len for MSG_TRUNC cases, we need not check that case either. */ ucmsg = (struct cmsghdr *) orig_cmsg_uptr; while(((unsigned long)ucmsg) <= (((unsigned long)kmsg->msg_control) - sizeof(struct cmsghdr))) { struct cmsghdr32 *kcmsg32 = (struct cmsghdr32 *) wp; int clen64, clen32; /* UCMSG is the 64-bit format CMSG entry in user-space. * KCMSG32 is within the kernel space temporary buffer * we use to convert into a 32-bit style CMSG. */ __get_user(kcmsg32->cmsg_len, &ucmsg->cmsg_len); __get_user(kcmsg32->cmsg_level, &ucmsg->cmsg_level); __get_user(kcmsg32->cmsg_type, &ucmsg->cmsg_type); clen64 = kcmsg32->cmsg_len; if ((clen64 < CMSG_ALIGN(sizeof(*ucmsg))) || (clen64 > (orig_cmsg_len + wp - workbuf))) break; copy_from_user(CMSG32_DATA(kcmsg32), CMSG_DATA(ucmsg), clen64 - CMSG_ALIGN(sizeof(*ucmsg))); clen32 = ((clen64 - CMSG_ALIGN(sizeof(*ucmsg))) + CMSG32_ALIGN(sizeof(struct cmsghdr32))); kcmsg32->cmsg_len = clen32; ucmsg = (struct cmsghdr *) (((char *)ucmsg) + CMSG_ALIGN(clen64)); wp = (((char *)kcmsg32) + CMSG32_ALIGN(clen32)); } /* Copy back fixed up data, and adjust pointers. */ bufsz = (wp - workbuf); copy_to_user((void *)orig_cmsg_uptr, workbuf, bufsz); kmsg->msg_control = (struct cmsghdr *) (((char *)orig_cmsg_uptr) + bufsz); kmsg->msg_controllen = space_avail - bufsz; kfree(workbuf); return; fail: /* If we leave the 64-bit format CMSG chunks in there, * the application could get confused and crash. So to * ensure greater recovery, we report no CMSGs. */ kmsg->msg_controllen += bufsz; kmsg->msg_control = (void *) orig_cmsg_uptr; } asmlinkage int sys32_sendmsg(int fd, struct msghdr32 *user_msg, unsigned user_flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iov[UIO_FASTIOV]; unsigned char ctl[sizeof(struct cmsghdr) + 20]; unsigned char *ctl_buf = ctl; struct msghdr kern_msg; int err, total_len; if(msghdr_from_user32_to_kern(&kern_msg, user_msg)) return -EFAULT; if(kern_msg.msg_iovlen > UIO_MAXIOV) return -EINVAL; err = verify_iovec32(&kern_msg, iov, address, VERIFY_READ); if (err < 0) goto out; total_len = err; if(kern_msg.msg_controllen) { err = cmsghdr_from_user32_to_kern(&kern_msg, ctl, sizeof(ctl)); if(err) goto out_freeiov; ctl_buf = kern_msg.msg_control; } kern_msg.msg_flags = user_flags; sock = sockfd_lookup(fd, &err); if (sock != NULL) { if (sock->file->f_flags & O_NONBLOCK) kern_msg.msg_flags |= MSG_DONTWAIT; err = sock_sendmsg(sock, &kern_msg, total_len); sockfd_put(sock); } /* N.B. Use kfree here, as kern_msg.msg_controllen might change? */ if(ctl_buf != ctl) kfree(ctl_buf); out_freeiov: if(kern_msg.msg_iov != iov) kfree(kern_msg.msg_iov); out: return err; } asmlinkage int sys32_recvmsg(int fd, struct msghdr32 *user_msg, unsigned int user_flags) { struct iovec iovstack[UIO_FASTIOV]; struct msghdr kern_msg; char addr[MAX_SOCK_ADDR]; struct socket *sock; struct iovec *iov = iovstack; struct sockaddr *uaddr; int *uaddr_len; unsigned long cmsg_ptr; __kernel_size_t cmsg_len; int err, total_len, len = 0; if(msghdr_from_user32_to_kern(&kern_msg, user_msg)) return -EFAULT; if(kern_msg.msg_iovlen > UIO_MAXIOV) return -EINVAL; uaddr = kern_msg.msg_name; uaddr_len = &user_msg->msg_namelen; err = verify_iovec32(&kern_msg, iov, addr, VERIFY_WRITE); if (err < 0) goto out; total_len = err; cmsg_ptr = (unsigned long) kern_msg.msg_control; cmsg_len = kern_msg.msg_controllen; kern_msg.msg_flags = 0; sock = sockfd_lookup(fd, &err); if (sock != NULL) { struct scm_cookie scm; if (sock->file->f_flags & O_NONBLOCK) user_flags |= MSG_DONTWAIT; memset(&scm, 0, sizeof(scm)); err = sock->ops->recvmsg(sock, &kern_msg, total_len, user_flags, &scm); if(err >= 0) { len = err; if(!kern_msg.msg_control) { if(sock->passcred || scm.fp) kern_msg.msg_flags |= MSG_CTRUNC; if(scm.fp) __scm_destroy(&scm); } else { /* If recvmsg processing itself placed some * control messages into user space, it's is * using 64-bit CMSG processing, so we need * to fix it up before we tack on more stuff. */ if((unsigned long) kern_msg.msg_control != cmsg_ptr) cmsg32_recvmsg_fixup(&kern_msg, cmsg_ptr, cmsg_len); /* Wheee... */ if(sock->passcred) put_cmsg32(&kern_msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(scm.creds), &scm.creds); if(scm.fp != NULL) scm_detach_fds32(&kern_msg, &scm); } } sockfd_put(sock); } if(uaddr != NULL && err >= 0) err = move_addr_to_user(addr, kern_msg.msg_namelen, uaddr, uaddr_len); if(cmsg_ptr != 0 && err >= 0) { unsigned long ucmsg_ptr = ((unsigned long)kern_msg.msg_control); __kernel_size_t32 uclen = (__kernel_size_t32) (ucmsg_ptr - cmsg_ptr); err |= __put_user(uclen, &user_msg->msg_controllen); } if(err >= 0) err = __put_user(kern_msg.msg_flags, &user_msg->msg_flags); if(kern_msg.msg_iov != iov) kfree(kern_msg.msg_iov); out: if(err < 0) return err; return len; } extern asmlinkage int sys_setsockopt(int fd, int level, int optname, char *optval, int optlen); static int do_set_attach_filter(int fd, int level, int optname, char *optval, int optlen) { struct sock_fprog32 { __u16 len; __u32 filter; } *fprog32 = (struct sock_fprog32 *)optval; struct sock_fprog kfprog; struct sock_filter *kfilter; unsigned int fsize; mm_segment_t old_fs; __u32 uptr; int ret; if (get_user(kfprog.len, &fprog32->len) || __get_user(uptr, &fprog32->filter)) return -EFAULT; kfprog.filter = (struct sock_filter *)A(uptr); fsize = kfprog.len * sizeof(struct sock_filter); kfilter = (struct sock_filter *)kmalloc(fsize, GFP_KERNEL); if (kfilter == NULL) return -ENOMEM; if (copy_from_user(kfilter, kfprog.filter, fsize)) { kfree(kfilter); return -EFAULT; } kfprog.filter = kfilter; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_setsockopt(fd, level, optname, (char *)&kfprog, sizeof(kfprog)); set_fs(old_fs); kfree(kfilter); return ret; } static int do_set_icmpv6_filter(int fd, int level, int optname, char *optval, int optlen) { struct icmp6_filter kfilter; mm_segment_t old_fs; int ret, i; if (copy_from_user(&kfilter, optval, sizeof(kfilter))) return -EFAULT; for (i = 0; i < 8; i += 2) { u32 tmp = kfilter.data[i]; kfilter.data[i] = kfilter.data[i + 1]; kfilter.data[i + 1] = tmp; } old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_setsockopt(fd, level, optname, (char *) &kfilter, sizeof(kfilter)); set_fs(old_fs); return ret; } static int do_ipv4_set_replace(int fd, int level, int optname, char *optval, int optlen) #if 1 /* Fields happen to be padded such that this works. ** Don't need to change iptables.h:struct ipt_replace */ { struct ipt_replace *repl = (struct ipt_replace *) optval; unsigned long ptr64; unsigned int ptr32; int ret; if (copy_from_user(&ptr32, &repl->counters, sizeof(ptr32))) return -EFAULT; ptr64 = (unsigned long) ptr32; if (copy_to_user(&repl->counters, &ptr64, sizeof(ptr64))) return -EFAULT; ret = sys_setsockopt(fd, level, optname, (char *) optval, optlen); /* Restore 32-bit ptr */ if (copy_to_user(&repl->counters, &ptr32, sizeof(ptr32))) return -EFAULT; return ret; } #else /* This version tries to "do it right". ie allocate kernel buffers for ** everything and copy data in/out. Way too complicated. ** NOT TESTED for correctness! */ { struct ipt_replace *kern_repl; struct ipt_counters *kern_counters; unsigned int user_counters; mm_segment_t old_fs; int ret = 0; kern_repl = (struct ipt_replace *) kmalloc(optlen+8, GFP_KERNEL); if (!kern_repl) return -ENOMEM; if (copy_from_user(kern_repl, optval, optlen)) { ret = -EFAULT; goto err02; } /* 32-bit ptr is in the MSB's */ user_counters = (unsigned int) (((unsigned long) kern_repl->counters) >> 32); /* ** We are going to set_fs() to kernel space - and thus need ** "relocate" the counters buffer to the kernel space. */ kern_counters = (struct ipt_counters *) kmalloc(kern_repl->num_counters * sizeof(struct ipt_counters), GFP_KERNEL); if (!user_counters) { ret = -ENOMEM; goto err02; } if (copy_from_user(kern_counters, (char *) user_counters, optlen)) { ret = -EFAULT; goto err01; } /* We can update the kernel ptr now that we have the data. */ kern_repl->counters = kern_counters; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_setsockopt(fd, level, optname, (char *) optval, optlen); set_fs(old_fs); /* Copy counters back out to user space */ if (copy_to_user((char *) user_counters, kern_counters, kern_repl->num_counters * sizeof(struct ipt_counters))) { ret = -EFAULT; goto err01; } /* restore counters so userspace can consume it */ kern_repl->counters = NULL; (unsigned int) kern_repl->counters = user_counters; /* Copy repl back out to user space */ if (copy_to_user(optval, kern_repl, optlen)) { ret = -EFAULT; } err01: kfree(kern_counters); err02: kfree(kern_repl); return ret; } #endif asmlinkage int sys32_setsockopt(int fd, int level, int optname, char *optval, int optlen) { if (optname == SO_ATTACH_FILTER) return do_set_attach_filter(fd, level, optname, optval, optlen); if (level == SOL_ICMPV6 && optname == ICMPV6_FILTER) return do_set_icmpv6_filter(fd, level, optname, optval, optlen); /* ** Beware: IPT_SO_SET_REPLACE == IP6T_SO_SET_REPLACE */ if (level == IPPROTO_IP && optname == IPT_SO_SET_REPLACE) return do_ipv4_set_replace(fd, level, optname, optval, optlen); if (level == IPPROTO_IPV6 && optname == IP6T_SO_SET_REPLACE) #if 0 /* FIXME: I don't (yet) use IPV6. -ggg */ return do_ipv6_set_replace(fd, level, optname, optval, optlen); #else { BUG(); return -ENXIO; } #endif return sys_setsockopt(fd, level, optname, optval, optlen); } /*** copied from mips64 ***/ /* * Ooo, nasty. We need here to frob 32-bit unsigned longs to * 64-bit unsigned longs. */ static inline int get_fd_set32(unsigned long n, u32 *ufdset, unsigned long *fdset) { n = (n + 8*sizeof(u32) - 1) / (8*sizeof(u32)); if (ufdset) { unsigned long odd; if (verify_area(VERIFY_WRITE, ufdset, n*sizeof(u32))) return -EFAULT; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; __get_user(l, ufdset); __get_user(h, ufdset+1); ufdset += 2; *fdset++ = h << 32 | l; n -= 2; } if (odd) __get_user(*fdset, ufdset); } else { /* Tricky, must clear full unsigned long in the * kernel fdset at the end, this makes sure that * actually happens. */ memset(fdset, 0, ((n + 1) & ~1)*sizeof(u32)); } return 0; } static inline void set_fd_set32(unsigned long n, u32 *ufdset, unsigned long *fdset) { unsigned long odd; n = (n + 8*sizeof(u32) - 1) / (8*sizeof(u32)); if (!ufdset) return; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; l = *fdset++; h = l >> 32; __put_user(l, ufdset); __put_user(h, ufdset+1); ufdset += 2; n -= 2; } if (odd) __put_user(*fdset, ufdset); } /*** This is a virtual copy of sys_select from fs/select.c and probably *** should be compared to it from time to time ***/ static inline void *select_bits_alloc(int size) { return kmalloc(6 * size, GFP_KERNEL); } static inline void select_bits_free(void *bits, int size) { kfree(bits); } /* * We can actually return ERESTARTSYS instead of EINTR, but I'd * like to be certain this leads to no problems. So I return * EINTR just for safety. * * Update: ERESTARTSYS breaks at least the xview clock binary, so * I'm trying ERESTARTNOHAND which restart only when you want to. */ #define MAX_SELECT_SECONDS \ ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1) #define DIVIDE_ROUND_UP(x,y) (((x)+(y)-1)/(y)) asmlinkage long sys32_select(int n, u32 *inp, u32 *outp, u32 *exp, struct timeval32 *tvp) { fd_set_bits fds; char *bits; long timeout; int ret, size, err; timeout = MAX_SCHEDULE_TIMEOUT; if (tvp) { struct timeval32 tv32; time_t sec, usec; if ((ret = copy_from_user(&tv32, tvp, sizeof tv32))) goto out_nofds; sec = tv32.tv_sec; usec = tv32.tv_usec; ret = -EINVAL; if (sec < 0 || usec < 0) goto out_nofds; if ((unsigned long) sec < MAX_SELECT_SECONDS) { timeout = DIVIDE_ROUND_UP(usec, 1000000/HZ); timeout += sec * (unsigned long) HZ; } } ret = -EINVAL; if (n < 0) goto out_nofds; if (n > current->files->max_fdset) n = current->files->max_fdset; /* * We need 6 bitmaps (in/out/ex for both incoming and outgoing), * since we used fdset we need to allocate memory in units of * long-words. */ ret = -ENOMEM; size = FDS_BYTES(n); bits = select_bits_alloc(size); if (!bits) goto out_nofds; fds.in = (unsigned long *) bits; fds.out = (unsigned long *) (bits + size); fds.ex = (unsigned long *) (bits + 2*size); fds.res_in = (unsigned long *) (bits + 3*size); fds.res_out = (unsigned long *) (bits + 4*size); fds.res_ex = (unsigned long *) (bits + 5*size); if ((ret = get_fd_set32(n, inp, fds.in)) || (ret = get_fd_set32(n, outp, fds.out)) || (ret = get_fd_set32(n, exp, fds.ex))) goto out; zero_fd_set(n, fds.res_in); zero_fd_set(n, fds.res_out); zero_fd_set(n, fds.res_ex); ret = do_select(n, &fds, &timeout); if (tvp && !(current->personality & STICKY_TIMEOUTS)) { time_t sec = 0, usec = 0; if (timeout) { sec = timeout / HZ; usec = timeout % HZ; usec *= (1000000/HZ); } err = put_user(sec, &tvp->tv_sec); err |= __put_user(usec, &tvp->tv_usec); if (err) ret = -EFAULT; } if (ret < 0) goto out; if (!ret) { ret = -ERESTARTNOHAND; if (signal_pending(current)) goto out; ret = 0; } set_fd_set32(n, inp, fds.res_in); set_fd_set32(n, outp, fds.res_out); set_fd_set32(n, exp, fds.res_ex); out: select_bits_free(bits, size); out_nofds: return ret; } struct msgbuf32 { int mtype; char mtext[1]; }; asmlinkage long sys32_msgsnd(int msqid, struct msgbuf32 *umsgp32, size_t msgsz, int msgflg) { struct msgbuf *mb; struct msgbuf32 mb32; int err; if ((mb = kmalloc(msgsz + sizeof *mb + 4, GFP_KERNEL)) == NULL) return -ENOMEM; err = get_user(mb32.mtype, &umsgp32->mtype); mb->mtype = mb32.mtype; err |= copy_from_user(mb->mtext, &umsgp32->mtext, msgsz); if (err) err = -EFAULT; else KERNEL_SYSCALL(err, sys_msgsnd, msqid, mb, msgsz, msgflg); kfree(mb); return err; } asmlinkage long sys32_msgrcv(int msqid, struct msgbuf32 *umsgp32, size_t msgsz, long msgtyp, int msgflg) { struct msgbuf *mb; struct msgbuf32 mb32; int err, len; if ((mb = kmalloc(msgsz + sizeof *mb + 4, GFP_KERNEL)) == NULL) return -ENOMEM; KERNEL_SYSCALL(err, sys_msgrcv, msqid, mb, msgsz, msgtyp, msgflg); if (err >= 0) { len = err; mb32.mtype = mb->mtype; err = put_user(mb32.mtype, &umsgp32->mtype); err |= copy_to_user(&umsgp32->mtext, mb->mtext, len); if (err) err = -EFAULT; else err = len; } kfree(mb); return err; } /* LFS */ extern asmlinkage long sys_truncate(const char *, loff_t); extern asmlinkage long sys_ftruncate(unsigned int, loff_t); extern asmlinkage long sys_fcntl(unsigned int, unsigned int, unsigned long); extern asmlinkage ssize_t sys_pread(unsigned int, char *, size_t, loff_t); extern asmlinkage ssize_t sys_pwrite(unsigned int, char *, size_t, loff_t); asmlinkage long sys32_truncate64(const char * path, unsigned int high, unsigned int low) { return sys_truncate(path, (loff_t)high << 32 | low); } asmlinkage long sys32_ftruncate64(unsigned int fd, unsigned int high, unsigned int low) { return sys_ftruncate(fd, (loff_t)high << 32 | low); } asmlinkage long sys32_fcntl64(unsigned int fd, unsigned int cmd, unsigned long arg) { if (cmd >= F_GETLK64 && cmd <= F_SETLKW64) return sys_fcntl(fd, cmd + F_GETLK - F_GETLK64, arg); return sys32_fcntl(fd, cmd, arg); } asmlinkage int sys32_pread(int fd, void *buf, size_t count, unsigned int high, unsigned int low) { return sys_pread(fd, buf, count, (loff_t)high << 32 | low); } asmlinkage int sys32_pwrite(int fd, void *buf, size_t count, unsigned int high, unsigned int low) { return sys_pwrite(fd, buf, count, (loff_t)high << 32 | low); } /* EXPORT/UNEXPORT */ struct nfsctl_export32 { char ex_client[NFSCLNT_IDMAX+1]; char ex_path[NFS_MAXPATHLEN+1]; __kernel_dev_t ex_dev; __kernel_ino_t32 ex_ino; int ex_flags; __kernel_uid_t ex_anon_uid; __kernel_gid_t ex_anon_gid; }; /* GETFH */ struct nfsctl_fhparm32 { struct sockaddr gf_addr; __kernel_dev_t gf_dev; __kernel_ino_t32 gf_ino; int gf_version; }; /* UGIDUPDATE */ struct nfsctl_uidmap32 { __kernel_caddr_t32 ug_ident; __kernel_uid_t ug_uidbase; int ug_uidlen; __kernel_caddr_t32 ug_udimap; __kernel_gid_t ug_gidbase; int ug_gidlen; __kernel_caddr_t32 ug_gdimap; }; struct nfsctl_arg32 { int ca_version; /* safeguard */ /* wide kernel places this union on 8-byte boundary, narrow on 4 */ union { struct nfsctl_svc u_svc; struct nfsctl_client u_client; struct nfsctl_export32 u_export; struct nfsctl_uidmap32 u_umap; struct nfsctl_fhparm32 u_getfh; struct nfsctl_fdparm u_getfd; struct nfsctl_fsparm u_getfs; } u; }; asmlinkage int sys32_nfsservctl(int cmd, void *argp, void *resp) { int ret, tmp; struct nfsctl_arg32 n32; struct nfsctl_arg n; ret = copy_from_user(&n, argp, sizeof n.ca_version); if (ret != 0) return ret; /* adjust argp to point at the union inside the user's n32 struct */ tmp = (unsigned long)&n32.u - (unsigned long)&n32; argp = (void *)((unsigned long)argp + tmp); switch(cmd) { case NFSCTL_SVC: ret = copy_from_user(&n.u, argp, sizeof n.u.u_svc); break; case NFSCTL_ADDCLIENT: case NFSCTL_DELCLIENT: ret = copy_from_user(&n.u, argp, sizeof n.u.u_client); break; case NFSCTL_GETFD: ret = copy_from_user(&n.u, argp, sizeof n.u.u_getfd); break; case NFSCTL_GETFS: ret = copy_from_user(&n.u, argp, sizeof n.u.u_getfs); break; case NFSCTL_GETFH: /* nfsctl_fhparm */ ret = copy_from_user(&n32.u, argp, sizeof n32.u.u_getfh); #undef CP #define CP(x) n.u.u_getfh.gf_##x = n32.u.u_getfh.gf_##x CP(addr); CP(dev); CP(ino); CP(version); break; case NFSCTL_UGIDUPDATE: /* nfsctl_uidmap */ ret = copy_from_user(&n32.u, argp, sizeof n32.u.u_umap); #undef CP #define CP(x) n.u.u_umap.ug_##x = n32.u.u_umap.ug_##x n.u.u_umap.ug_ident = (char *)(u_long)n32.u.u_umap.ug_ident; CP(uidbase); CP(uidlen); n.u.u_umap.ug_udimap = (__kernel_uid_t *)(u_long)n32.u.u_umap.ug_udimap; CP(gidbase); CP(gidlen); n.u.u_umap.ug_gdimap = (__kernel_gid_t *)(u_long)n32.u.u_umap.ug_gdimap; break; case NFSCTL_UNEXPORT: /* nfsctl_export */ case NFSCTL_EXPORT: /* nfsctl_export */ ret = copy_from_user(&n32.u, argp, sizeof n32.u.u_export); #undef CP #define CP(x) n.u.u_export.ex_##x = n32.u.u_export.ex_##x memcpy(n.u.u_export.ex_client, n32.u.u_export.ex_client, sizeof n32.u.u_export.ex_client); memcpy(n.u.u_export.ex_path, n32.u.u_export.ex_path, sizeof n32.u.u_export.ex_path); CP(dev); CP(ino); CP(flags); CP(anon_uid); CP(anon_gid); break; default: BUG(); /* new cmd values to be translated... */ ret = -EINVAL; break; } if (ret == 0) { unsigned char rbuf[NFS_FHSIZE + sizeof (struct knfsd_fh)]; KERNEL_SYSCALL(ret, sys_nfsservctl, cmd, &n, &rbuf); if (cmd == NFSCTL_GETFH || cmd == NFSCTL_GETFD) { ret = copy_to_user(resp, rbuf, NFS_FHSIZE); } else if (cmd == NFSCTL_GETFS) { ret = copy_to_user(resp, rbuf, sizeof (struct knfsd_fh)); } } return ret; } #include struct dqblk32 { __u32 dqb_bhardlimit; __u32 dqb_bsoftlimit; __u32 dqb_curblocks; __u32 dqb_ihardlimit; __u32 dqb_isoftlimit; __u32 dqb_curinodes; __kernel_time_t32 dqb_btime; __kernel_time_t32 dqb_itime; }; asmlinkage int sys32_quotactl(int cmd, const char *special, int id, unsigned long addr) { extern int sys_quotactl(int cmd, const char *special, int id, caddr_t addr); int cmds = cmd >> SUBCMDSHIFT; int err; struct dqblk d; char *spec; switch (cmds) { case Q_GETQUOTA: break; case Q_SETQUOTA: case Q_SETUSE: case Q_SETQLIM: if (copy_from_user (&d, (struct dqblk32 *)addr, sizeof (struct dqblk32))) return -EFAULT; d.dqb_itime = ((struct dqblk32 *)&d)->dqb_itime; d.dqb_btime = ((struct dqblk32 *)&d)->dqb_btime; break; default: return sys_quotactl(cmd, special, id, (caddr_t)addr); } spec = getname (special); err = PTR_ERR(spec); if (IS_ERR(spec)) return err; KERNEL_SYSCALL(err, sys_quotactl, cmd, (const char *)spec, id, (caddr_t)&d); putname (spec); if (cmds == Q_GETQUOTA) { __kernel_time_t b = d.dqb_btime, i = d.dqb_itime; ((struct dqblk32 *)&d)->dqb_itime = i; ((struct dqblk32 *)&d)->dqb_btime = b; if (copy_to_user ((struct dqblk32 *)addr, &d, sizeof (struct dqblk32))) return -EFAULT; } return err; } struct timex32 { unsigned int modes; /* mode selector */ int offset; /* time offset (usec) */ int freq; /* frequency offset (scaled ppm) */ int maxerror; /* maximum error (usec) */ int esterror; /* estimated error (usec) */ int status; /* clock command/status */ int constant; /* pll time constant */ int precision; /* clock precision (usec) (read only) */ int tolerance; /* clock frequency tolerance (ppm) * (read only) */ struct timeval32 time; /* (read only) */ int tick; /* (modified) usecs between clock ticks */ int ppsfreq; /* pps frequency (scaled ppm) (ro) */ int jitter; /* pps jitter (us) (ro) */ int shift; /* interval duration (s) (shift) (ro) */ int stabil; /* pps stability (scaled ppm) (ro) */ int jitcnt; /* jitter limit exceeded (ro) */ int calcnt; /* calibration intervals (ro) */ int errcnt; /* calibration errors (ro) */ int stbcnt; /* stability limit exceeded (ro) */ int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; }; asmlinkage long sys32_adjtimex(struct timex32 *txc_p32) { struct timex txc; struct timex32 t32; int ret; extern int do_adjtimex(struct timex *txc); if(copy_from_user(&t32, txc_p32, sizeof(struct timex32))) return -EFAULT; #undef CP #define CP(x) txc.x = t32.x CP(modes); CP(offset); CP(freq); CP(maxerror); CP(esterror); CP(status); CP(constant); CP(precision); CP(tolerance); CP(time.tv_sec); CP(time.tv_usec); CP(tick); CP(ppsfreq); CP(jitter); CP(shift); CP(stabil); CP(jitcnt); CP(calcnt); CP(errcnt); CP(stbcnt); ret = do_adjtimex(&txc); #define CP(x) t32.x = txc.x CP(modes); CP(offset); CP(freq); CP(maxerror); CP(esterror); CP(status); CP(constant); CP(precision); CP(tolerance); CP(time.tv_sec); CP(time.tv_usec); CP(tick); CP(ppsfreq); CP(jitter); CP(shift); CP(stabil); CP(jitcnt); CP(calcnt); CP(errcnt); CP(stbcnt); return copy_to_user(txc_p32, &t32, sizeof(struct timex32)) ? -EFAULT : ret; } struct sysinfo32 { s32 uptime; u32 loads[3]; u32 totalram; u32 freeram; u32 sharedram; u32 bufferram; u32 totalswap; u32 freeswap; unsigned short procs; u32 totalhigh; u32 freehigh; u32 mem_unit; char _f[12]; }; /* We used to call sys_sysinfo and translate the result. But sys_sysinfo * undoes the good work done elsewhere, and rather than undoing the * damage, I decided to just duplicate the code from sys_sysinfo here. */ asmlinkage int sys32_sysinfo(struct sysinfo32 *info) { struct sysinfo val; int err; /* We don't need a memset here because we copy the * struct to userspace once element at a time. */ cli(); val.uptime = jiffies / HZ; val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); val.procs = nr_threads-1; sti(); si_meminfo(&val); si_swapinfo(&val); err = put_user (val.uptime, &info->uptime); err |= __put_user (val.loads[0], &info->loads[0]); err |= __put_user (val.loads[1], &info->loads[1]); err |= __put_user (val.loads[2], &info->loads[2]); err |= __put_user (val.totalram, &info->totalram); err |= __put_user (val.freeram, &info->freeram); err |= __put_user (val.sharedram, &info->sharedram); err |= __put_user (val.bufferram, &info->bufferram); err |= __put_user (val.totalswap, &info->totalswap); err |= __put_user (val.freeswap, &info->freeswap); err |= __put_user (val.procs, &info->procs); err |= __put_user (val.totalhigh, &info->totalhigh); err |= __put_user (val.freehigh, &info->freehigh); err |= __put_user (val.mem_unit, &info->mem_unit); return err ? -EFAULT : 0; } /* lseek() needs a wrapper because 'offset' can be negative, but the top * half of the argument has been zeroed by syscall.S. */ extern asmlinkage off_t sys_lseek(unsigned int fd, off_t offset, unsigned int origin); asmlinkage int sys32_lseek(unsigned int fd, int offset, unsigned int origin) { return sys_lseek(fd, offset, origin); } asmlinkage long sys32_semctl_broken(int semid, int semnum, int cmd, union semun arg) { union semun u; cmd &= ~IPC_64; /* should be removed together with the _broken suffix */ if (cmd == SETVAL) { /* Ugh. arg is a union of int,ptr,ptr,ptr, so is 8 bytes. * The int should be in the first 4, but our argument * frobbing has left it in the last 4. */ u.val = *((int *)&arg + 1); return sys_semctl (semid, semnum, cmd, u); } return sys_semctl (semid, semnum, cmd, arg); }