/* * Copyright (C) 2000, 2001 Broadcom Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * These are routines to set up and handle interrupts from the * sb1250 general purpose timer 0. We're using the timer as a * system clock, so we set it up to run at 100 Hz. On every * interrupt, we update our idea of what the time of day is, * then call do_timer() in the architecture-independent kernel * code to do general bookkeeping (e.g. update jiffies, run * bottom halves, etc.) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IMR_IP2_VAL K_INT_MAP_I0 #define IMR_IP3_VAL K_INT_MAP_I1 #define IMR_IP4_VAL K_INT_MAP_I2 extern int sb1250_steal_irq(int irq); void sb1250_time_init(void) { int cpu = smp_processor_id(); int irq = K_INT_TIMER_0+cpu; /* Only have 4 general purpose timers */ if (cpu > 3) { BUG(); } if (!cpu) { /* Use our own gettimeoffset() routine */ do_gettimeoffset = sb1250_gettimeoffset; } sb1250_mask_irq(cpu, irq); /* Map the timer interrupt to ip[4] of this cpu */ out64(IMR_IP4_VAL, KSEG1 + A_IMR_REGISTER(cpu, R_IMR_INTERRUPT_MAP_BASE) + (irq<<3)); /* the general purpose timer ticks at 1 Mhz independent if the rest of the system */ /* Disable the timer and set up the count */ out64(0, KSEG1 + A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)); out64( #ifndef CONFIG_SIMULATION 1000000/HZ #else 50000/HZ #endif , KSEG1 + A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_INIT)); /* Set the timer running */ out64(M_SCD_TIMER_ENABLE|M_SCD_TIMER_MODE_CONTINUOUS, KSEG1 + A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)); sb1250_unmask_irq(cpu, irq); sb1250_steal_irq(irq); /* * This interrupt is "special" in that it doesn't use the request_irq * way to hook the irq line. The timer interrupt is initialized early * enough to make this a major pain, and it's also firing enough to * warrant a bit of special case code. sb1250_timer_interrupt is * called directly from irq_handler.S when IP[4] is set during an * interrupt */ } void sb1250_timer_interrupt(struct pt_regs *regs) { int cpu = smp_processor_id(); int irq = K_INT_TIMER_0+cpu; /* Reset the timer */ out64(M_SCD_TIMER_ENABLE|M_SCD_TIMER_MODE_CONTINUOUS, KSEG1 + A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)); /* * CPU 0 handles the global timer interrupt job */ if (cpu == 0) { ll_timer_interrupt(irq, regs); } /* * every CPU should do profiling and process accouting */ ll_local_timer_interrupt(irq, regs); } /* * We use our own do_gettimeoffset() instead of the generic one, * because the generic one does not work for SMP case. * In addition, since we use general timer 0 for system time, * we can get accurate intra-jiffy offset without calibration. */ unsigned long sb1250_gettimeoffset(void) { unsigned long count = in64(KSEG1 + A_SCD_TIMER_REGISTER(0, R_SCD_TIMER_CNT)); return 1000000/HZ - count; }