/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Time operations for IP22 machines. Original code may come from * Ralf Baechle or David S. Miller (sorry guys, i'm really not sure) * * Copyright (C) 2001 by Ladislav Michl */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * note that mktime uses month from 1 to 12 while to_tm * uses 0 to 11. */ static unsigned long indy_rtc_get_time(void) { unsigned int yrs, mon, day, hrs, min, sec; unsigned int save_control; save_control = hpc3c0->rtcregs[RTC_CMD] & 0xff; hpc3c0->rtcregs[RTC_CMD] = save_control | RTC_TE; sec = hpc3c0->rtcregs[RTC_SECONDS] & 0xff; min = hpc3c0->rtcregs[RTC_MINUTES] & 0xff; hrs = hpc3c0->rtcregs[RTC_HOURS] & 0x3f; day = hpc3c0->rtcregs[RTC_DATE] & 0xff; mon = hpc3c0->rtcregs[RTC_MONTH] & 0x1f; yrs = hpc3c0->rtcregs[RTC_YEAR] & 0xff; hpc3c0->rtcregs[RTC_CMD] = save_control; BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hrs); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(yrs); if (yrs < 45) yrs += 30; if ((yrs += 40) < 70) yrs += 100; return mktime(yrs + 1900, mon, day, hrs, min, sec); } static int indy_rtc_set_time(unsigned long tim) { struct rtc_time tm; unsigned int save_control; to_tm(tim, &tm); tm.tm_mon += 1; /* tm_mon starts at zero */ tm.tm_year -= 1940; if (tm.tm_year >= 100) tm.tm_year -= 100; BIN_TO_BCD(tm.tm_sec); BIN_TO_BCD(tm.tm_min); BIN_TO_BCD(tm.tm_hour); BIN_TO_BCD(tm.tm_mday); BIN_TO_BCD(tm.tm_mon); BIN_TO_BCD(tm.tm_year); save_control = hpc3c0->rtcregs[RTC_CMD] & 0xff; hpc3c0->rtcregs[RTC_CMD] = save_control | RTC_TE; hpc3c0->rtcregs[RTC_YEAR] = tm.tm_year; hpc3c0->rtcregs[RTC_MONTH] = tm.tm_mon; hpc3c0->rtcregs[RTC_DATE] = tm.tm_mday; hpc3c0->rtcregs[RTC_HOURS] = tm.tm_hour; hpc3c0->rtcregs[RTC_MINUTES] = tm.tm_min; hpc3c0->rtcregs[RTC_SECONDS] = tm.tm_sec; hpc3c0->rtcregs[RTC_HUNDREDTH_SECOND] = 0; hpc3c0->rtcregs[RTC_CMD] = save_control; return 0; } static unsigned long dosample(void) { u32 ct0, ct1; volatile u8 msb, lsb; /* Start the counter. */ sgint->tcword = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL | SGINT_TCWORD_MRGEN); sgint->tcnt2 = SGINT_TCSAMP_COUNTER & 0xff; sgint->tcnt2 = SGINT_TCSAMP_COUNTER >> 8; /* Get initial counter invariant */ ct0 = read_c0_count(); /* Latch and spin until top byte of counter2 is zero */ do { sgint->tcword = SGINT_TCWORD_CNT2 | SGINT_TCWORD_CLAT; lsb = sgint->tcnt2; msb = sgint->tcnt2; ct1 = read_c0_count(); } while (msb); /* Stop the counter. */ sgint->tcword = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL | SGINT_TCWORD_MSWST); /* * Return the difference, this is how far the r4k counter increments * for every 1/HZ seconds. We round off the nearest 1 MHz of master * clock (= 1000000 / HZ / 2). */ /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/ return (ct1 - ct0) / (500000/HZ) * (500000/HZ); } /* * Here we need to calibrate the cycle counter to at least be close. */ void indy_time_init(void) { unsigned long r4k_ticks[3]; unsigned long r4k_tick; /* * Figure out the r4k offset, the algorithm is very simple and works in * _all_ cases as long as the 8254 counter register itself works ok (as * an interrupt driving timer it does not because of bug, this is why * we are using the onchip r4k counter/compare register to serve this * purpose, but for r4k_offset calculation it will work ok for us). * There are other very complicated ways of performing this calculation * but this one works just fine so I am not going to futz around. ;-) */ printk(KERN_INFO "Calibrating system timer... "); dosample(); /* Prime cache. */ dosample(); /* Prime cache. */ /* Zero is NOT an option. */ do { r4k_ticks[0] = dosample(); } while (!r4k_ticks[0]); do { r4k_ticks[1] = dosample(); } while (!r4k_ticks[1]); if (r4k_ticks[0] != r4k_ticks[1]) { printk("warning: timer counts differ, retrying... "); r4k_ticks[2] = dosample(); if (r4k_ticks[2] == r4k_ticks[0] || r4k_ticks[2] == r4k_ticks[1]) r4k_tick = r4k_ticks[2]; else { printk("disagreement, using average... "); r4k_tick = (r4k_ticks[0] + r4k_ticks[1] + r4k_ticks[2]) / 3; } } else r4k_tick = r4k_ticks[0]; printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick, (int) (r4k_tick / (500000 / HZ)), (int) (r4k_tick % (500000 / HZ))); mips_hpt_frequency = r4k_tick * HZ; } /* Generic SGI handler for (spurious) 8254 interrupts */ void indy_8254timer_irq(struct pt_regs *regs) { int cpu = smp_processor_id(); int irq = SGI_8254_0_IRQ; ULONG cnt; char c; irq_enter(cpu, irq); kstat.irqs[cpu][irq]++; printk(KERN_ALERT "Oops, got 8254 interrupt.\n"); ArcRead(0, &c, 1, &cnt); ArcEnterInteractiveMode(); irq_exit(cpu, irq); } void indy_r4k_timer_interrupt(struct pt_regs *regs) { int cpu = smp_processor_id(); int irq = SGI_TIMER_IRQ; irq_enter(cpu, irq); kstat.irqs[cpu][irq]++; timer_interrupt(irq, NULL, regs); irq_exit(cpu, irq); if (softirq_pending(cpu)) do_softirq(); } extern int setup_irq(unsigned int irq, struct irqaction *irqaction); static void indy_timer_setup(struct irqaction *irq) { /* over-write the handler, we use our own way */ irq->handler = no_action; /* setup irqaction */ setup_irq(SGI_TIMER_IRQ, irq); } void __init ip22_time_init(void) { /* setup hookup functions */ rtc_get_time = indy_rtc_get_time; rtc_set_time = indy_rtc_set_time; board_time_init = indy_time_init; board_timer_setup = indy_timer_setup; }