/* * SMP boot-related support * * Copyright (C) 1998-2003 Hewlett-Packard Co * David Mosberger-Tang * * 01/05/16 Rohit Seth Moved SMP booting functions from smp.c to here. * 01/04/27 David Mosberger Added ITC synching code. */ #define __KERNEL_SYSCALLS__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SMP_DEBUG 0 #if SMP_DEBUG #define Dprintk(x...) printk(x) #else #define Dprintk(x...) #endif /* * ITC synchronization related stuff: */ #define MASTER 0 #define SLAVE (SMP_CACHE_BYTES/8) #define NUM_ROUNDS 64 /* magic value */ #define NUM_ITERS 5 /* likewise */ static spinlock_t itc_sync_lock = SPIN_LOCK_UNLOCKED; static volatile unsigned long go[SLAVE + 1]; #define DEBUG_ITC_SYNC 0 extern void __init calibrate_delay (void); extern void start_ap (void); extern unsigned long ia64_iobase; int cpucount; /* Setup configured maximum number of CPUs to activate */ static int max_cpus = -1; /* Total count of live CPUs */ int smp_num_cpus = 1; /* Bitmask of currently online CPUs */ volatile unsigned long cpu_online_map; /* which logical CPU number maps to which CPU (physical APIC ID) */ volatile int ia64_cpu_to_sapicid[NR_CPUS]; static volatile unsigned long cpu_callin_map; struct smp_boot_data smp_boot_data __initdata; /* Set when the idlers are all forked */ int smp_threads_ready; unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */ char __initdata no_int_routing; unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */ /* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=", where is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to . */ static int __init nosmp (char *str) { max_cpus = 0; return 1; } __setup("nosmp", nosmp); static int __init maxcpus (char *str) { get_option(&str, &max_cpus); return 1; } __setup("maxcpus=", maxcpus); static int __init nointroute (char *str) { no_int_routing = 1; return 1; } __setup("nointroute", nointroute); void sync_master (void *arg) { unsigned long flags, i; go[MASTER] = 0; local_irq_save(flags); { for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) { while (!go[MASTER]); go[MASTER] = 0; go[SLAVE] = ia64_get_itc(); } } local_irq_restore(flags); } /* * Return the number of cycles by which our itc differs from the itc on the master * (time-keeper) CPU. A positive number indicates our itc is ahead of the master, * negative that it is behind. */ static inline long get_delta (long *rt, long *master) { unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; unsigned long tcenter, t0, t1, tm; long i; for (i = 0; i < NUM_ITERS; ++i) { t0 = ia64_get_itc(); go[MASTER] = 1; while (!(tm = go[SLAVE])); go[SLAVE] = 0; t1 = ia64_get_itc(); if (t1 - t0 < best_t1 - best_t0) best_t0 = t0, best_t1 = t1, best_tm = tm; } *rt = best_t1 - best_t0; *master = best_tm - best_t0; /* average best_t0 and best_t1 without overflow: */ tcenter = (best_t0/2 + best_t1/2); if (best_t0 % 2 + best_t1 % 2 == 2) ++tcenter; return tcenter - best_tm; } /* * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of * unaccounted-for errors (such as getting a machine check in the middle of a calibration * step). The basic idea is for the slave to ask the master what itc value it has and to * read its own itc before and after the master responds. Each iteration gives us three * timestamps: * * slave master * * t0 ---\ * ---\ * ---> * tm * /--- * /--- * t1 <--- * * * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0 * and t1. If we achieve this, the clocks are synchronized provided the interconnect * between the slave and the master is symmetric. Even if the interconnect were * asymmetric, we would still know that the synchronization error is smaller than the * roundtrip latency (t0 - t1). * * When the interconnect is quiet and symmetric, this lets us synchronize the itc to * within one or two cycles. However, we can only *guarantee* that the synchronization is * accurate to within a round-trip time, which is typically in the range of several * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better * than half a micro second or so. */ void ia64_sync_itc (unsigned int master) { long i, delta, adj, adjust_latency = 0, done = 0; unsigned long flags, rt, master_time_stamp, bound; #if DEBUG_ITC_SYNC struct { long rt; /* roundtrip time */ long master; /* master's timestamp */ long diff; /* difference between midpoint and master's timestamp */ long lat; /* estimate of itc adjustment latency */ } t[NUM_ROUNDS]; #endif go[MASTER] = 1; if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) { printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master); return; } while (go[MASTER]); /* wait for master to be ready */ spin_lock_irqsave(&itc_sync_lock, flags); { for (i = 0; i < NUM_ROUNDS; ++i) { delta = get_delta(&rt, &master_time_stamp); if (delta == 0) { done = 1; /* let's lock on to this... */ bound = rt; } if (!done) { if (i > 0) { adjust_latency += -delta; adj = -delta + adjust_latency/4; } else adj = -delta; ia64_set_itc(ia64_get_itc() + adj); } #if DEBUG_ITC_SYNC t[i].rt = rt; t[i].master = master_time_stamp; t[i].diff = delta; t[i].lat = adjust_latency/4; #endif } } spin_unlock_irqrestore(&itc_sync_lock, flags); #if DEBUG_ITC_SYNC for (i = 0; i < NUM_ROUNDS; ++i) printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", t[i].rt, t[i].master, t[i].diff, t[i].lat); #endif printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, " "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt); } /* * Ideally sets up per-cpu profiling hooks. Doesn't do much now... */ static inline void __init smp_setup_percpu_timer (void) { local_cpu_data->prof_counter = 1; local_cpu_data->prof_multiplier = 1; } /* * Architecture specific routine called by the kernel just before init is * fired off. This allows the BP to have everything in order [we hope]. * At the end of this all the APs will hit the system scheduling and off * we go. Each AP will jump through the kernel * init into idle(). At this point the scheduler will one day take over * and give them jobs to do. smp_callin is a standard routine * we use to track CPUs as they power up. */ static volatile atomic_t smp_commenced = ATOMIC_INIT(0); void __init smp_commence (void) { /* * Lets the callins below out of their loop. */ Dprintk("Setting commenced=1, go go go\n"); wmb(); atomic_set(&smp_commenced,1); } static void __init smp_callin (void) { int cpuid, phys_id; extern void ia64_init_itm(void); extern void ia64_cpu_local_tick(void); #ifdef CONFIG_PERFMON extern void pfm_init_percpu(void); #endif cpuid = smp_processor_id(); phys_id = hard_smp_processor_id(); if (test_and_set_bit(cpuid, &cpu_online_map)) { printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n", phys_id, cpuid); BUG(); } smp_setup_percpu_timer(); /* * Get our bogomips. */ ia64_init_itm(); /* * Set I/O port base per CPU */ ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); #ifdef CONFIG_IA64_MCA ia64_mca_cmc_vector_setup(); /* Setup vector on AP & enable */ #endif #ifdef CONFIG_PERFMON pfm_init_percpu(); #endif local_irq_enable(); calibrate_delay(); local_cpu_data->loops_per_jiffy = loops_per_jiffy; if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { /* * Synchronize the ITC with the BP. Need to do this after irqs are * enabled because ia64_sync_itc() calls smp_call_function_single(), which * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls * local_bh_enable(), which bugs out if irqs are not enabled... */ Dprintk("Going to syncup ITC with BP.\n"); ia64_sync_itc(0); /* * Make sure we didn't sync the itc ahead of the next * timer interrupt, if so, just reset it. */ if (time_after(ia64_get_itc(),local_cpu_data->itm_next)) { Dprintk("oops, jumped a timer.\n"); ia64_cpu_local_tick(); } } /* * Allow the master to continue. */ set_bit(cpuid, &cpu_callin_map); Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid); } /* * Activate a secondary processor. head.S calls this. */ int __init start_secondary (void *unused) { extern int cpu_idle (void); Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id()); efi_map_pal_code(); cpu_init(); smp_callin(); Dprintk("CPU %d is set to go.\n", smp_processor_id()); while (!atomic_read(&smp_commenced)) ; Dprintk("CPU %d is starting idle.\n", smp_processor_id()); return cpu_idle(); } static int __init fork_by_hand (void) { /* * don't care about the eip and regs settings since we'll never reschedule the * forked task. */ return do_fork(CLONE_VM|CLONE_PID, 0, 0, 0); } static void __init do_boot_cpu (int sapicid) { struct task_struct *idle; int timeout, cpu; cpu = ++cpucount; /* * We can't use kernel_thread since we must avoid to * reschedule the child. */ if (fork_by_hand() < 0) panic("failed fork for CPU %d", cpu); /* * We remove it from the pidhash and the runqueue * once we got the process: */ idle = init_task.prev_task; if (!idle) panic("No idle process for CPU %d", cpu); task_set_cpu(idle, cpu); /* we schedule the first task manually */ ia64_cpu_to_sapicid[cpu] = sapicid; del_from_runqueue(idle); unhash_process(idle); init_tasks[cpu] = idle; Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid); platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0); /* * Wait 10s total for the AP to start */ Dprintk("Waiting on callin_map ..."); for (timeout = 0; timeout < 100000; timeout++) { if (test_bit(cpu, &cpu_callin_map)) break; /* It has booted */ udelay(100); } Dprintk("\n"); if (test_bit(cpu, &cpu_callin_map)) { /* number CPUs logically, starting from 1 (BSP is 0) */ printk(KERN_INFO "CPU%d: CPU has booted.\n", cpu); } else { printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid); ia64_cpu_to_sapicid[cpu] = -1; cpucount--; } } /* * Cycle through the APs sending Wakeup IPIs to boot each. */ void __init smp_boot_cpus (void) { int sapicid, cpu; int boot_cpu_id = hard_smp_processor_id(); /* * Initialize the logical to physical CPU number mapping * and the per-CPU profiling counter/multiplier */ for (cpu = 0; cpu < NR_CPUS; cpu++) ia64_cpu_to_sapicid[cpu] = -1; smp_setup_percpu_timer(); /* * We have the boot CPU online for sure. */ set_bit(0, &cpu_online_map); set_bit(0, &cpu_callin_map); local_cpu_data->loops_per_jiffy = loops_per_jiffy; ia64_cpu_to_sapicid[0] = boot_cpu_id; printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id); global_irq_holder = 0; current->processor = 0; init_idle(); /* * If SMP should be disabled, then really disable it! */ if (!max_cpus || (max_cpus < -1)) { printk(KERN_INFO "SMP mode deactivated.\n"); cpu_online_map = 1; smp_num_cpus = 1; goto smp_done; } if (max_cpus != -1) printk(KERN_INFO "Limiting CPUs to %d\n", max_cpus); if (smp_boot_data.cpu_count > 1) { printk(KERN_INFO "SMP: starting up secondaries.\n"); for (cpu = 0; cpu < smp_boot_data.cpu_count; cpu++) { /* * Don't even attempt to start the boot CPU! */ sapicid = smp_boot_data.cpu_phys_id[cpu]; if ((sapicid == -1) || (sapicid == hard_smp_processor_id())) continue; if ((max_cpus > 0) && (cpucount + 1 >= max_cpus)) break; do_boot_cpu(sapicid); } smp_num_cpus = cpucount + 1; /* * Allow the user to impress friends. */ printk("Before bogomips.\n"); if (!cpucount) { printk(KERN_WARNING "Warning: only one processor found.\n"); } else { unsigned long bogosum = 0; for (cpu = 0; cpu < NR_CPUS; cpu++) if (cpu_online_map & (1UL << cpu)) bogosum += cpu_data(cpu)->loops_per_jiffy; printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", cpucount + 1, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); } } smp_done: ; } /* * Assume that CPU's have been discovered by some platform-dependent interface. For * SoftSDV/Lion, that would be ACPI. * * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP(). */ void __init init_smp_config(void) { struct fptr { unsigned long fp; unsigned long gp; } *ap_startup; long sal_ret; /* Tell SAL where to drop the AP's. */ ap_startup = (struct fptr *) start_ap; sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ, ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0); if (sal_ret < 0) { printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n Forcing UP mode\n", ia64_sal_strerror(sal_ret)); max_cpus = 0; smp_num_cpus = 1; } } /* * Initialize the logical CPU number to SAPICID mapping */ void __init smp_build_cpu_map (void) { int sapicid, cpu, i; int boot_cpu_id = hard_smp_processor_id(); for (cpu = 0; cpu < NR_CPUS; cpu++) ia64_cpu_to_sapicid[cpu] = -1; ia64_cpu_to_sapicid[0] = boot_cpu_id; for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) { sapicid = smp_boot_data.cpu_phys_id[i]; if (sapicid == boot_cpu_id) continue; ia64_cpu_to_sapicid[cpu] = sapicid; cpu++; } }