/* * Architecture-specific setup. * * Copyright (C) 1998-2003 Hewlett-Packard Co * David Mosberger-Tang */ #define __KERNEL_SYSCALLS__ /* see */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_IA64_SGI_SN #include #endif #define print_symbol(fmt, addr) printk(fmt, "(no symbol)"); void ia64_do_show_stack (struct unw_frame_info *info, void *arg) { unsigned long ip, sp, bsp; char buf[128]; /* don't make it so big that it overflows the stack! */ printk("\nCall Trace:\n"); do { unw_get_ip(info, &ip); if (ip == 0) break; unw_get_sp(info, &sp); unw_get_bsp(info, &bsp); snprintf(buf, sizeof(buf), " [<%016lx>] %%s\n" " sp=%016lx bsp=%016lx\n", ip, sp, bsp); print_symbol(buf, ip); } while (unw_unwind(info) >= 0); } void show_stack (struct task_struct *task) { if (!task) unw_init_running(ia64_do_show_stack, 0); else { struct unw_frame_info info; unw_init_from_blocked_task(&info, task); ia64_do_show_stack(&info, 0); } } void show_trace_task (struct task_struct *task) { show_stack(task); } void show_regs (struct pt_regs *regs) { unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm); printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n", regs->cr_ipsr, regs->cr_ifs, ip, print_tainted()); print_symbol("ip is at %s\n", ip); printk("unat: %016lx pfs : %016lx rsc : %016lx\n", regs->ar_unat, regs->ar_pfs, regs->ar_rsc); printk("rnat: %016lx bsps: %016lx pr : %016lx\n", regs->ar_rnat, regs->ar_bspstore, regs->pr); printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", regs->loadrs, regs->ar_ccv, regs->ar_fpsr); printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", regs->f6.u.bits[1], regs->f6.u.bits[0], regs->f7.u.bits[1], regs->f7.u.bits[0]); printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", regs->f8.u.bits[1], regs->f8.u.bits[0], regs->f9.u.bits[1], regs->f9.u.bits[0]); printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", regs->f10.u.bits[1], regs->f10.u.bits[0], regs->f11.u.bits[1], regs->f11.u.bits[0]); printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); if (user_mode(regs)) { /* print the stacked registers */ unsigned long val, sof, *bsp, ndirty; int i, is_nat = 0; sof = regs->cr_ifs & 0x7f; /* size of frame */ ndirty = (regs->loadrs >> 19); bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); for (i = 0; i < sof; ++i) { get_user(val, ia64_rse_skip_regs(bsp, i)); printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); } } if (!user_mode(regs)) show_stack(NULL); } /* * We use this if we don't have any better idle routine.. */ void default_idle (void) { #ifdef CONFIG_IA64_PAL_IDLE if (!current->need_resched) safe_halt(); #endif } void __attribute__((noreturn)) cpu_idle (void *unused) { init_idle(); current->nice = 20; current->counter = -100; /* endless idle loop with no priority at all */ while (1) { void (*idle)(void) = pm_idle; if (!idle) idle = default_idle; #ifdef CONFIG_SMP if (!current->need_resched) min_xtp(); #endif while (!current->need_resched) { #ifdef CONFIG_IA64_SGI_SN snidle(); #endif (*idle)(); } #ifdef CONFIG_IA64_SGI_SN snidleoff(); #endif #ifdef CONFIG_SMP normal_xtp(); #endif schedule(); check_pgt_cache(); } } void ia64_save_extra (struct task_struct *task) { #ifdef CONFIG_PERFMON unsigned long info; #endif if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) ia64_save_debug_regs(&task->thread.dbr[0]); #ifdef CONFIG_PERFMON if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) pfm_save_regs(task); info = local_cpu_data->pfm_syst_info; if (info & PFM_CPUINFO_SYST_WIDE) pfm_syst_wide_update_task(task, info, 0); #endif #ifdef CONFIG_IA32_SUPPORT if (IS_IA32_PROCESS(ia64_task_regs(task))) ia32_save_state(task); #endif } void ia64_load_extra (struct task_struct *task) { #ifdef CONFIG_PERFMON unsigned long info; #endif if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) ia64_load_debug_regs(&task->thread.dbr[0]); #ifdef CONFIG_PERFMON if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) pfm_load_regs(task); info = local_cpu_data->pfm_syst_info; if (info & PFM_CPUINFO_SYST_WIDE) pfm_syst_wide_update_task(task, info, 1); #endif #ifdef CONFIG_IA32_SUPPORT if (IS_IA32_PROCESS(ia64_task_regs(task))) ia32_load_state(task); #endif } /* * Copy the state of an ia-64 thread. * * We get here through the following call chain: * * * sys_clone * do_fork * copy_thread * * This means that the stack layout is as follows: * * +---------------------+ (highest addr) * | struct pt_regs | * +---------------------+ * | struct switch_stack | * +---------------------+ * | | * | memory stack | * | | <-- sp (lowest addr) * +---------------------+ * * Note: if we get called through arch_kernel_thread() then the memory * above "(highest addr)" is valid kernel stack memory that needs to * be copied as well. * * Observe that we copy the unat values that are in pt_regs and * switch_stack. Spilling an integer to address X causes bit N in * ar.unat to be set to the NaT bit of the register, with N=(X & * 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY * if the pt_regs structure in the parent is congruent to that of the * child, modulo 512. Since the stack is page aligned and the page * size is at least 4KB, this is always the case, so there is nothing * to worry about. */ int copy_thread (int nr, unsigned long clone_flags, unsigned long user_stack_base, unsigned long user_stack_size, struct task_struct *p, struct pt_regs *regs) { unsigned long rbs, child_rbs, rbs_size, stack_offset, stack_top, stack_used; struct switch_stack *child_stack, *stack; extern char ia64_ret_from_clone, ia32_ret_from_clone; struct pt_regs *child_ptregs; int retval = 0; #ifdef CONFIG_SMP /* * For SMP idle threads, fork_by_hand() calls do_fork with * NULL regs. */ if (!regs) return 0; #endif stack_top = (unsigned long) current + IA64_STK_OFFSET; stack = ((struct switch_stack *) regs) - 1; stack_used = stack_top - (unsigned long) stack; stack_offset = IA64_STK_OFFSET - stack_used; child_stack = (struct switch_stack *) ((unsigned long) p + stack_offset); child_ptregs = (struct pt_regs *) (child_stack + 1); /* copy parent's switch_stack & pt_regs to child: */ memcpy(child_stack, stack, stack_used); rbs = (unsigned long) current + IA64_RBS_OFFSET; child_rbs = (unsigned long) p + IA64_RBS_OFFSET; rbs_size = stack->ar_bspstore - rbs; /* copy the parent's register backing store to the child: */ memcpy((void *) child_rbs, (void *) rbs, rbs_size); if (user_mode(child_ptregs)) { if (user_stack_base) { child_ptregs->r12 = user_stack_base + user_stack_size - 16; child_ptregs->ar_bspstore = user_stack_base; child_ptregs->ar_rnat = 0; child_ptregs->loadrs = 0; } } else { /* * Note: we simply preserve the relative position of * the stack pointer here. There is no need to * allocate a scratch area here, since that will have * been taken care of by the caller of sys_clone() * already. */ child_ptregs->r12 = (unsigned long) (child_ptregs + 1); /* kernel sp */ child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ } if (IS_IA32_PROCESS(regs)) child_stack->b0 = (unsigned long) &ia32_ret_from_clone; else child_stack->b0 = (unsigned long) &ia64_ret_from_clone; child_stack->ar_bspstore = child_rbs + rbs_size; /* copy parts of thread_struct: */ p->thread.ksp = (unsigned long) child_stack - 16; /* stop some PSR bits from being inherited: */ child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) & ~IA64_PSR_BITS_TO_CLEAR); /* * NOTE: The calling convention considers all floating point registers in the high * partition (fph) to be scratch. Since the only way to get to this point is * through a system call, we know that the values in fph are all dead. Hence, * there is no need to inherit the fph state from the parent to the child and all * we have to do is to make sure that IA64_THREAD_FPH_VALID is cleared in the * child. * * XXX We could push this optimization a bit further by clearing * IA64_THREAD_FPH_VALID on ANY system call. However, it's not clear this is * worth doing. Also, it would be a slight deviation from the normal Linux system * call behavior where scratch registers are preserved across system calls (unless * used by the system call itself). */ # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ | IA64_THREAD_PM_VALID) # define THREAD_FLAGS_TO_SET 0 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) | THREAD_FLAGS_TO_SET); ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ #ifdef CONFIG_IA32_SUPPORT /* * If we're cloning an IA32 task then save the IA32 extra * state from the current task to the new task */ if (IS_IA32_PROCESS(ia64_task_regs(current))) ia32_save_state(p); #endif #ifdef CONFIG_PERFMON /* * reset notifiers and owner check (may not have a perfmon context) */ atomic_set(&p->thread.pfm_notifiers_check, 0); atomic_set(&p->thread.pfm_owners_check, 0); /* clear list of sampling buffer to free for new task */ p->thread.pfm_smpl_buf_list = NULL; if (current->thread.pfm_context) retval = pfm_inherit(p, child_ptregs); #endif return retval; } void do_copy_regs (struct unw_frame_info *info, void *arg) { unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm; elf_greg_t *dst = arg; struct pt_regs *pt; char nat; int i; memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ if (unw_unwind_to_user(info) < 0) return; unw_get_sp(info, &sp); pt = (struct pt_regs *) (sp + 16); urbs_end = ia64_get_user_rbs_end(current, pt, &cfm); if (ia64_sync_user_rbs(current, info->sw, pt->ar_bspstore, urbs_end) < 0) return; ia64_peek(current, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), &ar_rnat); /* * coredump format: * r0-r31 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) * predicate registers (p0-p63) * b0-b7 * ip cfm user-mask * ar.rsc ar.bsp ar.bspstore ar.rnat * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec */ /* r0 is zero */ for (i = 1, mask = (1UL << i); i < 32; ++i) { unw_get_gr(info, i, &dst[i], &nat); if (nat) nat_bits |= mask; mask <<= 1; } dst[32] = nat_bits; unw_get_pr(info, &dst[33]); for (i = 0; i < 8; ++i) unw_get_br(info, i, &dst[34 + i]); unw_get_rp(info, &ip); dst[42] = ip + ia64_psr(pt)->ri; dst[43] = cfm; dst[44] = pt->cr_ipsr & IA64_PSR_UM; unw_get_ar(info, UNW_AR_RSC, &dst[45]); /* * For bsp and bspstore, unw_get_ar() would return the kernel * addresses, but we need the user-level addresses instead: */ dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ dst[47] = pt->ar_bspstore; dst[48] = ar_rnat; unw_get_ar(info, UNW_AR_CCV, &dst[49]); unw_get_ar(info, UNW_AR_UNAT, &dst[50]); unw_get_ar(info, UNW_AR_FPSR, &dst[51]); dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ unw_get_ar(info, UNW_AR_LC, &dst[53]); unw_get_ar(info, UNW_AR_EC, &dst[54]); unw_get_ar(info, UNW_AR_CSD, &dst[55]); unw_get_ar(info, UNW_AR_SSD, &dst[56]); } void do_dump_fpu (struct unw_frame_info *info, void *arg) { elf_fpreg_t *dst = arg; int i; memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ if (unw_unwind_to_user(info) < 0) return; /* f0 is 0.0, f1 is 1.0 */ for (i = 2; i < 32; ++i) unw_get_fr(info, i, dst + i); ia64_flush_fph(current); if ((current->thread.flags & IA64_THREAD_FPH_VALID) != 0) memcpy(dst + 32, current->thread.fph, 96*16); } void ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) { unw_init_running(do_copy_regs, dst); } int dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) { unw_init_running(do_dump_fpu, dst); return 1; /* f0-f31 are always valid so we always return 1 */ } long sys_execve (char *filename, char **argv, char **envp, struct pt_regs *regs) { int error; filename = getname(filename); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, argv, envp, regs); putname(filename); out: return error; } void ia64_set_personality (struct elf64_hdr *elf_ex, int ibcs2_interpreter) { set_personality(PER_LINUX); if (elf_ex->e_flags & EF_IA_64_LINUX_EXECUTABLE_STACK) current->thread.flags |= IA64_THREAD_XSTACK; else current->thread.flags &= ~IA64_THREAD_XSTACK; } pid_t arch_kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) { struct task_struct *parent = current; int result, tid; tid = clone(flags | CLONE_VM, 0); if (parent != current) { #ifdef CONFIG_IA32_SUPPORT if (IS_IA32_PROCESS(ia64_task_regs(current))) { /* A kernel thread is always a 64-bit process. */ current->thread.map_base = DEFAULT_MAP_BASE; current->thread.task_size = DEFAULT_TASK_SIZE; ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); } #endif result = (*fn)(arg); _exit(result); } return tid; } /* * Flush thread state. This is called when a thread does an execve(). */ void flush_thread (void) { /* drop floating-point and debug-register state if it exists: */ current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); ia64_drop_fpu(current); } #ifdef CONFIG_PERFMON /* * by the time we get here, the task is detached from the tasklist. This is important * because it means that no other tasks can ever find it as a notified task, therfore there * is no race condition between this code and let's say a pfm_context_create(). * Conversely, the pfm_cleanup_notifiers() cannot try to access a task's pfm context if this * other task is in the middle of its own pfm_context_exit() because it would already be out of * the task list. Note that this case is very unlikely between a direct child and its parents * (if it is the notified process) because of the way the exit is notified via SIGCHLD. */ void release_thread (struct task_struct *task) { if (task->thread.pfm_context) pfm_context_exit(task); if (atomic_read(&task->thread.pfm_notifiers_check) > 0) pfm_cleanup_notifiers(task); if (atomic_read(&task->thread.pfm_owners_check) > 0) pfm_cleanup_owners(task); if (task->thread.pfm_smpl_buf_list) pfm_cleanup_smpl_buf(task); } #endif /* * Clean up state associated with current thread. This is called when * the thread calls exit(). */ void exit_thread (void) { ia64_drop_fpu(current); #ifdef CONFIG_PERFMON /* stop monitoring */ if (current->thread.pfm_context) pfm_flush_regs(current); /* free debug register resources */ if (current->thread.flags & IA64_THREAD_DBG_VALID) pfm_release_debug_registers(current); #endif } unsigned long get_wchan (struct task_struct *p) { struct unw_frame_info info; unsigned long ip; int count = 0; /* * These bracket the sleeping functions.. */ extern void scheduling_functions_start_here(void); extern void scheduling_functions_end_here(void); # define first_sched ((unsigned long) scheduling_functions_start_here) # define last_sched ((unsigned long) scheduling_functions_end_here) /* * Note: p may not be a blocked task (it could be current or * another process running on some other CPU. Rather than * trying to determine if p is really blocked, we just assume * it's blocked and rely on the unwind routines to fail * gracefully if the process wasn't really blocked after all. * --davidm 99/12/15 */ unw_init_from_blocked_task(&info, p); do { if (unw_unwind(&info) < 0) return 0; unw_get_ip(&info, &ip); if (ip < first_sched || ip >= last_sched) return ip; } while (count++ < 16); return 0; # undef first_sched # undef last_sched } void cpu_halt (void) { pal_power_mgmt_info_u_t power_info[8]; unsigned long min_power; int i, min_power_state; if (ia64_pal_halt_info(power_info) != 0) return; min_power_state = 0; min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; for (i = 1; i < 8; ++i) if (power_info[i].pal_power_mgmt_info_s.im && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; min_power_state = i; } while (1) ia64_pal_halt(min_power_state); } void machine_restart (char *restart_cmd) { (*efi.reset_system)(EFI_RESET_WARM, 0, 0, 0); } void machine_halt (void) { cpu_halt(); } void machine_power_off (void) { if (pm_power_off) pm_power_off(); machine_halt(); }