/* * Extensible Firmware Interface * * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999 * * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond * Copyright (C) 1999-2003 Hewlett-Packard Co. * David Mosberger-Tang * Stephane Eranian * * All EFI Runtime Services are not implemented yet as EFI only * supports physical mode addressing on SoftSDV. This is to be fixed * in a future version. --drummond 1999-07-20 * * Implemented EFI runtime services and virtual mode calls. --davidm * * Goutham Rao: * Skip non-WB memory and ignore empty memory ranges. */ #include #include #include #include #include #include #include #include #include #include #include #include #define EFI_DEBUG 0 extern efi_status_t efi_call_phys (void *, ...); struct efi efi; static efi_runtime_services_t *runtime; /* * efi_dir is allocated here, but the directory isn't created * here, as proc_mkdir() doesn't work this early in the bootup * process. Therefore, each module, like efivars, must test for * if (!efi_dir) efi_dir = proc_mkdir("efi", NULL); * prior to creating their own entries under /proc/efi. */ #ifdef CONFIG_PROC_FS struct proc_dir_entry *efi_dir; #endif static unsigned long mem_limit = ~0UL; #define efi_call_virt(f, args...) (*(f))(args) #define STUB_GET_TIME(prefix, adjust_arg) \ static efi_status_t \ prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), \ adjust_arg(tc)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_SET_TIME(prefix, adjust_arg) \ static efi_status_t \ prefix##_set_time (efi_time_t *tm) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ static efi_status_t \ prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ static efi_status_t \ prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ enabled, adjust_arg(tm)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_GET_VARIABLE(prefix, adjust_arg) \ static efi_status_t \ prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ unsigned long *data_size, void *data) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \ adjust_arg(name), adjust_arg(vendor), adjust_arg(attr), \ adjust_arg(data_size), adjust_arg(data)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ static efi_status_t \ prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \ adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_SET_VARIABLE(prefix, adjust_arg) \ static efi_status_t \ prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, u32 attr, \ unsigned long data_size, void *data) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \ adjust_arg(name), adjust_arg(vendor), attr, data_size, \ adjust_arg(data)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ static efi_status_t \ prefix##_get_next_high_mono_count (u64 *count) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ __va(runtime->get_next_high_mono_count), adjust_arg(count)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_RESET_SYSTEM(prefix, adjust_arg) \ static void \ prefix##_reset_system (int reset_type, efi_status_t status, \ unsigned long data_size, efi_char16_t *data) \ { \ struct ia64_fpreg fr[6]; \ \ ia64_save_scratch_fpregs(fr); \ efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \ reset_type, status, data_size, adjust_arg(data)); \ /* should not return, but just in case... */ \ ia64_load_scratch_fpregs(fr); \ } STUB_GET_TIME(phys, __pa) STUB_SET_TIME(phys, __pa) STUB_GET_WAKEUP_TIME(phys, __pa) STUB_SET_WAKEUP_TIME(phys, __pa) STUB_GET_VARIABLE(phys, __pa) STUB_GET_NEXT_VARIABLE(phys, __pa) STUB_SET_VARIABLE(phys, __pa) STUB_GET_NEXT_HIGH_MONO_COUNT(phys, __pa) STUB_RESET_SYSTEM(phys, __pa) STUB_GET_TIME(virt, ) STUB_SET_TIME(virt, ) STUB_GET_WAKEUP_TIME(virt, ) STUB_SET_WAKEUP_TIME(virt, ) STUB_GET_VARIABLE(virt, ) STUB_GET_NEXT_VARIABLE(virt, ) STUB_SET_VARIABLE(virt, ) STUB_GET_NEXT_HIGH_MONO_COUNT(virt, ) STUB_RESET_SYSTEM(virt, ) void efi_gettimeofday (struct timeval *tv) { efi_time_t tm; memset(tv, 0, sizeof(tv)); if ((*efi.get_time)(&tm, 0) != EFI_SUCCESS) return; tv->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second); tv->tv_usec = tm.nanosecond / 1000; } static int is_available_memory (efi_memory_desc_t *md) { if (!(md->attribute & EFI_MEMORY_WB)) return 0; switch (md->type) { case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_CONVENTIONAL_MEMORY: return 1; } return 0; } /* * Trim descriptor MD so its starts at address START_ADDR. If the descriptor covers * memory that is normally available to the kernel, issue a warning that some memory * is being ignored. */ static void trim_bottom (efi_memory_desc_t *md, u64 start_addr) { u64 num_skipped_pages; if (md->phys_addr >= start_addr || !md->num_pages) return; num_skipped_pages = (start_addr - md->phys_addr) >> EFI_PAGE_SHIFT; if (num_skipped_pages > md->num_pages) num_skipped_pages = md->num_pages; if (is_available_memory(md)) printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole " "at 0x%lx\n", __FUNCTION__, (num_skipped_pages << EFI_PAGE_SHIFT) >> 10, md->phys_addr, start_addr - IA64_GRANULE_SIZE); /* * NOTE: Don't set md->phys_addr to START_ADDR because that could cause the memory * descriptor list to become unsorted. In such a case, md->num_pages will be * zero, so the Right Thing will happen. */ md->phys_addr += num_skipped_pages << EFI_PAGE_SHIFT; md->num_pages -= num_skipped_pages; } static void trim_top (efi_memory_desc_t *md, u64 end_addr) { u64 num_dropped_pages, md_end_addr; md_end_addr = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT); if (md_end_addr <= end_addr || !md->num_pages) return; num_dropped_pages = (md_end_addr - end_addr) >> EFI_PAGE_SHIFT; if (num_dropped_pages > md->num_pages) num_dropped_pages = md->num_pages; if (is_available_memory(md)) printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole " "at 0x%lx\n", __FUNCTION__, (num_dropped_pages << EFI_PAGE_SHIFT) >> 10, md->phys_addr, end_addr); md->num_pages -= num_dropped_pages; } /* * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that * has memory that is available for OS use. */ void efi_memmap_walk (efi_freemem_callback_t callback, void *arg) { int prev_valid = 0; struct range { u64 start; u64 end; } prev, curr; void *efi_map_start, *efi_map_end, *p, *q; efi_memory_desc_t *md, *check_md; u64 efi_desc_size, start, end, granule_addr, last_granule_addr, first_non_wb_addr = 0; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; /* skip over non-WB memory descriptors; that's all we're interested in... */ if (!(md->attribute & EFI_MEMORY_WB)) continue; /* * granule_addr is the base of md's first granule. * [granule_addr - first_non_wb_addr) is guaranteed to * be contiguous WB memory. */ granule_addr = md->phys_addr & ~(IA64_GRANULE_SIZE - 1); first_non_wb_addr = max(first_non_wb_addr, granule_addr); if (first_non_wb_addr < md->phys_addr) { trim_bottom(md, granule_addr + IA64_GRANULE_SIZE); granule_addr = md->phys_addr & ~(IA64_GRANULE_SIZE - 1); first_non_wb_addr = max(first_non_wb_addr, granule_addr); } for (q = p; q < efi_map_end; q += efi_desc_size) { check_md = q; if ((check_md->attribute & EFI_MEMORY_WB) && (check_md->phys_addr == first_non_wb_addr)) first_non_wb_addr += check_md->num_pages << EFI_PAGE_SHIFT; else break; /* non-WB or hole */ } last_granule_addr = first_non_wb_addr & ~(IA64_GRANULE_SIZE - 1); if (last_granule_addr < md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) trim_top(md, last_granule_addr); if (is_available_memory(md)) { if (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) > mem_limit) { if (md->phys_addr > mem_limit) continue; md->num_pages = (mem_limit - md->phys_addr) >> EFI_PAGE_SHIFT; } if (md->num_pages == 0) continue; curr.start = PAGE_OFFSET + md->phys_addr; curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT); if (!prev_valid) { prev = curr; prev_valid = 1; } else { if (curr.start < prev.start) printk(KERN_ERR "Oops: EFI memory table not ordered!\n"); if (prev.end == curr.start) { /* merge two consecutive memory ranges */ prev.end = curr.end; } else { start = PAGE_ALIGN(prev.start); end = prev.end & PAGE_MASK; if ((end > start) && (*callback)(start, end, arg) < 0) return; prev = curr; } } } } if (prev_valid) { start = PAGE_ALIGN(prev.start); end = prev.end & PAGE_MASK; if (end > start) (*callback)(start, end, arg); } } /* * Look for the PAL_CODE region reported by EFI and maps it using an * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor * Abstraction Layer chapter 11 in ADAG */ void efi_map_pal_code (void) { void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; int pal_code_count = 0; u64 mask, psr; u64 vaddr; #ifdef CONFIG_IA64_MCA int cpu; #endif efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->type != EFI_PAL_CODE) continue; if (++pal_code_count > 1) { printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n", md->phys_addr); continue; } /* * The only ITLB entry in region 7 that is used is the one installed by * __start(). That entry covers a 64MB range. */ mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); vaddr = PAGE_OFFSET + md->phys_addr; /* * We must check that the PAL mapping won't overlap with the kernel * mapping. * * PAL code is guaranteed to be aligned on a power of 2 between 4k and * 256KB and that only one ITR is needed to map it. This implies that the * PAL code is always aligned on its size, i.e., the closest matching page * size supported by the TLB. Therefore PAL code is guaranteed never to * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for * now the following test is enough to determine whether or not we need a * dedicated ITR for the PAL code. */ if ((vaddr & mask) == (KERNEL_START & mask)) { printk(KERN_INFO "%s: no need to install ITR for PAL code\n", __FUNCTION__); continue; } if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE) panic("Woah! PAL code size bigger than a granule!"); mask = ~((1 << IA64_GRANULE_SHIFT) - 1); #if EFI_DEBUG printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n", smp_processor_id(), md->phys_addr, md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); #endif /* * Cannot write to CRx with PSR.ic=1 */ psr = ia64_clear_ic(); ia64_itr(0x1, IA64_TR_PALCODE, vaddr & mask, pte_val(mk_pte_phys(md->phys_addr, PAGE_KERNEL)), IA64_GRANULE_SHIFT); ia64_set_psr(psr); /* restore psr */ ia64_srlz_i(); #ifdef CONFIG_IA64_MCA cpu = smp_processor_id(); /* insert this TR into our list for MCA recovery purposes */ ia64_mca_tlb_list[cpu].pal_base=vaddr & mask; ia64_mca_tlb_list[cpu].pal_paddr= pte_val(mk_pte_phys(md->phys_addr, PAGE_KERNEL)); #endif } } void __init efi_init (void) { void *efi_map_start, *efi_map_end; efi_config_table_t *config_tables; efi_char16_t *c16; u64 efi_desc_size; char *cp, *end, vendor[100] = "unknown"; extern char saved_command_line[]; int i; /* it's too early to be able to use the standard kernel command line support... */ for (cp = saved_command_line; *cp; ) { if (memcmp(cp, "mem=", 4) == 0) { cp += 4; mem_limit = memparse(cp, &end) - 1; if (end != cp) break; cp = end; } else { while (*cp != ' ' && *cp) ++cp; while (*cp == ' ') ++cp; } } if (mem_limit != ~0UL) printk(KERN_INFO "Ignoring memory above %luMB\n", mem_limit >> 20); efi.systab = __va(ia64_boot_param->efi_systab); /* * Verify the EFI Table */ if (efi.systab == NULL) panic("Woah! Can't find EFI system table.\n"); if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) panic("Woah! EFI system table signature incorrect\n"); if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0) printk(KERN_WARNING "Warning: EFI system table major version mismatch: " "got %d.%02d, expected %d.%02d\n", efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff); config_tables = __va(efi.systab->tables); /* Show what we know for posterity */ c16 = __va(efi.systab->fw_vendor); if (c16) { for (i = 0;i < sizeof(vendor) && *c16; ++i) vendor[i] = *c16++; vendor[i] = '\0'; } printk(KERN_INFO "EFI v%u.%.02u by %s:", efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor); for (i = 0; i < efi.systab->nr_tables; i++) { if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { efi.mps = __va(config_tables[i].table); printk(" MPS=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { efi.acpi20 = __va(config_tables[i].table); printk(" ACPI 2.0=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { efi.acpi = __va(config_tables[i].table); printk(" ACPI=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { efi.smbios = __va(config_tables[i].table); printk(" SMBIOS=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { efi.sal_systab = __va(config_tables[i].table); printk(" SALsystab=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { efi.hcdp = __va(config_tables[i].table); printk(" HCDP=0x%lx", config_tables[i].table); } } printk("\n"); runtime = __va(efi.systab->runtime); efi.get_time = phys_get_time; efi.set_time = phys_set_time; efi.get_wakeup_time = phys_get_wakeup_time; efi.set_wakeup_time = phys_set_wakeup_time; efi.get_variable = phys_get_variable; efi.get_next_variable = phys_get_next_variable; efi.set_variable = phys_set_variable; efi.get_next_high_mono_count = phys_get_next_high_mono_count; efi.reset_system = phys_reset_system; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; #if EFI_DEBUG /* print EFI memory map: */ { efi_memory_desc_t *md; void *p; for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) { md = p; printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n", i, md->type, md->attribute, md->phys_addr, md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), md->num_pages >> (20 - EFI_PAGE_SHIFT)); } } #endif efi_map_pal_code(); efi_enter_virtual_mode(); } void efi_enter_virtual_mode (void) { void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; efi_status_t status; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->attribute & EFI_MEMORY_RUNTIME) { /* * Some descriptors have multiple bits set, so the order of * the tests is relevant. */ if (md->attribute & EFI_MEMORY_WB) { md->virt_addr = (u64) __va(md->phys_addr); } else if (md->attribute & EFI_MEMORY_UC) { md->virt_addr = (u64) ioremap(md->phys_addr, 0); } else if (md->attribute & EFI_MEMORY_WC) { #if 0 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WC | _PAGE_PL_0 | _PAGE_AR_RW)); #else printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); md->virt_addr = (u64) ioremap(md->phys_addr, 0); #endif } else if (md->attribute & EFI_MEMORY_WT) { #if 0 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WT | _PAGE_PL_0 | _PAGE_AR_RW)); #else printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); md->virt_addr = (u64) ioremap(md->phys_addr, 0); #endif } } } status = efi_call_phys(__va(runtime->set_virtual_address_map), ia64_boot_param->efi_memmap_size, efi_desc_size, ia64_boot_param->efi_memdesc_version, ia64_boot_param->efi_memmap); if (status != EFI_SUCCESS) { printk(KERN_WARNING "warning: unable to switch EFI into virtual mode (status=0x%lx)\n", status); return; } /* * Now that EFI is in virtual mode, we call the EFI functions more efficiently: */ efi.get_time = virt_get_time; efi.set_time = virt_set_time; efi.get_wakeup_time = virt_get_wakeup_time; efi.set_wakeup_time = virt_set_wakeup_time; efi.get_variable = virt_get_variable; efi.get_next_variable = virt_get_next_variable; efi.set_variable = virt_set_variable; efi.get_next_high_mono_count = virt_get_next_high_mono_count; efi.reset_system = virt_reset_system; } /* * Walk the EFI memory map looking for the I/O port range. There can only be one entry of * this type, other I/O port ranges should be described via ACPI. */ u64 efi_get_iobase (void) { void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { if (md->attribute & EFI_MEMORY_UC) return md->phys_addr; } } return 0; } u32 efi_mem_type (unsigned long phys_addr) { void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) return md->type; } return 0; } u64 efi_mem_attributes (unsigned long phys_addr) { void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) return md->attribute; } return 0; } static void __exit efivars_exit (void) { #ifdef CONFIG_PROC_FS remove_proc_entry(efi_dir->name, NULL); #endif }