/* * acpi.c - Architecture-Specific Low-Level ACPI Support * * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999,2000 Walt Drummond * Copyright (C) 2000, 2002-2003 Hewlett-Packard Co. * David Mosberger-Tang * Copyright (C) 2000 Intel Corp. * Copyright (C) 2000,2001 J.I. Lee * Copyright (C) 2001 Paul Diefenbaugh * Copyright (C) 2001 Jenna Hall * Copyright (C) 2001 Takayoshi Kochi * Copyright (C) 2002 Erich Focht * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PREFIX "ACPI: " asm (".weak iosapic_register_intr"); asm (".weak iosapic_override_isa_irq"); asm (".weak iosapic_register_platform_intr"); asm (".weak iosapic_init"); asm (".weak iosapic_system_init"); asm (".weak iosapic_version"); void (*pm_idle) (void); void (*pm_power_off) (void); unsigned char acpi_kbd_controller_present = 1; const char * acpi_get_sysname (void) { #ifdef CONFIG_IA64_GENERIC unsigned long rsdp_phys; struct acpi20_table_rsdp *rsdp; struct acpi_table_xsdt *xsdt; struct acpi_table_header *hdr; rsdp_phys = acpi_find_rsdp(); if (!rsdp_phys) { printk(KERN_ERR "ACPI 2.0 RSDP not found, default to \"dig\"\n"); return "dig"; } rsdp = (struct acpi20_table_rsdp *) __va(rsdp_phys); if (strncmp(rsdp->signature, RSDP_SIG, sizeof(RSDP_SIG) - 1)) { printk(KERN_ERR "ACPI 2.0 RSDP signature incorrect, default to \"dig\"\n"); return "dig"; } xsdt = (struct acpi_table_xsdt *) __va(rsdp->xsdt_address); hdr = &xsdt->header; if (strncmp(hdr->signature, XSDT_SIG, sizeof(XSDT_SIG) - 1)) { printk(KERN_ERR "ACPI 2.0 XSDT signature incorrect, default to \"dig\"\n"); return "dig"; } if (!strcmp(hdr->oem_id, "HP")) { return "hp"; } else if (!strcmp(hdr->oem_id, "SGI")) { return "sn2"; } return "dig"; #else # if defined (CONFIG_IA64_HP_SIM) return "hpsim"; # elif defined (CONFIG_IA64_HP_ZX1) return "hp"; # elif defined (CONFIG_IA64_SGI_SN2) return "sn2"; # elif defined (CONFIG_IA64_DIG) return "dig"; # else # error Unknown platform. Fix acpi.c. # endif #endif } #ifdef CONFIG_ACPI struct acpi_vendor_descriptor { u8 guid_id; efi_guid_t guid; }; struct acpi_vendor_info { struct acpi_vendor_descriptor *descriptor; u8 *data; u32 length; }; acpi_status acpi_vendor_resource_match (struct acpi_resource *resource, void *context) { struct acpi_vendor_info *info = (struct acpi_vendor_info *) context; struct acpi_resource_vendor *vendor; struct acpi_vendor_descriptor *descriptor; u32 length; if (resource->id != ACPI_RSTYPE_VENDOR) return AE_OK; vendor = (struct acpi_resource_vendor *) &resource->data; descriptor = (struct acpi_vendor_descriptor *) vendor->reserved; if (vendor->length <= sizeof(*info->descriptor) || descriptor->guid_id != info->descriptor->guid_id || efi_guidcmp(descriptor->guid, info->descriptor->guid)) return AE_OK; length = vendor->length - sizeof(struct acpi_vendor_descriptor); info->data = acpi_os_allocate(length); if (!info->data) return AE_NO_MEMORY; memcpy(info->data, vendor->reserved + sizeof(struct acpi_vendor_descriptor), length); info->length = length; return AE_CTRL_TERMINATE; } acpi_status acpi_find_vendor_resource (acpi_handle obj, struct acpi_vendor_descriptor *id, u8 **data, u32 *length) { struct acpi_vendor_info info; info.descriptor = id; info.data = 0; acpi_walk_resources(obj, METHOD_NAME__CRS, acpi_vendor_resource_match, &info); if (!info.data) return AE_NOT_FOUND; *data = info.data; *length = info.length; return AE_OK; } struct acpi_vendor_descriptor hp_ccsr_descriptor = { .guid_id = 2, .guid = EFI_GUID(0x69e9adf9, 0x924f, 0xab5f, 0xf6, 0x4a, 0x24, 0xd2, 0x01, 0x37, 0x0e, 0xad) }; acpi_status acpi_hp_csr_space (acpi_handle obj, u64 *csr_base, u64 *csr_length) { acpi_status status; u8 *data; u32 length; status = acpi_find_vendor_resource(obj, &hp_ccsr_descriptor, &data, &length); if (ACPI_FAILURE(status) || length != 16) return AE_NOT_FOUND; memcpy(csr_base, data, sizeof(*csr_base)); memcpy(csr_length, data + 8, sizeof(*csr_length)); acpi_os_free(data); return AE_OK; } #endif /* CONFIG_ACPI */ #ifdef CONFIG_ACPI_BOOT #define ACPI_MAX_PLATFORM_INTERRUPTS 256 /* Array to record platform interrupt vectors for generic interrupt routing. */ int platform_intr_list[ACPI_MAX_PLATFORM_INTERRUPTS] = { [0 ... ACPI_MAX_PLATFORM_INTERRUPTS - 1] = -1 }; enum acpi_irq_model_id acpi_irq_model = ACPI_IRQ_MODEL_IOSAPIC; /* * Interrupt routing API for device drivers. Provides interrupt vector for * a generic platform event. Currently only CPEI is implemented. */ int acpi_request_vector (u32 int_type) { int vector = -1; if (int_type < ACPI_MAX_PLATFORM_INTERRUPTS) { /* corrected platform error interrupt */ vector = platform_intr_list[int_type]; } else printk(KERN_ERR "acpi_request_vector(): invalid interrupt type\n"); return vector; } char * __acpi_map_table (unsigned long phys_addr, unsigned long size) { return __va(phys_addr); } /* -------------------------------------------------------------------------- Boot-time Table Parsing -------------------------------------------------------------------------- */ static int total_cpus __initdata; static int available_cpus __initdata; struct acpi_table_madt * acpi_madt __initdata; static u8 has_8259; static int __init acpi_parse_lapic_addr_ovr (acpi_table_entry_header *header) { struct acpi_table_lapic_addr_ovr *lapic; lapic = (struct acpi_table_lapic_addr_ovr *) header; if (!lapic) return -EINVAL; acpi_table_print_madt_entry(header); if (lapic->address) { iounmap((void *) ipi_base_addr); ipi_base_addr = (unsigned long) ioremap(lapic->address, 0); } return 0; } static int __init acpi_parse_lsapic (acpi_table_entry_header *header) { struct acpi_table_lsapic *lsapic; lsapic = (struct acpi_table_lsapic *) header; if (!lsapic) return -EINVAL; acpi_table_print_madt_entry(header); printk(KERN_INFO "CPU %d (0x%04x)", total_cpus, (lsapic->id << 8) | lsapic->eid); if (!lsapic->flags.enabled) printk(" disabled"); else if (available_cpus >= NR_CPUS) printk(" ignored (increase NR_CPUS)"); else { printk(" enabled"); #ifdef CONFIG_SMP smp_boot_data.cpu_phys_id[available_cpus] = (lsapic->id << 8) | lsapic->eid; if (hard_smp_processor_id() == (unsigned int) smp_boot_data.cpu_phys_id[available_cpus]) printk(" (BSP)"); #endif ++available_cpus; } printk("\n"); total_cpus++; return 0; } static int __init acpi_parse_lapic_nmi (acpi_table_entry_header *header) { struct acpi_table_lapic_nmi *lacpi_nmi; lacpi_nmi = (struct acpi_table_lapic_nmi*) header; if (!lacpi_nmi) return -EINVAL; acpi_table_print_madt_entry(header); /* TBD: Support lapic_nmi entries */ return 0; } static int __init acpi_parse_iosapic (acpi_table_entry_header *header) { struct acpi_table_iosapic *iosapic; iosapic = (struct acpi_table_iosapic *) header; if (!iosapic) return -EINVAL; acpi_table_print_madt_entry(header); if (iosapic_init) iosapic_init(iosapic->address, iosapic->global_irq_base); return 0; } static int __init acpi_parse_plat_int_src (acpi_table_entry_header *header) { struct acpi_table_plat_int_src *plintsrc; int vector; plintsrc = (struct acpi_table_plat_int_src *) header; if (!plintsrc) return -EINVAL; acpi_table_print_madt_entry(header); if (!iosapic_register_platform_intr) { printk(KERN_WARNING PREFIX "No ACPI platform interrupt support\n"); return -ENODEV; } /* * Get vector assignment for this interrupt, set attributes, * and program the IOSAPIC routing table. */ vector = iosapic_register_platform_intr(plintsrc->type, plintsrc->global_irq, plintsrc->iosapic_vector, plintsrc->eid, plintsrc->id, (plintsrc->flags.polarity == 1) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW, (plintsrc->flags.trigger == 1) ? IOSAPIC_EDGE : IOSAPIC_LEVEL); platform_intr_list[plintsrc->type] = vector; return 0; } static int __init acpi_parse_int_src_ovr (acpi_table_entry_header *header) { struct acpi_table_int_src_ovr *p; p = (struct acpi_table_int_src_ovr *) header; if (!p) return -EINVAL; acpi_table_print_madt_entry(header); /* Ignore if the platform doesn't support overrides */ if (!iosapic_override_isa_irq) return 0; iosapic_override_isa_irq(p->bus_irq, p->global_irq, (p->flags.polarity == 1) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW, (p->flags.trigger == 1) ? IOSAPIC_EDGE : IOSAPIC_LEVEL); return 0; } static int __init acpi_parse_nmi_src (acpi_table_entry_header *header) { struct acpi_table_nmi_src *nmi_src; nmi_src = (struct acpi_table_nmi_src*) header; if (!nmi_src) return -EINVAL; acpi_table_print_madt_entry(header); /* TBD: Support nimsrc entries */ return 0; } static int __init acpi_parse_madt (unsigned long phys_addr, unsigned long size) { if (!phys_addr || !size) return -EINVAL; acpi_madt = (struct acpi_table_madt *) __va(phys_addr); /* remember the value for reference after free_initmem() */ #ifdef CONFIG_ITANIUM has_8259 = 1; /* Firmware on old Itanium systems is broken */ #else has_8259 = acpi_madt->flags.pcat_compat; #endif if (iosapic_system_init) iosapic_system_init(has_8259); /* Get base address of IPI Message Block */ if (acpi_madt->lapic_address) ipi_base_addr = (unsigned long) ioremap(acpi_madt->lapic_address, 0); printk(KERN_INFO PREFIX "Local APIC address 0x%lx\n", ipi_base_addr); return 0; } #ifdef CONFIG_ACPI_NUMA #define PXM_FLAG_LEN ((MAX_PXM_DOMAINS + 1)/32) static int __initdata srat_num_cpus; /* number of cpus */ static u32 __initdata pxm_flag[PXM_FLAG_LEN]; #define pxm_bit_set(bit) (set_bit(bit,(void *)pxm_flag)) #define pxm_bit_test(bit) (test_bit(bit,(void *)pxm_flag)) /* maps to convert between proximity domain and logical node ID */ int __initdata pxm_to_nid_map[MAX_PXM_DOMAINS]; int __initdata nid_to_pxm_map[NR_NODES]; struct acpi_table_slit __initdata *slit_table; /* * ACPI 2.0 SLIT (System Locality Information Table) * http://devresource.hp.com/devresource/Docs/TechPapers/IA64/slit.pdf */ void __init acpi_numa_slit_init (struct acpi_table_slit *slit) { u32 len; len = sizeof(struct acpi_table_header) + 8 + slit->localities * slit->localities; if (slit->header.length != len) { printk("KERN_INFO ACPI 2.0 SLIT: size mismatch: %d expected, %d actual\n", len, slit->header.length); memset(numa_slit, 10, sizeof(numa_slit)); return; } slit_table = slit; } void __init acpi_numa_processor_affinity_init (struct acpi_table_processor_affinity *pa) { /* record this node in proximity bitmap */ pxm_bit_set(pa->proximity_domain); node_cpuid[srat_num_cpus].phys_id = (pa->apic_id << 8) | (pa->lsapic_eid); /* nid should be overridden as logical node id later */ node_cpuid[srat_num_cpus].nid = pa->proximity_domain; srat_num_cpus++; } void __init acpi_numa_memory_affinity_init (struct acpi_table_memory_affinity *ma) { unsigned long paddr, size, hole_size, min_hole_size; u8 pxm; struct node_memblk_s *p, *q, *pend; pxm = ma->proximity_domain; /* fill node memory chunk structure */ paddr = ma->base_addr_hi; paddr = (paddr << 32) | ma->base_addr_lo; size = ma->length_hi; size = (size << 32) | ma->length_lo; if (num_memblks >= NR_MEMBLKS) { printk(KERN_ERR "Too many mem chunks in SRAT. Ignoring %ld MBytes at %lx\n", size/(1024*1024), paddr); return; } /* Ignore disabled entries */ if (!ma->flags.enabled) return; /* * When the chunk is not the first one in the node, check distance * from the other chunks. When the hole is too huge ignore the chunk. * This restriction should be removed when multiple chunks per node * is supported. */ pend = &node_memblk[num_memblks]; min_hole_size = 0; for (p = &node_memblk[0]; p < pend; p++) { if (p->nid != pxm) continue; if (p->start_paddr < paddr) hole_size = paddr - (p->start_paddr + p->size); else hole_size = p->start_paddr - (paddr + size); if (!min_hole_size || hole_size < min_hole_size) min_hole_size = hole_size; } #if 0 /* test */ if (min_hole_size) { if (min_hole_size > size) { printk(KERN_ERR "Too huge memory hole. Ignoring %ld MBytes at %lx\n", size/(1024*1024), paddr); return; } } #endif /* record this node in proximity bitmap */ pxm_bit_set(pxm); /* Insertion sort based on base address */ pend = &node_memblk[num_memblks]; for (p = &node_memblk[0]; p < pend; p++) { if (paddr < p->start_paddr) break; } if (p < pend) { for (q = pend; q >= p; q--) *(q + 1) = *q; } p->start_paddr = paddr; p->size = size; p->nid = pxm; num_memblks++; } void __init acpi_numa_arch_fixup(void) { int i, j, node_from, node_to; if (srat_num_cpus == 0) { node_cpuid[0].phys_id = hard_smp_processor_id(); return; } /* calculate total number of nodes in system from PXM bitmap */ numnodes = 0; /* init total nodes in system */ memset(pxm_to_nid_map, -1, sizeof(pxm_to_nid_map)); memset(nid_to_pxm_map, -1, sizeof(nid_to_pxm_map)); for (i = 0; i < MAX_PXM_DOMAINS; i++) { if (pxm_bit_test(i)) { pxm_to_nid_map[i] = numnodes; nid_to_pxm_map[numnodes++] = i; } } /* set logical node id in memory chunk structure */ for (i = 0; i < num_memblks; i++) node_memblk[i].nid = pxm_to_nid_map[node_memblk[i].nid]; /* assign memory bank numbers for each chunk on each node */ for (i = 0; i < numnodes; i++) { int bank; bank = 0; for (j = 0; j < num_memblks; j++) if (node_memblk[j].nid == i) node_memblk[j].bank = bank++; } /* set logical node id in cpu structure */ for (i = 0; i < srat_num_cpus; i++) node_cpuid[i].nid = pxm_to_nid_map[node_cpuid[i].nid]; printk(KERN_INFO "Number of logical nodes in system = %d\n", numnodes); printk(KERN_INFO "Number of memory chunks in system = %d\n", num_memblks); if (!slit_table) return; memset(numa_slit, -1, sizeof(numa_slit)); for (i=0; ilocalities; i++) { if (!pxm_bit_test(i)) continue; node_from = pxm_to_nid_map[i]; for (j=0; jlocalities; j++) { if (!pxm_bit_test(j)) continue; node_to = pxm_to_nid_map[j]; node_distance(node_from, node_to) = slit_table->entry[i*slit_table->localities + j]; } } #ifdef SLIT_DEBUG printk(KERN_DEBUG "ACPI 2.0 SLIT locality table:\n"); for (i = 0; i < numnodes; i++) { for (j = 0; j < numnodes; j++) printk(KERN_DEBUG "%03d ", node_distance(i,j)); printk("\n"); } #endif } #endif /* CONFIG_ACPI_NUMA */ static int __init acpi_parse_fadt (unsigned long phys_addr, unsigned long size) { struct acpi_table_header *fadt_header; struct fadt_descriptor_rev2 *fadt; u32 sci_irq; if (!phys_addr || !size) return -EINVAL; fadt_header = (struct acpi_table_header *) __va(phys_addr); if (fadt_header->revision != 3) return -ENODEV; /* Only deal with ACPI 2.0 FADT */ fadt = (struct fadt_descriptor_rev2 *) fadt_header; if (!(fadt->iapc_boot_arch & BAF_8042_KEYBOARD_CONTROLLER)) acpi_kbd_controller_present = 0; sci_irq = fadt->sci_int; if (has_8259 && sci_irq < 16) return 0; /* legacy, no setup required */ if (!iosapic_register_intr) return -ENODEV; iosapic_register_intr(sci_irq, IOSAPIC_POL_LOW, IOSAPIC_LEVEL); return 0; } unsigned long __init acpi_find_rsdp (void) { unsigned long rsdp_phys = 0; if (efi.acpi20) rsdp_phys = __pa(efi.acpi20); else if (efi.acpi) printk(KERN_WARNING PREFIX "v1.0/r0.71 tables no longer supported\n"); return rsdp_phys; } int __init acpi_boot_init (void) { /* * MADT * ---- * Parse the Multiple APIC Description Table (MADT), if exists. * Note that this table provides platform SMP configuration * information -- the successor to MPS tables. */ if (acpi_table_parse(ACPI_APIC, acpi_parse_madt) < 1) { printk(KERN_ERR PREFIX "Can't find MADT\n"); goto skip_madt; } /* Local APIC */ if (acpi_table_parse_madt(ACPI_MADT_LAPIC_ADDR_OVR, acpi_parse_lapic_addr_ovr) < 0) printk(KERN_ERR PREFIX "Error parsing LAPIC address override entry\n"); if (acpi_table_parse_madt(ACPI_MADT_LSAPIC, acpi_parse_lsapic) < 1) printk(KERN_ERR PREFIX "Error parsing MADT - no LAPIC entries\n"); if (acpi_table_parse_madt(ACPI_MADT_LAPIC_NMI, acpi_parse_lapic_nmi) < 0) printk(KERN_ERR PREFIX "Error parsing LAPIC NMI entry\n"); /* I/O APIC */ if (acpi_table_parse_madt(ACPI_MADT_IOSAPIC, acpi_parse_iosapic) < 1) printk(KERN_ERR PREFIX "Error parsing MADT - no IOSAPIC entries\n"); /* System-Level Interrupt Routing */ if (acpi_table_parse_madt(ACPI_MADT_PLAT_INT_SRC, acpi_parse_plat_int_src) < 0) printk(KERN_ERR PREFIX "Error parsing platform interrupt source entry\n"); if (acpi_table_parse_madt(ACPI_MADT_INT_SRC_OVR, acpi_parse_int_src_ovr) < 0) printk(KERN_ERR PREFIX "Error parsing interrupt source overrides entry\n"); if (acpi_table_parse_madt(ACPI_MADT_NMI_SRC, acpi_parse_nmi_src) < 0) printk(KERN_ERR PREFIX "Error parsing NMI SRC entry\n"); skip_madt: /* * FADT says whether a legacy keyboard controller is present. * The FADT also contains an SCI_INT line, by which the system * gets interrupts such as power and sleep buttons. If it's not * on a Legacy interrupt, it needs to be setup. */ if (acpi_table_parse(ACPI_FADT, acpi_parse_fadt) < 1) printk(KERN_ERR PREFIX "Can't find FADT\n"); #ifdef CONFIG_SMP if (available_cpus == 0) { printk(KERN_INFO "ACPI: Found 0 CPUS; assuming 1\n"); printk(KERN_INFO "CPU 0 (0x%04x)", hard_smp_processor_id()); smp_boot_data.cpu_phys_id[available_cpus] = hard_smp_processor_id(); available_cpus = 1; /* We've got at least one of these, no? */ } smp_boot_data.cpu_count = available_cpus; smp_build_cpu_map(); # ifdef CONFIG_NUMA /* If the platform did not have an SRAT table, initialize the * node_cpuid table from the smp_boot_data array. All cpus * will be on node 0. */ if (srat_num_cpus == 0) { int cpu, i=1; for (cpu=0; cpuid.segment; vector[i].bus = entry->id.bus; vector[i].pci_id = ((u32) entry->id.device << 16) | 0xffff; vector[i].pin = entry->pin; vector[i].irq = entry->link.index; i++; } *count = acpi_prt.count; return 0; } #endif /* CONFIG_PCI */ /* Assume IA64 always use I/O SAPIC */ int __init acpi_get_interrupt_model (int *type) { if (!type) return -EINVAL; *type = ACPI_IRQ_MODEL_IOSAPIC; return 0; } int acpi_irq_to_vector (u32 irq) { if (has_8259 && irq < 16) return isa_irq_to_vector(irq); return gsi_to_vector(irq); } int acpi_register_irq (u32 gsi, u32 polarity, u32 trigger) { int vector = 0; if (has_8259 && gsi < 16) return isa_irq_to_vector(gsi); if (!iosapic_register_intr) return 0; /* Turn it on */ vector = iosapic_register_intr(gsi, (polarity == ACPI_ACTIVE_HIGH) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW, (trigger == ACPI_EDGE_SENSITIVE) ? IOSAPIC_EDGE : IOSAPIC_LEVEL); return vector; } #endif /* CONFIG_ACPI_BOOT */